1
|
Gerdesmeyer L, Burgkart R, Saxena A. Clavicle fracture and triathlon performance: a case report. J Med Case Rep 2024; 18:197. [PMID: 38566165 PMCID: PMC10988895 DOI: 10.1186/s13256-024-04482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Collarbone fracture is a common injury, particularly among athletes involved in contact sports and participating in endurance activities. Conventional treatment requires surgery and postoperative immobilization, resulting in an average return-to-sport timeframe of approximately 13 weeks. This case challenges the established treatment protocols, aiming to expedite recovery and enable a quicker resumption of high-intensity athletic activities. CASE PRESENTATION A 24-year-old Caucasian athlete completed a Half-Ironman Triathlon (70.3) merely three weeks post-collarbone fracture. Utilizing Extracorporeal Magneto-Transduction Therapy (EMTT) alongside surgical intervention, the patient achieved accelerated healing and remarkable performance outcomes without encountering any adverse effects. CONCLUSIONS The integration of EMTT into the treatment paradigm for bone fractures alters the traditional understanding of recovery timelines and rehabilitation strategies. This case highlights the potential benefits of electromagnetic wave therapy in expediting the healing process and enabling athletes to resume high-level sports activities at an earlier stage.
Collapse
Affiliation(s)
- Lennart Gerdesmeyer
- Department of Orthopaedics and Sports Orthopaedics, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Rainer Burgkart
- Department of Orthopaedics and Sports Orthopaedics, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Amol Saxena
- PAMF-Sutter Department of Sports Medicine, 795 El Camino Real, Clark Building, Level 3, Palo Alto, CA, 94301, USA
| |
Collapse
|
2
|
Maiullari S, Cicirelli A, Picerno A, Giannuzzi F, Gesualdo L, Notarnicola A, Sallustio F, Moretti B. Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress. Int J Mol Sci 2023; 24:16631. [PMID: 38068954 PMCID: PMC10706358 DOI: 10.3390/ijms242316631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Pulsed electromagnetic fields (PEMF) are employed as a non-invasive medicinal therapy, especially in the orthopedic field to stimulate bone regeneration. However, the effect of PEMF on skeletal muscle cells (SkMC) has been understudied. Here, we studied the potentiality of 1.5 mT PEMF to stimulate early regeneration of human SkMC. We showed that human SkMC stimulated with 1.5 mT PEMF for four hours repeated for two days can stimulate cell proliferation without inducing cell apoptosis or significant impairment of the metabolic activity. Interestingly, when we simulated physical damage of the muscle tissue by a scratch, we found that the same PEMF treatment can speed up the regenerative process, inducing a more complete cell migration to close the scratch and wound healing. Moreover, we investigated the molecular pattern induced by PEMF among 26 stress-related cell proteins. We found that the expression of 10 proteins increased after two consecutive days of PEMF stimulation for 4 h, and most of them were involved in response processes to oxidative stress. Among these proteins, we found that heat shock protein 70 (HSP70), which can promote muscle recovery, inhibits apoptosis and decreases inflammation in skeletal muscle, together with thioredoxin, paraoxonase, and superoxide dismutase (SOD2), which can also promote skeletal muscle regeneration following injury. Altogether, these data support the possibility of using PEMF to increase SkMC regeneration and, for the first time, suggest a possible molecular mechanism, which consists of sustaining the expression of antioxidant enzymes to control the important inflammatory and oxidative process occurring following muscle damage.
Collapse
Affiliation(s)
- Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.M.); (A.C.); (A.P.); (F.G.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Angela Notarnicola
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Biagio Moretti
- Orthopaedic and Trauma Unit, Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy; (A.N.); (B.M.)
| |
Collapse
|
3
|
Miao LW, Liu TZ, Sun YH, Cai N, Xuan YY, Wei Z, Cui BB, Jing LL, Ma HP, Xian CJ, Wang JF, Gao YH, Chen KM. Simulated microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia. J Cell Physiol 2023; 238:2692-2709. [PMID: 37796139 DOI: 10.1002/jcp.31127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.
Collapse
Affiliation(s)
- Lu-Wei Miao
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Tian-Zhen Liu
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Yue-Hong Sun
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Nan Cai
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Ying-Ying Xuan
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Zhenlong Wei
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Bing-Bing Cui
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Lin-Lin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Hui-Ping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ju-Fang Wang
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yu-Hai Gao
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
| | - Ke-Ming Chen
- Fundamental Medical Science Research Laboratories, Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Lian F, Li H, Ma Y, Zhou R, Wu W. Recent advances in primary cilia in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1259650. [PMID: 37886641 PMCID: PMC10598340 DOI: 10.3389/fendo.2023.1259650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Primary cilia are microtubule-based organelles that are widespread on the cell surface and play a key role in tissue development and homeostasis by sensing and transducing various signaling pathways. The process of intraflagellar transport (IFT), which is propelled by kinesin and dynein motors, plays a crucial role in the formation and functionality of cilia. Abnormalities in the cilia or ciliary transport system often cause a range of clinical conditions collectively known as ciliopathies, which include polydactyly, short ribs, scoliosis, thoracic stenosis and many abnormalities in the bones and cartilage. In this review, we summarize recent findings on the role of primary cilia and ciliary transport systems in bone development, we describe the role of cilia in bone formation, cartilage development and bone resorption, and we summarize advances in the study of primary cilia in fracture healing. In addition, the recent discovery of crosstalk between integrins and primary cilia provides new insights into how primary cilia affect bone.
Collapse
Affiliation(s)
- Fenfen Lian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hui Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Rui Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
The Possible Role of Electrical Stimulation in Osteoporosis: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010121. [PMID: 36676745 PMCID: PMC9861581 DOI: 10.3390/medicina59010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Osteoporosis is mainly a geriatric disease with a high incidence, and the resulting spinal fractures and hip fractures cause great harm to patients. Anti-osteoporosis drugs are the main treatment for osteoporosis currently, but these drugs have potential clinical limitations and side effects, so the development of new therapies is of great significance to patients with osteoporosis. Electrical stimulation therapy mainly includes pulsed electromagnetic fields (PEMF), direct current (DC), and capacitive coupling (CC). Meanwhile, electrical stimulation therapy is clinically convenient without side effects. In recent years, many researchers have explored the use of electrical stimulation therapy for osteoporosis. Based on this, the role of electrical stimulation therapy in osteoporosis was summarized. In the future, electrical stimulation might become a new treatment for osteoporosis.
Collapse
|