1
|
Alfotawi R. Assessment of Novel Surgical Procedures Using Bone Morphogenic Protein-7 Infused Into Decellularised Muscle and Bioactive Ceramic: A Histological Analysis. J Craniofac Surg 2024:00001665-990000000-01810. [PMID: 39141821 DOI: 10.1097/scs.0000000000010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/26/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVE Reconstruction of critical bone defects is considered a challenge due to vascular reperfusion injury that may occur. The present study hypothesized that the use of decellularized muscle scaffold (DMS) and bone morphogenic protein-7 (BMP-7), along with resorbable bioactive ceramic silica calcium phosphate cement (SCPC) seeded with human bone marrow stromal cells, can expedite bone formation and maturation. METHODS Surgical bone defects were created in 20 nude transgenic mice. In experimental group 1 (n = 10), a critical-size (4 mm) calvarial defect was made and grafted with DMS-BMP-7/SCPC. In situ human bone marrow stromal cells [human mesenchymal stromal cells (hMSC)] were seeded thereafter. As a control, group 2 (n = 10) was treated with DMS/SCPC seeded with hMSCs. After 8 weeks, bone regeneration was evaluated using histology and histomorphometry for both groups. RESULTS Histological examination showed bone regeneration crossing the gap (experimental group 1), bone regeneration was noted at the defect periphery, and scattered islands of bone at the canters of the defects (control group 2). New bone formation and maturation were superior in the groups treated with the DMS/BMP-7/SCPC/hMSC constructs. The quantitative histological assessment revealed that the average bone surface area was 255 ± 25 mm2, which was 1.5 times the surface area of group 2, which was reported at 170 ± 35 mm2. The reported difference was considered statistically significant (P < 0.05). CONCLUSION The DMS-BMP-7/SCPC scaffold induced bone regeneration and neovascularization in critical-size defects.
Collapse
Affiliation(s)
- Randa Alfotawi
- Department of Oral and Maxillofacial, Dental Collage, King Saud University, Riyadh, Kingdom of Saudia Arabia
| |
Collapse
|
2
|
Grillo R. Analysis of the 100 most cited articles on ameloblastoma. Oral Maxillofac Surg 2023; 27:387-397. [PMID: 35654987 DOI: 10.1007/s10006-022-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES An increasing number of articles are published each year. The aim of this is to provide a list of the 100 most cited articles on the subject of ameloblastoma. METHODS A bibliographic search was performed on Google Scholar (GS), Microsoft Academic (MA), and Dimensions for ameloblastoma. A ranking was created in order of citation density. Graphical representations of keywords and authorship were created with VOSviewer. Statistical analysis was performed and only results with a 95% confidence interval were considered significant. RESULTS A helpful list of top 100 articles was developed to help professionals in a variety of ways. Some curiosities are discussed about this scientometric analysis in ameloblastoma articles. CONCLUSIONS A useful list of the top 100 most cited articles on ameloblastoma has been provided. Bibliometric and altmetric analysis using Google Scholar, Microsoft Academic, and Dimensions is a free and excellent tool, not only as a citation manager but also as a study reference.
Collapse
Affiliation(s)
- Ricardo Grillo
- Department of Oral & Maxillofacial Surgery, Faculdade Patos de Minas (Planalto Central), SIA trecho 8 lote 70/80 Guará, Brasília, DF, 71205-080, Brazil.
- Department of Oral & Maxillofacial Surgery, Faculdade São Leopoldo Mandic, Campinas, Brazil.
| |
Collapse
|
3
|
Al-Fotawi R, Fallatah W. Revascularization and angiogenesis for bone bioengineering in the craniofacial region: a review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:30. [PMID: 37249725 DOI: 10.1007/s10856-023-06730-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
The revascularization of grafted tissues is a complicated and non-straightforward process, which makes it challenging to perform reconstructive surgery for critical-sized bone defects. This challenge is combined with the low vascularity that results from radiotherapy. This low vascularity could result from ischemia-reperfusion injuries, also known as ischemia which may happen upon grafting. Ischemia may affect the hard tissue during reconstruction, and this can often cause resorption, infections, disfigurement, and malunion. This paper therefore reviews the clinical and experimental application of procedures that were employed to improve the reconstructive surgery process, which would ensure that the vascularity of the tissue is maintained or enhanced. It also presents the key strategies that are implemented to perform tissue engineering within the grafted sites aiming to optimize the microenvironment and to enhance the overall process of neovascularization and angiogenesis. This review reveals that the current strategies, according to the literature, are the seeding of the mature and progenitor cells, use of extracellular matrix (ECM), co-culturing of osteoblasts with the ECM, growth factors and the use of microcapillaries incorporated into the scaffold design. However, due to the unstable and regression-prone capillary structures in bone constructs, further research focusing on creating long-lasting and stable blood vessels is required.
Collapse
Affiliation(s)
- Randa Al-Fotawi
- Oral and Maxillofacial Dept. Dental Faculty, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | |
Collapse
|
4
|
Desnica J, Vujovic S, Stanisic D, Ognjanovic I, Jovicic B, Stevanovic M, Rosic G. Preclinical Evaluation of Bioactive Scaffolds for the Treatment of Mandibular Critical-Sized Bone Defects: A Systematic Review. APPLIED SCIENCES 2023; 13:4668. [DOI: 10.3390/app13084668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This systematic review evaluated current in vivo research on regenerating critical-sized mandibular defects and discussed methodologies for mandibular bone tissue engineering. Out of the 3650 articles initially retrieved, 88 studies were included, and all studies that used a scaffold reported increased bone formation compared to negative controls. Combining scaffolds with growth factors and mesenchymal stem cells improved bone formation and healing. Bone morphogenic proteins were widely used and promoted significant bone formation compared to controls. However, discrepancies between studies exist due to the various methodologies and outcome measures used. The use of scaffolds with bioactive molecules and/or progenitor cells enhances success in mandibular bone engineering. Scaffold-based mandibular bone tissue engineering could be introduced into clinical practice due to its proven safety, convenience, and cost-effectiveness.
Collapse
Affiliation(s)
- Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Sanja Vujovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Jovicic
- Dental Clinic, Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Shin JY, Chun JY, Chang SC, Roh SG, Lee NH. Association between non-vascularised bone graft failure and compartment of the defect in mandibular reconstruction: a systematic review and meta-analysis. Br J Oral Maxillofac Surg 2021; 60:128-133. [PMID: 34815100 DOI: 10.1016/j.bjoms.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/16/2021] [Indexed: 01/11/2023]
Abstract
Controversy exists regarding the influence of the graft placement site in the mandible on the success of non-vascularised bone grafts. In this study, we examine the association between the compartment of the mandibular defect and the bone graft failure rate. A systematic literature review and meta-analysis was performed using MEDLINE, Embase, and Cochrane databases. Failure rates according to the compartment of mandibular defect were extracted and analysed by meta-analysis. The Newcastle-Ottawa Scale was used to assess the quality of the studies, and publication bias was evaluated using funnel plots. The search strategy identified 27 publications. After screening, five were selected for review. Based on the result of comparison among these five, we found no significant statistical association between the bone graft failure rate and compartment of mandibular defect, although further investigation of prospective randomised cohort studies is required.
Collapse
Affiliation(s)
- J Y Shin
- Department of Plastic and Reconstructive Surgery, Medical School of Jeonbuk National University, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| | - J Y Chun
- Department of Plastic and Reconstructive Surgery, Medical School of Jeonbuk National University, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| | - S C Chang
- Department of Plastic and Reconstructive Surgery, Medical School of Jeonbuk National University, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - S-G Roh
- Department of Plastic and Reconstructive Surgery, Medical School of Jeonbuk National University, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - N-H Lee
- Department of Plastic and Reconstructive Surgery, Medical School of Jeonbuk National University, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Which substances loaded onto collagen scaffolds influence oral tissue regeneration?-an overview of the last 15 years. Clin Oral Investig 2020; 24:3363-3394. [PMID: 32827278 DOI: 10.1007/s00784-020-03520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Collagen scaffolds are widely used for guided bone or tissue regeneration. Aiming to enhance their regenerative properties, studies have loaded various substances onto these scaffolds. This review aims to provide an overview of existing literature which conducted in vitro, in vivo, and clinical testing of drug-loaded collagen scaffolds and analyze their outcome of promoting oral regeneration. MATERIALS AND METHODS PubMed, Scopus, and Ovid Medline® were systematically searched for publications from 2005 to 2019. Journal articles assessing the effect of substances on oral hard or soft tissue regeneration, while using collagen carriers, were screened and qualitatively analyzed. Studies were grouped according to their used substance type-biological medical products, pharmaceuticals, and tissue-, cell-, and matrix-derived products. RESULTS A total of 77 publications, applying 36 different substances, were included. Collagen scaffolds were demonstrating favorable adsorption behavior and release kinetics which could even be modified. BMP-2 was investigated most frequently, showing positive effects on oral tissue regeneration. BMP-9 showed comparable results at lower concentrations. Also, FGF2 enhanced bone and periodontal healing. Antibiotics improved the scaffold's anti-microbial activity and reduced the penetrability for bacteria. CONCLUSION Growth factors showed promising results for oral tissue regeneration, while other substances were investigated less frequently. Found effects of investigated substances as well as adsorption and release properties of collagen scaffolds should be considered for further investigation. CLINICAL RELEVANCE Collagen scaffolds are reliable carriers for any of the applied substances. BMP-2, BMP-9, and FGF2 showed enhanced bone and periodontal healing. Antibiotics improved anti-microbial properties of the scaffolds.
