1
|
Renganathan B, Moore AS, Yeo WH, Petruncio A, Ackerman D, Weigel AV, Team TC, Pasolli HA, Xu CS, Shtengel G, Hess HF, Serpinskaya AS, Zhang HF, Lippincott-Schwartz J, Gelfand VI. Vimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM. J Cell Biol 2025; 224:e202406054. [PMID: 40062969 PMCID: PMC11893169 DOI: 10.1083/jcb.202406054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 03/14/2025] Open
Abstract
Vimentin intermediate filaments (VIFs) form complex, tightly packed networks; due to this density, traditional imaging approaches cannot discern single-filament behavior. To address this, we developed and validated a sparse vimentin-SunTag labeling strategy, enabling single-particle tracking of individual VIFs and providing a sensitive, unbiased, and quantitative method for measuring global VIF motility. Using this approach, we define the steady-state VIF motility rate, showing a constant ∼8% of VIFs undergo directed microtubule-based motion irrespective of subcellular location or local filament density. Significantly, our single-particle tracking approach revealed uncorrelated motion of individual VIFs within bundles, an observation seemingly at odds with conventional models of tightly cross-linked bundles. To address this, we acquired high-resolution focused ion beam scanning electron microscopy volumes of vitreously frozen cells and reconstructed three-dimensional VIF bundles, finding that they form only loosely organized, semi-coherent structures from which single VIFs frequently emerge to locally engage neighboring microtubules. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew S. Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Alyson Petruncio
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aubrey V. Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - The CellMap Team
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, Rockefeller University, New York, NY, USA
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Anna S. Serpinskaya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Paumier JM, Zewe J, Panja C, Pergande MR, Venkatesan M, Israeli E, Prasad S, Snider N, Savas JN, Opal P. Neurofilament accumulation disrupts autophagy in giant axonal neuropathy. JCI Insight 2025; 10:e177999. [PMID: 40059823 PMCID: PMC11949051 DOI: 10.1172/jci.insight.177999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Neurofilament accumulation is associated with many neurodegenerative diseases, but it is the primary pathology in giant axonal neuropathy (GAN). This childhood-onset autosomal recessive disease is caused by loss-of-function mutations in gigaxonin, the E3 adaptor protein that enables neurofilament degradation. Using a combination of genetic and RNA interference approaches, we found that dorsal root ganglia from mice lacking gigaxonin have impaired autophagy and lysosomal degradation through 2 mechanisms. First, neurofilament accumulations interfere with the distribution of autophagic organelles, impairing their maturation and fusion with lysosomes. Second, the accumulations attract the chaperone 14-3-3, which is responsible for the proper localization of the key autophagy regulator transcription factor EB (TFEB). We propose that this dual disruption of autophagy contributes to the pathogenesis of other neurodegenerative diseases involving neurofilament accumulations.
Collapse
Affiliation(s)
- Jean-Michel Paumier
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James Zewe
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chiranjit Panja
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Melissa R. Pergande
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meghana Venkatesan
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eitan Israeli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shikha Prasad
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Natasha Snider
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Jeffrey N. Savas
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zenge C, Ordureau A. Ubiquitin system mutations in neurological diseases. Trends Biochem Sci 2024; 49:875-887. [PMID: 38972780 PMCID: PMC11455613 DOI: 10.1016/j.tibs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
Collapse
Affiliation(s)
- Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Phillips CL, Faridounnia M, Battaglia RA, Evangelista BA, Cohen TJ, Opal P, Bouldin TW, Armao D, Snider NT. Gigaxonin, mutated in Giant Axonal Neuropathy, interacts with TDP-43 and other RNA binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611033. [PMID: 39282431 PMCID: PMC11398400 DOI: 10.1101/2024.09.03.611033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Giant Axonal Neuropathy (GAN) is a neurodegenerative disease caused by loss-of-function mutations in the KLHL16 gene, encoding the cytoskeleton regulator gigaxonin. In the absence of functional gigaxonin, intermediate filament (IF) proteins accumulate in neurons and other cell types due to impaired turnover and transport. GAN neurons exhibit distended, swollen axons and distal axonal degeneration, but the mechanisms behind this selective neuronal vulnerability are unknown. Our objective was to identify novel gigaxonin interactors pertinent to GAN neurons. Unbiased proteomics revealed a statistically significant predominance of RNA-binding proteins (RBPs) within the soluble gigaxonin interactome and among differentially-expressed proteins in iPSC-neuron progenitors from a patient with classic GAN. Among the identified RBPs was TAR DNA-binding protein 43 (TDP-43), which associated with the gigaxonin protein and its mRNA transcript. TDP-43 co-localized within large axonal neurofilament IFs aggregates in iPSC-motor neurons derived from a GAN patient with the 'axonal CMT-plus' disease phenotype. Our results implicate RBP dysfunction as a potential underappreciated contributor to GAN-related neurodegeneration.
Collapse
Affiliation(s)
- Cassandra L Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | | | - Todd J Cohen
- Department of Neurology, University of North Carolina at Chapel Hill
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL
| | - Thomas W Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
- Department of Radiology, University of North Carolina at Chapel Hill
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
5
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
6
|
van Asperen JV, Kotaich F, Caillol D, Bomont P. Neurofilaments: Novel findings and future challenges. Curr Opin Cell Biol 2024; 87:102326. [PMID: 38401181 DOI: 10.1016/j.ceb.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/07/2024] [Indexed: 02/26/2024]
Abstract
Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.
Collapse
Affiliation(s)
- Jessy V van Asperen
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Farah Kotaich
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Damien Caillol
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Pascale Bomont
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France.
| |
Collapse
|
7
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
8
|
Phillips CL, Faridounnia M, Armao D, Snider NT. Stability dynamics of neurofilament and GFAP networks and protein fragments. Curr Opin Cell Biol 2023; 85:102266. [PMID: 37866019 PMCID: PMC11402464 DOI: 10.1016/j.ceb.2023.102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Neurofilaments (NFs) and GFAP are cytoskeletal intermediate filaments (IFs) that support cellular processes unfolding within the uniquely complex environments of neurons and astrocytes, respectively. This review highlights emerging concepts on the transitions between stable and destabilized IF networks in the nervous system. While self-association between transiently structured low-complexity IF domains promotes filament assembly, the opposing destabilizing actions of phosphorylation-mediated filament severing facilitate faster intracellular transport. Cellular proteases, including caspases and calpains, produce a variety of IF fragments, which may interact with N-degron and C-degron pathways of the protein degradation machinery. The rapid adoption of NF and GFAP-based clinical biomarker tests is contrasted with the lagging understanding of the dynamics between the native IF proteins and their fragments.
Collapse
Affiliation(s)
- Cassandra L Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, USA; Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
9
|
Renganathan B, Zewe JP, Cheng Y, Paumier J, Kittisopikul M, Ridge KM, Opal P, Gelfand VI. Gigaxonin is required for intermediate filament transport. FASEB J 2023; 37:e22886. [PMID: 37043392 PMCID: PMC10237250 DOI: 10.1096/fj.202202119r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 04/13/2023]
Abstract
Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - James P. Zewe
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jean‐Michel Paumier
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Mark Kittisopikul
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Puneet Opal
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|