1
|
Luo W, Duan M, Liang E, Wang S, Yuan J. The regulation of glutamatergic nervous system in sleep-wake states and general anesthesia. Brain Res Bull 2025; 221:111220. [PMID: 39842646 DOI: 10.1016/j.brainresbull.2025.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The sleep-wake states and general anesthesia share many neurophysiological similarities, as both involve reversible changes in consciousness and modulation of brain activity. This paper reviews the role of glutamatergic neurons, the brain's primary excitatory neurons, in regulating sleep-wake states and general anesthesia. We discuss the involvement of glutamatergic neurons across various brain regions, including the brainstem, basal forebrain, thalamus, hypothalamus, and cortex, highlighting their contributions to physiological sleep-wake and anesthesia modulation. Recent advancements in techniques such as optogenetics, chemogenetics, and neural tracing have enhanced our understanding of these neurons' functions. Understanding these mechanisms can lead to improved therapeutic strategies for sleep disorders and more precise anesthetic practices, providing new avenues for clinical intervention.
Collapse
Affiliation(s)
- Wei Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Meiyi Duan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Enpeng Liang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Siwei Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China.
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Wang X, Shang M, Wang Z, Ji H, Wang Z, Mo G, Liu Q. Effects of individual characteristics and seasonality and their interaction on ectoparasite load of Daurian ground squirrels in Inner Mongolia, China. Int J Parasitol Parasites Wildl 2024; 25:101014. [PMID: 39558943 PMCID: PMC11570501 DOI: 10.1016/j.ijppaw.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Understanding the drivers of parasite distribution is vital for ecosystem health, disease management, and vector monitoring. While studies note the impact of host sex, size, behavior, and season on parasite load, concurrent assessments of these factors and their interactions are limited. During the spring, summer and autumn seasons from 2021 to 2023, we trapped Daurian ground squirrel (Spermophilus dauricus), a small rodent species that inhabits eastern Asian grasslands in Inner Mongolia and collected their ectoparasites. Using machine learning Lasso regression, we pinpointed factors affecting tick and flea abundance on S. dauricus. We then analyzed these factors and their seasonal interactions with a mixed negative binomial generalized linear model. Our study revealed significant but inconsistent seasonal effects on the load of ectoparasites. The tick load was significantly higher in spring and summer compared to autumn, while the flea load was higher in summer and autumn but lacked statistical significance. Furthermore, individual factors that influence the flea and tick load were moderated by seasonal effects, with a male bias in flea parasitism observed in spring. Significant interactions were also found among seasonality, sex, and body weight. The load of male squirrel fleas was positively correlated with body weight, with the highest increase observed in spring. On the contrary, the flea load of female squirrels showed a negative correlation with body weight, significantly decreasing in the autumn with increasing weight. Significant interactions were observed between season and survival status, with hosts exhibiting higher tick load during autumn survival. Our findings underscore the importance of considering seasonal variation in parasitism and the interactions between seasonal dynamics and host biological traits in shaping parasite distributions.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Meng Shang
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zihao Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Nanjing Medical University, Nanjing, 211112, China
| | - Haoqiang Ji
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhenxu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Guangju Mo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Weifang Medical College, 261053, China
| | - Qiyong Liu
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Department of Vector Biology and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Nanjing Medical University, Nanjing, 211112, China
| |
Collapse
|
3
|
Jia L, Yin J, Liu T, Qi W, Du T, Li Q, Ma K, Si J, Yin J, Li Y. Activation of Ventral Tegmental Area Dopaminergic Neurons Projecting to the Parabrachial Nucleus Promotes Emergence from Propofol Anesthesia in Male Rats. Neurochem Res 2024; 49:2060-2074. [PMID: 38814359 DOI: 10.1007/s11064-024-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.
Collapse
Affiliation(s)
- Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tongyu Du
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Quntao Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
4
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
5
|
Gao H, Wang J, Zhang R, Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: insights from optogenetics and chemogenetics. Front Pharmacol 2024; 15:1360864. [PMID: 38655183 PMCID: PMC11035785 DOI: 10.3389/fphar.2024.1360864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
For over 170 years, general anesthesia has played a crucial role in clinical practice, yet a comprehensive understanding of the neural mechanisms underlying the induction of unconsciousness by general anesthetics remains elusive. Ongoing research into these mechanisms primarily centers around the brain nuclei and neural circuits associated with sleep-wake. In this context, two sophisticated methodologies, optogenetics and chemogenetics, have emerged as vital tools for recording and modulating the activity of specific neuronal populations or circuits within distinct brain regions. Recent advancements have successfully employed these techniques to investigate the impact of general anesthesia on various brain nuclei and neural pathways. This paper provides an in-depth examination of the use of optogenetic and chemogenetic methodologies in studying the effects of general anesthesia on specific brain nuclei and pathways. Additionally, it discusses in depth the advantages and limitations of these two methodologies, as well as the issues that must be considered for scientific research applications. By shedding light on these facets, this paper serves as a valuable reference for furthering the accurate exploration of the neural mechanisms underlying general anesthesia. It aids researchers and clinicians in effectively evaluating the applicability of these techniques in advancing scientific research and clinical practice.
Collapse
Affiliation(s)
- Hui Gao
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|