Collapse
|
7
|
Basyuni S, Ferro A, Santhanam V, Birch M, McCaskie A. Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg 2020; 58:632-642. [PMID: 32247521 DOI: 10.1016/j.bjoms.2020.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising alternative that may facilitate bony regeneration in small defects in compromised host tissue as well as large mandibular defects. This scoping systematic review was therefore designed to assess in vivo research on its use in the reconstruction of mandibular defects in animal models. A total of 4524 articles were initially retrieved using the search algorithm. After screening of the titles and abstracts, 269 full texts were retrieved, and a total of 72 studies included. Just two of the included studies employed osteonecrosis as the model of mandibular injury. All the rest involved the creation of a critical defect. Calcium phosphates, especially tricalcium phosphate and hydroxyapatite, were the scaffolds most widely used. All the studies that used a scaffold reported increased formation of bone when compared with negative controls. When combined with scaffolds, mesenchymal stem cells (MSC) increased the formation of new bone and improved healing. Various growth factors have been studied for their potential use in the regeneration of the maxillofacial complex. Bone morphogenic proteins (BMP) were the most popular, and all subtypes promoted significant formation of bone compared with controls. Whilst the studies published to date suggest a promising future, our review has shown that several shortfalls must be addressed before the findings can be translated into clinical practice. A greater understanding of the underlying cellular and molecular mechanisms is required to identify the optimal combination of components that are needed for predictable and feasible reconstruction or regeneration of mandibular bone. In particular, a greater understanding of the biological aspects of the regenerative triad is needed before we can to work towards widespread translation into clinical practice.
Collapse
Affiliation(s)
- S Basyuni
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom; Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A Ferro
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - V Santhanam
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - M Birch
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A McCaskie
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Kumar VV, Rometsch E, Thor A, Wolvius E, Hurtado-Chong A. Segmental Mandibular Reconstruction Using Tissue Engineering Strategies: A Systematic Review of Individual Patient Data. Craniomaxillofac Trauma Reconstr 2020; 13:267-284. [PMID: 33456698 DOI: 10.1177/1943387520917511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The aim of the systematic review was to analyze the current clinical evidence concerning the use of tissue engineering as a treatment strategy for reconstruction of segmental defects of the mandible and their clinical outcomes using individual patient data. Methods A systematic review of the literature was conducted using PubMed and Cochrane Library on May 21, 2019. The eligibility criteria included patients in whom segmental mandibular reconstruction was carried out using tissue engineering as the primary treatment strategy. After screening and checking for eligibility, individual patient data were extracted to the extent it was available. Data extraction included the type of tissue engineering strategy, demographics, and indication for treatment, and outcomes included clinical and radiographic outcome measures, vitality of engineered bone, dental rehabilitation, and patient-reported outcome measures and complications. Results Out of a total of 408 articles identified, 44 articles reporting on 285 patients were included, of which 179 patients fulfilled the inclusion criteria. The different tissue engineering treatment strategies could be broadly classified into 5 groups: "prefabrication," "cell culture," "bone morphogenetic protein (BMP) without autografts," "BMP with autografts," and "scaffolds containing autografts." Most included studies were case reports or case series. A wide variety of components were used as scaffolds, cells, and biological substances. There was not a single outcome measure that was both objective and consistently reported, although most studies reported successful outcome. Discussion A wide variety of tissue engineering strategies were used for segmental mandibular reconstruction that could be classified into 5 groups. Due to the low number of treated patients, lack of standardized and consistent reporting outcomes, lack of comparative studies, and low evidence of reported literature, there is insufficient evidence to recommend any particular tissue engineering strategy.
Collapse
Affiliation(s)
- Vinay V Kumar
- Plastic and Oral & Maxillofacial Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Andreas Thor
- Plastic and Oral & Maxillofacial Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Eppo Wolvius
- Department of Oral & Maxillofacial Surgery, Erasmus University Center, Rotterdam, the Netherlands
| | | |
Collapse
|
9
|
Efficacy of the Combination of rhBMP-2 with Bone Marrow Aspirate Concentrate in Mandibular Defect Reconstruction after a Pindborg Tumor Resection. Case Rep Dent 2020; 2020:8281741. [PMID: 32257455 PMCID: PMC7104310 DOI: 10.1155/2020/8281741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is an osteoinductive growth factor used in oral and maxillofacial surgery. It offers a feasible alternative for various regenerative procedures, including reconstruction of mandibular defects. In this study, we report a case of a large Pindborg tumor involving the left mandible. The treatment consisted of surgical resection, followed by off-label use of rhBMP-2 in addition to bone marrow aspirate concentrate, together with an allograft in a titanium mesh. The patient was rehabilitated with dental implants, and a good clinical outcome was achieved. We found no evidence of bone resorption or complications in both clinical and radiographic evaluations during the one-year follow-up period. In conclusion, we have demonstrated the efficacy of using rhBMP-2 combined with bone marrow aspirate concentrate, and an allograft with a titanium mesh, for the reconstruction of long mandibular bone defects. Not only is this combination feasible, but it also has the advantages of lower morbidity and cost.
Collapse
|
10
|
Melville JC, Mañón VA, Blackburn C, Young S. Current Methods of Maxillofacial Tissue Engineering. Oral Maxillofac Surg Clin North Am 2019; 31:579-591. [DOI: 10.1016/j.coms.2019.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Nonvascularized Bone Grafts for Reconstruction of Segmental Mandibular Defects: Is Length of Graft a Factor of Success? J Oral Maxillofac Surg 2019; 77:2557-2566. [PMID: 31228424 DOI: 10.1016/j.joms.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to evaluate a long-debated question in the field of whether the success of reconstructing mandibular defects with nonvascularized bone grafts (NVBGs) is dependent on the length of the graft. MATERIALS AND METHODS The inclusion criteria were patients who had received NVBGs, such as anterior or posterior iliac crest and costochondral grafts, to reconstruct segmental defects of the mandible between 2008 and 2017 at the Department of Oral and Maxillofacial Surgery at Case Western Reserve University. Patients with a history of irradiation of the head and neck and patients with inadequate follow-up were excluded from this study. Data such as defect length, patient age, comorbidities, length of follow-up, location of defect, etiology of defect, and postoperative course were collected. Success was judged by radiographic and clinical evidence of bone continuity and stability at a minimum of 4 months postoperatively. Failures were considered loss of all or part of the graft, resulting in a residual continuity defect requiring further bone grafting. RESULTS We identified 61 potential cases, of which 29 met the inclusion and exclusion criteria. The mean age of the patients at the time of grafting was 55 years (range, 17 to 81 years), with a mean follow-up length of 18 months. The length of defects ranged from 2 to 22 cm. The grafts were 6 cm or less in length in 7 defects and greater than 6 cm in length in 22 defects. All cases were grafted at a minimum of 6 months after resection, and bone morphogenetic protein was used in 25 cases (86%). Failure occurred in 1 patient in the group with grafts of 6 cm or less and 2 patients in the group with grafts greater than 6 cm, corresponding to success rates of 86% and 91%, respectively. Eight patients experienced minor complications such as wound dehiscence or infection, which resolved with local measures and antibiotics. CONCLUSIONS The results of our study show that NVBGs are a viable, safe, and effective treatment option for segmental mandibular defects over 6 cm in length in non-irradiated patients.
Collapse
|
12
|
Olsson AB, Dillon J, Kolokythas A, Schlott BJ. Reconstructive Surgery. J Oral Maxillofac Surg 2019; 75:e264-e301. [PMID: 28728733 DOI: 10.1016/j.joms.2017.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Cohen A, Polak D, Nir-Paz R, Westreich N, Casap N. Indirect Bactericidal Properties of Recombinant Human Bone Morphogenetic Protein 2 In Vitro. J Oral Maxillofac Surg 2019; 77:1611-1616. [PMID: 30928318 DOI: 10.1016/j.joms.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Bone morphogenetic proteins (BMPs) are secreted cytokines and are involved in various metabolic functions and inflammatory processes in different organs. The purpose of this study was to investigate whether BMPs also possess antimicrobial properties in direct or indirect ways. MATERIALS AND METHODS Antibacterial properties of recombinant human BMP2 (rhBMP2) were tested on 4 bacteria species (Staphylococcus aureus, Escherichia coli, Streptococcus mitis, Streptococcus constellatus) to examine the potential synergism of rhBMP2 with antibiotics. Indirect antibacterial properties were tested by infecting neutrophils with rhBMP2 and bacteria to investigate bacterial survival. Reactive oxidative species (ROS) production in neutrophils in the presence of rhBMP2 also was tested. RESULTS RhBMP2 in cardboard disks or sponge collagen as carriers did not show antibacterial activity against all tested bacteria. Further, synergism of rhBMP2 with antibiotics was not evident. Survival of bacteria inoculated with neutrophils and rhBMP2 led to a marked decrease in bacterial survival compared with neutrophils without rhBMP2. Although rhBMP2 inoculation of neutrophils alone did not induce ROS, its presence with the bacterial infection showed augmented ROS production for all tested bacteria. CONCLUSIONS RhBMP2 did not show direct antibacterial properties but did exhibit an indirect bactericidal effect in the presence of neutrophils. ROS production indicated that rhBMP2 has a role as a priming agent for neutrophils by augmenting their bactericidal capabilities and suggests the importance of its presence in contaminated surgical bone augmentation sites.
Collapse
Affiliation(s)
- Adir Cohen
- Visiting (Attending), Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah, Jerusalem, Israel
| | - David Polak
- Visiting (Attending), Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Ran Nir-Paz
- Professor of Microbiology and Visiting (Attending), Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Neetzan Westreich
- Student, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Nardy Casap
- Professor and Head, Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah, Jerusalem, Israel.
| |
Collapse
|
14
|
Abstract
The current standard of care for bone reconstruction, whether secondary to injury, nonunion, cancer resection, or idiopathic bone loss, is autologous bone grafting. Alternatives to autograft and allograft bone substitutes currently being researched are synthetic and natural graft materials that are able to guide bone regeneration. One promising material currently being researched is chitosan, a highly versatile, naturally occurring polysaccharide, derived from the exoskeleton of arthropods that is comprised of glucosamine and N-acetylglucosamine. Research on chitosan as a bone scaffold has been promising. Chitosan is efficacious in bone regeneration due to its lack of immunogenicity, its biodegradability, and its physiologic features. Chitosan combined with growth factors and/or other scaffold materials has proven to be an effective alternative to autologous bone grafts. Additionally, current studies have shown that it can provide the additional benefit of a local drug delivery system. As research in the area of bone scaffolding continues to grow, further clinical research on chitosan in conjunction with growth factors, proteins, and alloplastic materials will likely be at the forefront.
Collapse
|
15
|
Vorrasi JS, Kolokythas A. Controversies in Traditional Oral and Maxillofacial Reconstruction. Oral Maxillofac Surg Clin North Am 2017; 29:401-413. [DOI: 10.1016/j.coms.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
A historical perspective with current opinion on the management of atrophic mandibular fractures. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:e276-e282. [PMID: 29066066 DOI: 10.1016/j.oooo.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 11/23/2022]
Abstract
The management of atrophic mandibular fractures has been a challenge for maxillofacial surgeons for decades. During the past 70 years, various techniques for treating edentulous mandibular fractures have been advocated. These techniques have been praised, criticized, abandoned, improved, and used in combination with other methods. Although some of the principles of management outlined before the end of World War II are still valid in today's technological era, other concepts did not survive the test of time. The aim of this paper is to examine the evolution of treatment modalities for the management of atrophic mandibular fractures that have been employed over the years. Debates and discussions generated by this topic are included. Current techniques and treatment philosophies with thoughts for future therapies are provided.
Collapse
|
17
|
Silva HCLE, Cheim AP, Moreno R, Miranda SLD. Off-label use of rhBMP-2 as bone regeneration strategies in mandibular ameloblastoma unicystic. EINSTEIN-SAO PAULO 2017; 15:92-95. [PMID: 28444096 PMCID: PMC5433314 DOI: 10.1590/s1679-45082017rc3777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Jawbone reconstruction after tumor resection is one of the most challenging clinical tasks for maxillofacial surgeons. Osteogenic, osteoinductive, osteoconductive and non-antigenic properties of autogenous bone place this bone as the gold standard for solving problems of bone availability. However, the need for a second surgical site to harvest the bone graft increases significantly both the cost and the morbidity associated with the reconstructive procedures. Bone grafting gained an important tool with the discovery of bone morphogenetic proteins in 1960. Benefit of obtaining functional and real bone matrix without need of second surgical site seems to be the great advantage of use bone morphogenetic proteins. This study analyzed the use of rhBMP-2 in unicystic ameloblastoma of the mandible, detailing its structure, mechanisms of cell signaling and biological efficacy, in addition to present possible advantages and disadvantages of clinical use of rhBMP-2 as bone regeneration strategy.
Collapse
Affiliation(s)
| | | | - Roberto Moreno
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | |
Collapse
|
18
|
Castro-Núñez J, Cunningham LL, Van Sickels JE. Atrophic Mandible Fractures: Are Bone Grafts Necessary? An Update. J Oral Maxillofac Surg 2017; 75:2391-2398. [PMID: 28732221 DOI: 10.1016/j.joms.2017.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE The management of atrophic mandibular fractures poses a challenge because of anatomic variations and medical comorbidities associated with elderly patients. The purpose of this article is to review and update the literature regarding the management of atrophic mandible fractures using load-bearing reconstruction plates placed without bone grafts. MATERIALS AND METHODS We performed a review of the English-language literature looking for atrophic mandibular fractures with or without continuity defects and reconstruction without bone grafts. Included are 2 new patients from our institution who presented with fractures of their atrophic mandibles and had continuity defects and infections. Both patients underwent reconstruction with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. This study was approved as an "exempt study" by the Institutional Review Board at the University of Kentucky. This investigation observed the Declaration of Helsinki on medical protocol and ethics. RESULTS Currently, the standard of care to manage atrophic mandibular fractures with or without a continuity defect is a combination of a reconstruction plate plus autogenous bone graft. However, there is a need for an alternative option for patients with substantial comorbidities. Bone morphogenetic proteins, with or without additional substances, appear to be a choice. In our experience, successful healing occurred in patients with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. CONCLUSIONS Whereas primary reconstruction of atrophic mandibular fractures with reconstruction plates supplemented with autogenous bone graft is the standard of care, in selected cases in which multiple comorbidities may influence local and/or systemic outcomes, bone morphogenetic proteins and tricalcium phosphate can be used as a predictable alternative to autogenous grafts.
Collapse
Affiliation(s)
- Jaime Castro-Núñez
- International Fellow, Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky, Lexington, KY; and Assistant Professor, College of Dentistry, Institución Universitaria Colegios de Colombia, Bogota, Colombia.
| | - Larry L Cunningham
- Professor and Chief, Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky, Lexington, KY
| | - Joseph E Van Sickels
- Professor and Program Director, Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky, Lexington, KY
| |
Collapse
|
19
|
Off-Label Use of Bone Morphogenetic Protein 2 in the Reconstructions of Mandibular Continuity Defects. J Craniofac Surg 2017; 28:227-230. [PMID: 27977485 DOI: 10.1097/scs.0000000000003291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This paper describes 3 patients of off-label use of bone morphogenetic protein 2 (rhBMP-2) in the reconstruction of mandibular continuity defects. In the first patient, rhBMP-2 was associated with iliac crest bone graft for late mandibular reconstruction after resection of osteosarcoma. In the 2 other patients, rhBMP-2 was used alone. In 1 patient the mandibular continuity defect was due to resection for treatment of osteomyelitis and in the other patient a continuity defect was created by unsuccessful osteogenic distraction for correction of mandibular hypoplasia. Despite the good results in those patients, the off-label use of rhBMP-2 is associated with increased rate of complications, so more studies are needed to assess the predictability of the use of rhBMP-2 in mandibular continuity defects. Therefore, at the moment the off-label use of rhBMP-2 should be restricted to complicated bone defects in which the conventional alternatives of reconstruction were unsuccessful.
Collapse
|
20
|
Immediate Transoral Allogeneic Bone Grafting for Large Mandibular Defects. Less Morbidity, More Bone. A Paradigm in Benign Tumor Mandibular Reconstruction? J Oral Maxillofac Surg 2017; 75:828-838. [DOI: 10.1016/j.joms.2016.09.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
|
21
|
Kumar BP, Venkatesh V, Kumar KAJ, Yadav BY, Mohan SR. Mandibular Reconstruction: Overview. J Maxillofac Oral Surg 2016; 15:425-441. [PMID: 27833334 PMCID: PMC5083680 DOI: 10.1007/s12663-015-0766-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/28/2015] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Mandibular reconstruction has changed significantly over the years and continues to evolve with the introduction of newer technologies and techniques. PURPOSE This article reviews the history of oromandibular reconstruction, biomechanics of mandible, summarizes the reconstruction options available for mandible with defect classification, goals in reconstruction, the various donor sites, current reconstructive options, dental rehabilitation and persistent associated problems. SUMMARY Oromandibular reconstruction, although a challenge for the head and neck reconstructive surgeon, is now reliable and highly successful with excellent long-term functional and aesthetic outcomes with the use of autogenous bone grafts and current reconstructive options. The ideal reconstruction would provide a solid arch to articulate with the upper jaw, restoring swallowing speech, mastication, and esthetics. Autogenous vascularized bone grafts in combination with microsurgical techniques have revolutionized mandibular reconstruction in oral cancer surgery. Current trends in mandibular reconstruction aim to achieve reestablishment of a viable mandible of proper form and maxillary mandibular relationship while decreasing the need for invasive autogenous graft procurement. However the optimal reconstruction of mandibular defects is still controversial in regards to reconstructive options which include the donor site selection, timing of surgery and method of reconstruction.
Collapse
Affiliation(s)
- Batchu Pavan Kumar
- Oral and Maxillofacial Surgery, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda, 508254 Andhra Pradesh India
| | - V. Venkatesh
- Oral and Maxillofacial Surgery, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda, 508254 Andhra Pradesh India
| | - K. A. Jeevan Kumar
- Oral and Maxillofacial Surgery, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda, 508254 Andhra Pradesh India
| | - B. Yashwanth Yadav
- Oral and Maxillofacial Surgery, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda, 508254 Andhra Pradesh India
| | - S. Ram Mohan
- Oral and Maxillofacial Surgery, Kamineni Institute of Dental Sciences, Sreepuram, Narketpally, Nalgonda, 508254 Andhra Pradesh India
| |
Collapse
|
22
|
Nagi R, Sahu S, Rakesh N. Molecular and genetic aspects in the etiopathogenesis of ameloblastoma: An update. J Oral Maxillofac Pathol 2016; 20:497-504. [PMID: 27721617 PMCID: PMC5051300 DOI: 10.4103/0973-029x.190954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/04/2016] [Indexed: 02/02/2023] Open
Abstract
Ameloblastoma is the second most common benign epithelial odontogenic tumor and though it is of a benign nature, it is locally invasive, has a high recurrence rate and could potentially become malignant. Many theories have been proposed to explain the pathogenesis of ameloblastoma. Proper understanding of the pathogenic mechanism involved in ameloblastoma and its proliferation aids in constituting proper treatment of choice at an early stage, preventing morbidity associated with extensive therapy. An attempt has been made to discuss the current concepts related to molecular and genetic changes that occur in ameloblastoma as these could affect treatment plan and prognosis.
Collapse
Affiliation(s)
- Ravleen Nagi
- Department of Oral Medicine and Radiology, New Horizon Dental College and Research Institute, Bilaspur, Chhattisgarh, India
| | - Shashikant Sahu
- Department of Plastic Surgery, Burn and Trauma Centre, Bilaspur, Chhattisgarh, India
| | - N Rakesh
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSRIT Post, Mathikere, Bangalore, Karnataka, India
| |
Collapse
|
23
|
Abstract
Forty years ago Marshal R. Urist discovered a substance in bone matrix that had inductive properties for the development of bone and cartilage, until date, at least 20 bone morphogenetic proteins (BMPs) have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. The purpose of this paper is to give a brief overview of BMPs and to review critically the clinical data currently available on the use of BMPs in various periodontal applications. The literature on BMPs was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal applications were included. The available literature was analyzed and compiled. The analysis indicates BMPs to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. On the basis of the data provided in the studies that were reviewed BMPs provide revolutionary therapies in periodontal practice.
Collapse
Affiliation(s)
- Supreet Kaur
- Department of Periodontics, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Vishakha Grover
- Department of Periodontics, National Dental College and Hospital, Dera Bassi, Punjab, India
| | - Harkiran Kaur
- Department of Periodontics, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Ranjan Malhotra
- Department of Periodontics, National Dental College and Hospital, Dera Bassi, Punjab, India
| |
Collapse
|
24
|
Oshiro Junior JA, Mortari GR, de Freitas RM, Marcantonio-Junior E, Lopes L, Spolidorio LC, Marcantonio RA, Chiavacci LA. Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1157796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Mandibular Tissue Engineering: Past, Present, Future. J Oral Maxillofac Surg 2016; 73:S136-46. [PMID: 26608143 DOI: 10.1016/j.joms.2015.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Abstract
Almost 2 decades ago, the senior author's (M.T.J.) first article was with our mentor, Dr Leonard B. Kaban, a review article titled "Distraction Osteogenesis: Past, Present, Future." In 1998, many thought it would be impossible to have a remotely activated, small, curvilinear distractor that could be placed using endoscopic techniques. Currently, a U.S. patent for a curvilinear automated device and endoscopic techniques for minimally invasive access for jaw reconstruction exist. With minimally invasive access for jaw reconstruction, the burden to decrease donor site morbidity has increased. Distraction osteogenesis (DO) is an in vivo form of tissue engineering. The DO technique eliminates a donor site, is less invasive, requires a shorter operative time than usual procedures, and can be used for multiple reconstruction applications. Tissue engineering could further reduce morbidity and cost and increase treatment availability. The purpose of the present report was to review our experience with tissue engineering of bone: the past, present, and our vision for the future. The present report serves as a tribute to our mentor and acknowledges Dr Kaban for his incessant tutelage, guidance, wisdom, and boundless vision.
Collapse
|
26
|
Rollason V, Laverrière A, MacDonald LCI, Walsh T, Tramèr MR, Vogt‐Ferrier NB. Interventions for treating bisphosphonate-related osteonecrosis of the jaw (BRONJ). Cochrane Database Syst Rev 2016; 2:CD008455. [PMID: 26919630 PMCID: PMC7173706 DOI: 10.1002/14651858.cd008455.pub2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Bisphosphonate drugs can be used to prevent and treat osteoporosis and to reduce symptoms and complications of metastatic bone disease; however, they are associated with a rare but serious adverse event: osteonecrosis of the maxillary and mandibular bones. This condition is called bisphosphonate-related osteonecrosis of the jaw or BRONJ. BRONJ is diagnosed when people who are taking, or have previously taken, bisphosphonates have exposed bone in the jaw area for more than eight weeks in the absence of radiation treatment. There is currently no "gold standard" of treatment for BRONJ. The three broad categories of intervention are conservative approaches (e.g. mouth rinse, antibiotics), surgical interventions and adjuvant non-surgical strategies (e.g. hyperbaric oxygen therapy, platelet-rich plasma), which can be used in combination. OBJECTIVES To determine the efficacy and safety of any intervention aimed at treating BRONJ. SEARCH METHODS We searched the following databases to 15 December 2015: the Cochrane Oral Health Group Trials Register, the Cochrane Breast Cancer Group Trials Register (20 September 2011), the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via Ovid, EMBASE via Ovid, CancerLit via PubMed, CINAHL via EBSCO and AMED via Ovid. We scanned the references cited in retrieved articles and contacted experts in the field, the first authors of included papers, study sponsors, other bisphosphonates investigators and pharmaceutical companies. We searched for ongoing trials through contact with trialists and by searching the US National Institutes of Health Trials Register (clinicaltrials.gov) and the World Health Organization Clinical Trials Registry Platform. We also conducted a grey literature search to September 2015. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing the effects of any treatment for BRONJ with another treatment or placebo. DATA COLLECTION AND ANALYSIS Two review authors independently screened the search results, assessed the risk of bias in the included trials and extracted data. When in dispute, we consulted a third review author. MAIN RESULTS One small trial at high risk of bias met the inclusion criteria. The trial randomised 49 participants, most of whom had cancer. It compared standard care (defined as surgery, antibiotics and oral rinses at the discretion of the oral-maxillofacial surgeon) to standard care plus hyperbaric oxygen therapy (2 atmospheres twice a day for 40 treatments). The trial measured the percentage of participants who improved or healed at three, six, 12 and 18 months and last contact. It also measured mean weekly pain scores.At three months, the study found that the participants in intervention group were more likely to have an improvement in their osteonecrosis than the standard care group participants (risk ratio (RR) 1.94, 95% confidence interval (CI) 1.01 to 3.74). There was no clear difference between the groups for the outcome 'healed' at three months (RR 3.60, 95% CI 0.87 to 14.82). There was no clear difference between the groups for improvement or healing when they were evaluated at six, 12 and 18 months and last contact.The study did not give any information on adverse events.Although the findings suggest adjunctive hyperbaric oxygen improved BRONJ, the quality of the evidence is very low since the only study was underpowered and was at high risk of bias due to lack of blinding, cross-over of participants between groups and very high attrition (50% at 12 months and 80% at 18 months in this study, which was designed for an intended follow-up of 24 months). AUTHORS' CONCLUSIONS There is a lack of evidence from randomised controlled trials to guide treatment of bisphosphonate-related osteonecrosis of the jaw (BRONJ). One small trial at high risk of bias evaluated hyperbaric oxygen therapy (HBO) as an adjunct to "standard" care and could not confirm or refute the effectiveness of HBO. There are two ongoing trials of teriparatide treatment for BRONJ. We found no randomised controlled trials of any other BRONJ treatments. High quality randomised controlled trials are needed. We provide recommendations for their focus and design.
Collapse
Affiliation(s)
- Victoria Rollason
- Geneva University HospitalsDivision of Clinical Pharmacology and Toxicology, Department APSIHopital Cantonal de GeneveGenevaSwitzerland1211
| | - Alexandra Laverrière
- Geneva University HospitalsDivision of Clinical Pharmacology and Toxicology, Department APSIHopital Cantonal de GeneveGenevaSwitzerland1211
| | - Laura CI MacDonald
- School of Dentistry, The University of ManchesterCochrane Oral Health GroupJ R Moore Building, Oxford RoadManchesterUK
| | - Tanya Walsh
- School of Dentistry, The University of ManchesterJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Martin R Tramèr
- Geneva University HospitalsDivision of Anaesthesiology, Department APSI4 Gabrielle‐Perret‐GentilGenevaSwitzerland1211
| | - Nicole B Vogt‐Ferrier
- Geneva University HospitalsDivision of Clinical Pharmacology and Toxicology, Department APSIHopital Cantonal de GeneveGenevaSwitzerland1211
| | | |
Collapse
|
27
|
Das A, Fishero BA, Christophel JJ, Li CJ, Kohli N, Lin Y, Dighe AS, Cui Q. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair. Cell Tissue Res 2015; 364:125-35. [PMID: 26475719 DOI: 10.1007/s00441-015-2301-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.
Collapse
Affiliation(s)
- Anusuya Das
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian A Fishero
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Jared Christophel
- Department of Otolaryngology- Head and Neck Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikita Kohli
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yong Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Abhijit S Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
28
|
Yoon BH, Lee JH, Na K, Cho J, Choe S. The toxicological evaluation of repetitive 2- and 4-week intravenous injection of Activin A/BMP-2 chimera (AB204) into rats. Regul Toxicol Pharmacol 2015; 73:1-8. [DOI: 10.1016/j.yrtph.2015.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/04/2023]
|
29
|
Regeneration of a Compromized Masticatory Unit in a Large Mandibular Defect Caused by a Huge Solitary Bone Cyst: A Case Report and Review of the Regenerative Literature. J Maxillofac Oral Surg 2015; 15:295-305. [PMID: 27408457 DOI: 10.1007/s12663-015-0828-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/24/2015] [Indexed: 01/14/2023] Open
Abstract
The reconstructive options for large expansive cystic lesion affecting the jaws are many. The first stage of treatment may involve enucleation or marsupialization of the cyst. Attempted reconstruction of large osseous defects arising from the destruction of local tissue can present formidable challenges. The literature reports the use of bone grafts, free tissue transfer, bone morphogenic protein and reconstruction plates to assist in the healing and rehabilitation process. The management of huge mandibular cysts needs to take into account the preservation of existing intact structures, removal of the pathology and the reconstructive objectives which focus both on aesthetic and functional rehabilitation. The planning and execution of such treatment requires not only the compliance of the patient and family but also their assent as customers with a voice in determining their surgical destiny. The authors would like to report a unique case of a huge solitary bone cyst that had reduced the ramus, angle and part of the body of one side of the mandible to a pencil-thin-like strut of bone. A combination of decompression through marsupialization, serial packing, and the fabrication of a custom made obturator facilitated the regeneration of the myo-osseous components of the masticatory unit of this patient. Serial CT scans showed evidence of concurrent periosteal and endosteal bone formation and, quite elegantly, the regeneration of the first branchial arch components of the right myo-osseous masticatory complex. The microenvironmental factors that may have favored regeneration of these complex structures are discussed.
Collapse
|
30
|
Lustosa RM, Macedo DDV, Iwaki LCV, Tolentino EDS, Hasse PN, Marson GBDO, Iwaki Filho L. Continuity resection of the mandible after ameloblastoma - feasibility of oral rehabilitation with rhBMP-2 associated to bovine xenograft followed by implant installation. J Craniomaxillofac Surg 2015; 43:1553-60. [PMID: 26190695 DOI: 10.1016/j.jcms.2015.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/02/2015] [Accepted: 06/18/2015] [Indexed: 11/26/2022] Open
Abstract
Recombinant human morphogenetic protein (rhBMP) is a graft alternative for extensive mandibular reconstruction after tumor resections. However, the feasibility of rhBMP-2 to receive osseointegrated implants and prosthetic rehabilitation has been rarely reported. This study reports on a case of an extensive solid ameloblastoma along the mandibular body. The treatment consisted of resection followed by off-label use of rhBMP type 2 associated with bovine bone xenograft. Eleven months postoperatively, the patient was prosthetically rehabilitated with dental implants, without evidence of resorption or complications. The literature on mandibular reconstructions using rhBMP and their feasibility for future osseointegrated implant placement was also reviewed. Based on the presented case, the association between rhBMP-2 and a bovine bone xenograft could be considered a feasible option for the reconstruction and rehabilitation of large mandibular defects after tumor resection. According to the literature, the use of rhBMP as a graft material is encouraging, with good clinical outcome. However, there are no long-term studies demonstrating success and survival rates of implants placed in these grafts. Future investigations will be required to ascertain the long-term survival of implants in areas grafted with rhBMP. Also, there is a lack of information regarding the prosthetic rehabilitation of these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liogi Iwaki Filho
- Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
31
|
Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:57-78. [PMID: 26545744 DOI: 10.1007/978-3-319-22345-2_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, there has been a substantial amount of innovation and research into tissue engineering and regenerative approaches for the craniofacial region. This highly complex area presents many unique challenges for tissue engineers. Recent research indicates that various forms of implantable biodegradable scaffolds may play a beneficial role in the clinical treatment of craniofacial pathological conditions. Additionally, the direct delivery of bioactive molecules may further increase de novo bone formation. While these strategies offer an exciting glimpse into potential future treatments, there are several challenges that still must be overcome. In this chapter, we will highlight both current surgical approaches for craniofacial reconstruction and recent advances within the field of bone tissue engineering. The clinical challenges and limitations of these strategies will help contextualize and inform future craniofacial tissue engineering strategies.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
32
|
Fishero BA, Kohli N, Das A, Christophel JJ, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 2014; 8:23-30. [PMID: 25709750 DOI: 10.1055/s-0034-1393724] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair.
Collapse
Affiliation(s)
- Brian Alan Fishero
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Nikita Kohli
- Department of Otolaryngology-Head and Neck Surgery, SUNY Downstate Medical Center, Brooklyn, New York
| | - Anusuya Das
- Orthopaedic Surgery Research Center, University of Virginia, Charlottesville, Virginia
| | - John Jared Christophel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
33
|
Abstract
Treatment of cancer is race against time! Following radical excision, breathing, speech, mastication and swallowing are hampered. Face is invariably involved. Beside functional normalcy, excellent cosmetic restoration is necessary for patient's life quality. Primary wound healing, quick resumption of adequate oral intake, prompt initiation of chemo-radiotherapy has direct bearing on cure. Primary reconstruction with pedicle or free flap is the choice of treatment in most protocols. Composite defects are requiring bone, muscle and skin restrict choice of donor site and may have shortfalls in aesthetic and functional requirements. To improve further newer, and newer modalities are being developed and used to give best aesthetic and functions. Navigation, use of three-dimensional imaging, stereo lithic model and custom made implant for reconstruction are recommended as they promise improvement in aesthetics. Robotic surgeries allow access for resection of tumours and reconstruction with free flap in deep oropharynx obviating need of doing mandibulotomy. Researchers in stem cell and tissue engineering are looking forward to regenerating tissues and avoid the need of autologous tissue flaps. Desired tissue combination across counter may be available in the future. Excellent immunosuppressant drugs have made it possible to reconstruct composite facial anatomical units with allotransplant in a single surgery, along sensory and motor recovery! Mythological heterogenic head transplant like clone Ganesha, will be a reality in the near future!!
Collapse
Affiliation(s)
- Prabha Yadav
- Department of Surgery, Tata Memorial Hospital, Dr. E. Borges Marg, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerström B, Patrikoski M, Seppänen R, Miettinen S, Rautiainen M, Öhman J. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014; 3:530-40. [PMID: 24558162 DOI: 10.5966/sctm.2013-0173] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.
Collapse
Affiliation(s)
- George K Sándor
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland; Department of Oral and Maxillofacial Surgery, University of Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland; Department of Otolaryngology, Head and Neck Surgery and Oral Diseases and Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland; Department of Oral and Maxillofacial Surgery, Central Hospital of Central Finland Health Care District, Jyväskylä, Finland; Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arzi B, Verstraete FJM, Huey DJ, Cissell DD, Athanasiou KA. Regenerating Mandibular Bone Using rhBMP-2: Part 1-Immediate Reconstruction of Segmental Mandibulectomies. Vet Surg 2014; 44:403-9. [PMID: 24410740 DOI: 10.1111/j.1532-950x.2014.12123.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/31/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To describe a surgical technique using a regenerative approach and internal fixation for immediate reconstruction of critical size bone defects after segmental mandibulectomy in dogs. STUDY DESIGN Prospective case series. ANIMALS Dogs (n = 4) that had reconstruction after segmental mandibulectomy for treatment of malignant or benign tumors. METHODS Using a combination of extraoral and intraoral approaches, a locking titanium plate was contoured to match the native mandible. After segmental mandibulectomy, the plate was secured and a compression resistant matrix (CRM) infused with rhBMP-2, implanted in the defect. The implant was then covered with a soft tissue envelope followed by intraoral and extraoral closure. RESULTS All dogs that had mandibular reconstruction healed with intact gingival covering over the mandibular defect and had immediate return to normal function and occlusion. Mineralized tissue formation was observed clinically within 2 weeks and solid cortical bone formation within 3 months. CT findings at 3 months showed that the newly regenerated mandibular bone had ∼50% of the bone density and porosity compared to the contralateral side. No significant complications occurred. CONCLUSION Mandibular reconstruction using internal fixation and CRM infused with rhBMP-2 is an excellent solution for immediate reconstruction of segmental mandibulectomy defects in dogs.
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Davis, California
| | | | | | | | | |
Collapse
|
36
|
Verstraete FJM, Arzi B, Huey DJ, Cissell DD, Athanasiou KA. Regenerating Mandibular Bone Using rhBMP--2: Part 2-Treatment of Chronic, Defect Non-Union Fractures. Vet Surg 2014; 44:410-6. [PMID: 24410723 DOI: 10.1111/j.1532-950x.2014.12122.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/31/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To describe a surgical technique using a regenerative approach and internal fixation for reconstruction of critical size bone defect non-union mandibular fractures. STUDY DESIGN Case series. ANIMALS Dogs (n = 6) that had internal fixation of defect non-union mandibular fracture. METHODS In 5 dogs, the repair was staged and extraction of teeth performed during the initial procedure. After 21-98 days (mean, 27 days) pharyngotomy intubation and temporary maxillomandibular fixation were performed. Using an extraoral approach, a locking titanium miniplate was contoured and secured to the mandible. A compression resistant matrix (CRM) infused with rhBMP-2 was implanted in the defect. The implant was then covered with a soft tissue envelope followed by surgical wound closure. RESULTS All dogs healed with intact gingival covering over the mandibular fracture site defect and had immediate return to normal function and correct occlusion. Hard-tissue formation was observed clinically within 2 weeks and solid cortical bone formation within 3 months. CT findings in 1 dog at 3 months postoperatively demonstrated that the newly regenerated mandibular bone had 92% of the bone density and porosity compared to the contralateral side. Long-term follow-up revealed excellent outcome. CONCLUSION Mandibular reconstruction using internal fixation and CRM infused with rhBMP-2 is an excellent solution for the treatment of critical size defect non-union fractures in dogs.
Collapse
Affiliation(s)
- Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | | | | | | | | |
Collapse
|
37
|
Sand JP, Kokorina NA, Zakharkin SO, Lewis JS, Nussenbaum B. BMP-2 expression correlates with local failure in head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg 2013; 150:245-50. [PMID: 24247005 DOI: 10.1177/0194599813513003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Preclinical data show that exogenous administration of recombinant human bone morphogenetic protein-2 (rhBMP-2) to human oral carcinoma cell lines increases pathogenicity using a nude mouse model. The objectives of this study are to (1) describe the characteristics of baseline protein expression of BMP-2 in head and neck squamous cell carcinomas (HNSCC) and (2) determine if BMP-2 expression level correlates with worse oncologic outcomes. STUDY DESIGN Retrospective analysis of previously harvested patient samples. SETTING Academic medical center. SUBJECTS In total, 149 patients with oral cavity, oropharynx, larynx, and hypopharynx HNSCC treated between January 1, 1997, and December 31, 2004. METHODS A tissue microarray of HNSCC was assembled and immunohistochemistry for BMP-2 performed. Staining was quantified using a standardized scoring system. Specimens were dichotomized into high or low expression level. Statistical analyses using log-rank, Wilcoxon, and Fisher exact test were performed for associations between BMP-2 protein level and clinicopathologic features and patient survival. RESULTS BMP-2 expression at any level was noted in 146 of 149 (98%) of samples. Tumors with high BMP-2 expression had higher rates of local failure compared with low-expressing tumors (17.3% vs 6.3%; P = .04). There was no significant association for BMP-2 expression level with tumor location, T stage, N stage, overall survival, regional failure, or distant failure. CONCLUSION Head and neck squamous cell carcinomas with high baseline BMP-2 protein level are associated with higher rates of local recurrence. These data have important implications for using rhBMP-2 in tissue engineering reconstructive approaches in the setting of cancer-related defects.
Collapse
Affiliation(s)
- Jordan P Sand
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
38
|
Wolff J, Sándor GK, Miettinen A, Tuovinen VJ, Mannerström B, Patrikoski M, Miettinen S. GMP-level adipose stem cells combined with computer-aided manufacturing to reconstruct mandibular ameloblastoma resection defects: Experience with three cases. Ann Maxillofac Surg 2013; 3:114-25. [PMID: 24205470 PMCID: PMC3814659 DOI: 10.4103/2231-0746.119216] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: The current management of large mandibular resection defects involves harvesting of autogenous bone grafts and repeated bending of generic reconstruction plates. However, the major disadvantage of harvesting large autogenous bone grafts is donor site morbidity and the major drawback of repeated reconstruction plate bending is plate fracture and difficulty in reproducing complex facial contours. The aim of this study was to describe reconstruction of three mandibular ameloblastoma resection defects using tissue engineered constructs of beta-tricalcium phosphate (β-TCP) granules, recombinant human bone morphogenetic protein-2 (rhBMP-2), and Good Manufacturing Practice (GMP) level autologous adipose stem cells (ASCs) with progressively increasing usage of computer-aided manufacturing (CAM) technology. Materials and Methods: Patients’ three-dimensional (3D) images were used in three consecutive patients to plan and reverse-engineer patient-specific saw guides and reconstruction plates using computer-aided additive manufacturing. Adipose tissue was harvested from the anterior abdominal walls of three patients before resection. ASCs were expanded ex vivo over 3 weeks and seeded onto a β-TCP scaffold with rhBMP-2. Constructs were implanted into patient resection defects together with rapid prototyped reconstruction plates. Results: All three cases used one step in situ bone formation without the need for an ectopic bone formation step or vascularized flaps. In two of the three patients, dental implants were placed 10 and 14 months following reconstruction, allowing harvesting of bone cores from the regenerated mandibular defects. Histological examination and in vitro analysis of cell viability and cell surface markers were performed and prosthodontic rehabilitation was completed. Discussion: Constructs with ASCs, β-TCP scaffolds, and rhBMP-2 can be used to reconstruct a variety of large mandibular defects, together with rapid prototyped reconstruction hardware which supports placement of dental implants.
Collapse
Affiliation(s)
- Jan Wolff
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland ; Department of Eye, Ear and Oral Diseases, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Orthopedic injuries are common and a source of much misery and economic stress. Several relevant tissues, such as cartilage, meniscus, and intra-articular ligaments, do not heal. And even bone, which normally regenerates spontaneously, can fail to mend. The regeneration of orthopedic tissues requires 4 key components: cells, morphogenetic signals, scaffolds, and an appropriate mechanical environment. Although differentiated cells from the tissue in question can be used, most cellular research focuses on the use of mesenchymal stem cells. These can be retrieved from many different tissues, and one unresolved question is the degree to which the origin of the cells matters. Embryonic and induced pluripotent stem cells are also under investigation. Morphogenetic signals are most frequently supplied by individual recombinant growth factors or native mixtures provided by, for example, platelet-rich plasma; mesenchymal stem cells are also a rich source of trophic factors. Obstacles to the sustained delivery of individual growth factors can be addressed by gene transfer or smart scaffolds, but we still lack detailed, necessary information on which delivery profiles are needed. Scaffolds may be based on natural products, synthetic materials, or devitalized extracellular matrix. Strategies to combine these components to regenerate tissue can follow traditional tissue engineering practices, but these are costly, cumbersome, and not well suited to treating large numbers of individuals. More expeditious approaches make full use of intrinsic biological processes in vivo to avoid the need for ex vivo expansion of autologous cells and multiple procedures. Clinical translation remains a bottleneck.
Collapse
Affiliation(s)
- Christopher H Evans
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Collaborative Research Center, AO Foundation, Davos, Switzerland.
| |
Collapse
|
40
|
Chanchareonsook N, Junker R, Jongpaiboonkit L, Jansen JA. Tissue-engineered mandibular bone reconstruction for continuity defects: a systematic approach to the literature. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:147-62. [PMID: 23865639 DOI: 10.1089/ten.teb.2013.0131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Despite significant surgical advances over the last decades, segmental mandibular bone repair remains a challenge. In light of this, tissue engineering might offer a next step in the evolution of mandibular reconstruction. PURPOSE The purpose of the present report was to (1) systematically review preclinical in vivo as well as clinical literature regarding bone tissue engineering for mandibular continuity defects, and (2) to analyze their effectiveness. MATERIALS AND METHODS An electronic search in the databases of the National Library of Medicine and ISI Web of Knowledge was carried out. Only publications in English were considered, and the search was broadened to animals and humans. Furthermore, the reference lists of related review articles and publications selected for inclusion in this review were systematically screened. Results of histology data and amount of bone bridging were chosen as primary outcome variables. However, for human reports, clinical radiographic evidence was accepted for defined primary outcome variable. The biomechanical properties, scaffold degradation, and clinical wound healing were selected as co-outcome variables. RESULTS The electronic search in the databases of the National Library of Medicine and ISI Web of Knowledge resulted in the identification of 6727 and 5017 titles, respectively. Thereafter, title assessment and hand search resulted in 128 abstracts, 101 full-text articles, and 29 scientific papers reporting on animal experiments as well as 11 papers presenting human data on the subject of tissue-engineered reconstruction of mandibular continuity defects that could be included in the present review. CONCLUSIONS It was concluded that (1) published preclinical in vivo as well as clinical data are limited, and (2) tissue-engineered approaches demonstrate some clinical potential as an alternative to autogenous bone grafting.
Collapse
Affiliation(s)
- Nattharee Chanchareonsook
- 1 Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore , Singapore, Singapore
| | | | | | | |
Collapse
|
41
|
Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Res 2013; 11:1393-406. [PMID: 24140198 DOI: 10.1016/j.scr.2013.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Human mesenchymal stromal cells derived from bone marrow (BMSC) and adipose tissue (ATSC) represent a valuable source of progenitor cells for cell therapy and tissue engineering. While ectopic bone formation is a standard activity of human BMSC on calcium phosphate ceramics, the bone formation capacity of human ATSC has so far been unclear. The objectives of this study were to assess the therapeutic potency of ATSC for bone formation in an ectopic mouse model and determine molecular differences by standardized comparison with BMSC. Although ATSC contained less CD146(+) cells, exhibited better proliferation and displayed similar alkaline phosphatase activity upon osteogenic in vitro differentiation, cells did not develop into bone-depositing osteoblasts on β-TCP after 8weeks in vivo. Additionally, ATSC expressed less BMP-2, BMP-4, VEGF, angiopoietin and IL-6 and more adiponectin mRNA, altogether suggesting insufficient osteochondral commitment and reduced proangiogenic activity. Chondrogenic pre-induction of ATSC/β-TCP constructs with TGF-β and BMP-6 initiated ectopic bone formation in >75% of samples. Both chondrogenic pre-induction and the osteoconductive microenvironment of β-TCP were necessary for ectopic bone formation by ATSC pointing towards a need for inductive conditions/biomaterials to make this more easily accessible cell source attractive for future applications in bone regeneration.
Collapse
|
42
|
Schliephake H. Clinical Efficacy of Growth Factors to Enhance Tissue Repair in Oral and Maxillofacial Reconstruction: A Systematic Review. Clin Implant Dent Relat Res 2013; 17:247-73. [DOI: 10.1111/cid.12114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Henning Schliephake
- Abteilung für Mund-, Kiefer-und Gesichtschirurgie; Georg-August-Universität; Göttingen Germany
| |
Collapse
|
43
|
Desai SC, Sclaroff A, Nussenbaum B. Use of Recombinant Human Bone Morphogenetic Protein 2 for Mandible Reconstruction. JAMA FACIAL PLAST SU 2013; 15:204-9. [DOI: 10.1001/jamafacial.2013.650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shaun C. Desai
- Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Alan Sclaroff
- Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Brian Nussenbaum
- Department of Otolaryngology–Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
44
|
DeConde AS, Sidell D, Lee M, Bezouglaia O, Low K, Elashoff D, Grogan T, Tetradis S, Aghaloo T, St John M. Bone morphogenetic protein-2-impregnated biomimetic scaffolds successfully induce bone healing in a marginal mandibular defect. Laryngoscope 2013; 123:1149-55. [PMID: 23553490 DOI: 10.1002/lary.23782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/23/2012] [Accepted: 09/18/2012] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS To test the osteoregenerative potential and dosing of bone morphogenetic protein-2 (BMP-2)-impregnated biomimetic scaffolds in a rat model of a mandibular defect. STUDY DESIGN Prospective study using an animal model. METHODS Varied doses of BMP-2 (0.5, 1, 0.5, 0.5 in microspheres, 5, and 15 μg) were absorbed onto a biomimetic scaffold. Scaffolds were then implanted into marginal mandibular defects in rats. Blank scaffolds and unfilled defects were used as negative controls. Two months postoperatively, bone healing was analyzed with microcomputerized tomography (microCT). RESULTS MicroCT analysis demonstrated that all doses of BMP-2 induced successful healing of marginal mandibular defects in a rat mandible. Increasing doses of BMP-2 on the scaffolds produced increased tissue healing, with 15 μg demonstrating significantly more healing than all other dosing (P < .01). CONCLUSIONS BMP-2-impregnated biomimetic scaffolds successfully induce bone healing in a marginal mandibular defect in the rat. Percentage healing of defect, percentage of bone within healed tissue, and total bone volume are all a function of BMP-2 dosing. There appears to be an optimal dose of 5 μg beyond which there is no increase in bone volume. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Adam S DeConde
- Department of Head and Neck Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sándor GKB. Tissue engineering of bone: Clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg 2013; 2:8-11. [PMID: 23483030 PMCID: PMC3591085 DOI: 10.4103/2231-0746.95308] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Tissue engineering offers a simple, nonallergenic, and viable solution for the reconstruction of human tissues such as bone. With deeper understanding of the stem cell's pathobiology, the unique properties of these tissues can be effectively harnessed for the benefit of the patients. A primary source of mesenchymal stem cells (MSCs) for bone regeneration is from adipose tissue to provide adipose-derived stem cells (ASCs). The interdependency between adipogenesis and osteogenesis has been well established. The objective of this article is to present the preliminary clinical observation with reconstruction of craniofacial osseous defects larger than critical size with ASC. Materials and Methods: Patients with large craniofacial osseous defects only were included in this study. Autogenous fat from the anterior abdominal wall of the patients was harvested from 23 patients, taken to a central tissue banking laboratory and prepared. All patients were reconstructed with ASCs, resorbable scaffolds, and growth factor as required. Vascularized soft tissue beds were prepared for ectopic bone formation and later microvascular translocation as indicated. Results: 23 ASC seeded resorbable scaffolds have been combined with rhBMP-2 and successfully implanted into humans to reconstruct their jaws except for three failures. The failures included one infection and two cases of inadequate bone formation. Discussion: The technique of ASC-aided reconstruction of large defects still remains extremely sensitive as it takes longer duration and is costlier than the conventional standard immediate reconstruction. Preliminary results and clinical observations of these cases are extremely encouraging. In future, probably with evolving technological advances, ASC-aided reconstruction will be regularly used in clinical practise.
Collapse
Affiliation(s)
- George K B Sándor
- Professor of Tissue Engineering, Regea Institute for Regenerative Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
46
|
Sándor GK, Tuovinen VJ, Wolff J, Patrikoski M, Jokinen J, Nieminen E, Mannerström B, Lappalainen OP, Seppänen R, Miettinen S. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg 2013; 71:938-50. [PMID: 23375899 DOI: 10.1016/j.joms.2012.11.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/18/2012] [Accepted: 11/15/2012] [Indexed: 02/08/2023]
Abstract
PURPOSE Large mandibular resection defects historically have been treated using autogenous bone grafts and reconstruction plates. However, a major drawback of large autogenous bone grafts is donor-site morbidity. PATIENTS AND METHODS This report describes the replacement of a 10-cm anterior mandibular ameloblastoma resection defect, reproducing the original anatomy of the chin, using a tissue-engineered construct consisting of β-tricalcium phosphate (β-TCP) granules, recombinant human bone morphogenetic protein-2 (BMP-2), and Good Manufacturing Practice-level autologous adipose stem cells (ASCs). Unlike prior reports, 1-step in situ bone formation was used without the need for an ectopic bone-formation step. The reconstructed defect was rehabilitated with a dental implant-supported overdenture. An additive manufactured medical skull model was used preoperatively to guide the prebending of patient-specific hardware, including a reconstruction plate and titanium mesh. A subcutaneous adipose tissue sample was harvested from the anterior abdominal wall of the patient before resection and simultaneous reconstruction of the parasymphysis. ASCs were isolated and expanded ex vivo over the next 3 weeks. The cell surface marker expression profile of ASCs was similar to previously reported results and ASCs were analyzed for osteogenic differentiation potential in vitro. The expanded cells were seeded onto a scaffold consisting of β-TCP and BMP-2 and the cell viability was evaluated. The construct was implanted into the parasymphyseal defect. RESULTS Ten months after reconstruction, dental implants were inserted into the grafted site, allowing harvesting of bone cores. Histologic examination and in vitro analysis of cell viability and cell surface markers were performed and prosthodontic rehabilitation was completed. CONCLUSION ASCs in combination with β-TCP and BMP-2 offer a promising construct for the treatment of large, challenging mandibular defects without the need for ectopic bone formation and allowing rehabilitation with dental implants.
Collapse
Affiliation(s)
- George K Sándor
- Department of Oral and Maxillofacial Surgery, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J Biomed Biotechnol 2012; 2012:601549. [PMID: 23226941 PMCID: PMC3511855 DOI: 10.1155/2012/601549] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/16/2012] [Indexed: 12/29/2022] Open
Abstract
Critical-size osseous defects cannot heal without surgical intervention and can pose a significant challenge to craniofacial reconstruction. Autologous bone grafting is the gold standard for repair but is limited by a donor site morbidity and a potentially inadequate supply of autologous bone. Alternatives to autologous bone grafting include the use of alloplastic and allogenic materials, mesenchymal stem cells, and bone morphogenetic proteins. Bone morphogenetic proteins (BMPs) are essential mediators of bone formation involved in the regulation of differentiation of osteoprogenitor cells into osteoblasts. Here we focus on the use of BMPs in experimental models of craniofacial surgery and clinical applications of BMPs in the reconstruction of the cranial vault, palate, and mandible and suggest a model for the use of BMPs in personalized stem cell therapies.
Collapse
|
48
|
Busuttil Naudi K, Ayoub A, McMahon J, Di Silvio L, Lappin D, Hunter KD, Barbenel J. Mandibular reconstruction in the rabbit using beta-tricalcium phosphate (β-TCP) scaffolding and recombinant bone morphogenetic protein 7 (rhBMP-7) - histological, radiographic and mechanical evaluations. J Craniomaxillofac Surg 2012; 40:e461-9. [PMID: 22507295 DOI: 10.1016/j.jcms.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
This investigation assesses the histological, radiographic and mechanical properties of regenerated bone in a unilateral critical-size osteoperiosteal mandibular continuity defect in the rabbit model, following the application of beta-tricalcium phosphate (β-TCP) scaffolding and recombinant human bone morphogenetic protein 7 (rhBMP-7). The study was carried out on nine cases; in six cases the critical-size defect was filled with rhBMP-7 in the β-TCP scaffolding, and in three cases the β-TCP was used alone. The cases were sacrificed 3 months post-operatively. Histologically the overall mean of the percentage of regenerated bone volume in the cases that received rhBMP-7 was 29.41% ± 6.25%, which was considerably greater than the 6.35% ± 3.08% in the cases treated with β-TCP alone. Mechanical testing of the cases treated with rhBMP-7 gave failure moments (55 mNm-2.040 Nm) that were consistently greater than those treated with β-TCP alone (0 mNm-48 mNm). In some cases the mechanical properties of the regenerated bone were comparable to those of untreated bone. RhBMP-7 in prefabricated β-TCP scaffolding appeared, radiographically and histologically, to be an effective method for bone regeneration in mandibular critical-size defects in the rabbit model. This points towards possible future clinical applications.
Collapse
Affiliation(s)
- Kurt Busuttil Naudi
- Biotechnology & Craniofacial Sciences Research Group, Glasgow Dental Hospital, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Reconstruction of mandibular defects using bone morphogenic protein: can growth factors replace the need for autologous bone grafts? A systematic review of the literature. PLASTIC SURGERY INTERNATIONAL 2011; 2011:165824. [PMID: 22567236 PMCID: PMC3335506 DOI: 10.1155/2011/165824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 11/29/2022]
Abstract
Autogenous bone is still considered the “gold standard” of regenerative and reconstructive procedures involving mandibular defects. However, harvesting of this material can lead to many complications like increasing morbidity, expanding of the surgical time, and incomplete healing of the donor site. In the last few years many authors looked for the development of effective reconstruction procedures using osteoinductive factors without the need for conventional bone grafting. The first-in-human study involving the use of Bone Morphongenic Proteins (rhBMP) for mandibular reconstruction was performed in 2001 by Moghadam. Only few articles have been reported in the literature since then. The purpose of this study was to search and analyze the literature involving the use of rhBMP for reconstruction of mandibular defects. In all the studies reported, authors agree that the use of grown factors may represent the future of regenerative procedures with more research necessary for confirmation.
Collapse
|
50
|
Herford AS, Lu M, Buxton AN, Kim J, Henkin J, Boyne PJ, Caruso JM, Rungcharassaeng K, Hong J. Recombinant human bone morphogenetic protein 2 combined with an osteoconductive bulking agent for mandibular continuity defects in nonhuman primates. J Oral Maxillofac Surg 2011; 70:703-16. [PMID: 21549480 DOI: 10.1016/j.joms.2011.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Recombinant human bone morphogenetic protein 2 (rhBMP-2) is an option for reconstructing mandibular continuity defects. A challenge of this technique is the need to maintain sufficient space to avoid compression of the defect. A compression-resistant matrix (CRM) provides a bulking agent that provides support during the bone formation phase. MATERIALS AND METHODS Thirteen Rhesus Macaque monkeys were used to evaluate different forms of an osteoconductive bulking agent compared with an absorbable collagen alone placed into a critical-sized mandibular defect. A total of 5 groups (26 defects) were evaluated: group A, rhBMP-2/absorbable collagen sponge (ACS) (1.5 mg/mL); group B, rhBMP-2/ACS with ceramic granules (15% hydroxyapatite/85% β-tricalcium phosphate) at 1.5 mg/mL; group C, rhBMP-2 (2.0 mg/mL) with a CRM; group D, rhBMP-2 (0.75 mg/mL) with a CRM; and group E, a CRM alone. RESULTS Histology and micro computed tomography were used to evaluate and compare new bone formation in the defects. The reconstructed bone was evaluated with regard to the new bone formation, residual voids, and density. Animals treated with the CRM and rhBMP-2 at 2.0 mg/mL (group C) showed significantly higher amounts of new bone formation, bone density, and reduced voids when compared with rhBMP-2 and ACS (1.5 mg/mL) (P < .05). CONCLUSION The carrier system CRM combined with rhBMP-2 and a reconstruction plate results in significantly higher bone density and better space maintenance than rhBMP-2 combined with ACS in a nonhuman primate mandibular bone repair model.
Collapse
Affiliation(s)
- Alan S Herford
- Department of Oral and Maxillofacial Surgery, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|