1
|
Davidson JO, Gonzalez F, Gressens P, Gunn AJ. Update on mechanisms of the pathophysiology of neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101267. [PMID: 34274259 DOI: 10.1016/j.siny.2021.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic hypothermia is now well established to significantly improve survival without disability after neonatal encephalopathy (NE). To further improve outcomes, we need to better understand the mechanisms of brain injury. The central finding, which offers the potential for neuroprotective and neurorestorative interventions, is that brain damage after perinatal hypoxia-ischemia evolves slowly over time. Although brain cells may die during profound hypoxia-ischemia, even after surprisingly severe insults many cells show transient recovery of oxidative metabolism during a "latent" phase characterized by actively suppressed neural metabolism and activity. Critically, after moderate to severe hypoxia-ischemia, this transient recovery is followed after ~6 h by a phase of secondary deterioration, with delayed seizures, failure of mitochondrial function, cytotoxic edema, and cell death over ~72 h. This is followed by a tertiary phase of remodeling and recovery. This review discusses the mechanisms of injury that occur during the primary, latent, secondary and tertiary phases of injury and potential treatments that target one or more of these phases. By analogy with therapeutic hypothermia, treatment as early as possible in the latent phase is likely to have the greatest potential to prevent injury ("neuroprotection"). In the secondary phase of injury, anticonvulsants can attenuate seizures, but show limited neuroprotection. Encouragingly, there is now increasing preclinical evidence that late, neurorestorative interventions have potential to improve long-term outcomes.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Fernando Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
2
|
Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016; 325:89-99. [DOI: 10.1016/j.neuroscience.2016.03.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
|
3
|
Potts MB, Adwanikar H, Noble-Haeusslein LJ. Models of traumatic cerebellar injury. THE CEREBELLUM 2009; 8:211-21. [PMID: 19495901 PMCID: PMC2734258 DOI: 10.1007/s12311-009-0114-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, University of California, Brain and Spinal Injury Center, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
4
|
Li WK. Effects of ginsenoside Rg1 on expression of insulin-like growth factor-1 in brain of rats with brain contusion. ACTA ACUST UNITED AC 2008; 6:911-4. [DOI: 10.3736/jcim20080907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Nelson TJ, Sun MK, Hongpaisan J, Alkon DL. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 2008; 585:76-87. [PMID: 18402935 DOI: 10.1016/j.ejphar.2008.01.051] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/29/2007] [Accepted: 01/21/2008] [Indexed: 01/04/2023]
Abstract
Protein kinase C (PKC) is involved in synaptic remodeling, induction of protein synthesis, and many other processes important in learning and memory. Activation of neuronal protein kinase C correlates with, and may be essential for, all phases of learning, including acquisition, consolidation, and reconsolidation. Protein kinase C activation is closely tied to hydrolysis of membrane lipids. Phospholipases C and A2 produce 1,2-diacylglycerol and arachidonic acid, which are direct activators of protein kinase C. Phospholipase C also produces inositol triphosphate, which releases calcium from internal stores. Protein kinase C interacts with many of the same pathways as insulin; therefore, it should not be surprising that insulin signaling and protein kinase C activation can both have powerful effects on memory storage and synaptic remodeling. However, investigating the possible roles of insulin in memory storage can be challenging, due to the powerful peripheral effects of insulin on glucose and the low concentration of insulin in the brain. Although peripheral for insulin, synthesized in the beta-cells of the pancreas, is primarily involved in regulating glucose, small amounts of insulin are also present in the brain. The functions of this brain insulin are inadequately understood. Protein kinase C may also contribute to insulin resistance by phosphorylating the insulin receptor substrates required for insulin signaling. Insulin is also responsible insulin-long term depression, a type of synaptic plasticity that is also dependent on protein kinase C. However, insulin can also activate PKC signaling pathways via PLC gamma, Erk 1/2 MAP kinase, and src stimulation. Taken together, the available evidence suggests that the major impact of protein kinase C and its interaction with insulin in the mature, fully differentiated nervous system appears to be to induce synaptogenesis, enhance memory, reduce Alzheimer's pathophysiology, and stimulate neurorepair.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, Maryland 20850 USA
| | | | | | | |
Collapse
|
6
|
Abstract
Following unilateral transection (pedunculotomy) of the neonatal rat olivocerebellar pathway, the remaining inferior olive reinnervates the denervated hemicerebellum with correct topography. The critical period for this transcommissural reinnervation closes between postnatal days 7 and 10 but can be extended by injection of growth factors. Whether growth factor treatment can extend developmental plasticity into a mature, myelinated milieu remains unknown. Rats aged 11-30 days, underwent unilateral pedunculotomy followed 24 h later by injection of insulin-like growth factor 1 (IGF-1) into the denervated cerebellum. In all animals, IGF-1 induced transcommissural olivocerebellar reinnervation, which displayed organisation consistent with normal olivocerebellar topography even following pedunculotomy up to day 20. Thus IGF-1 can reproduce developmental neuroplasticity to promote appropriate target reinnervation in a mature myelinated environment.
Collapse
Affiliation(s)
- Rachel M Sherrard
- Developmental Neuroplasticity Laboratory, Department of Anatomy, School of Biomedical Science, James Cook University, Queensland 4811, Australia.
| | | |
Collapse
|
7
|
Abstract
Insulin-like growth factor-1 (IGF-1) is a naturally occurring neurotrophic factor that plays an important role in promoting cell proliferation and differentiation during normal brain development and maturation. The present review examines recent evidence that endogenous IGF-1 also plays a significant role in recovery from insults such as hypoxia-ischemia and that giving additional exogenous IGF-1 can actively ameliorate damage. It is now well established that neurons and other cell types die many hours or even days after initial injury due to activation of programmed cell death pathways. IGF-1 and its binding proteins and receptors are intensely induced within damaged brain regions following brain injury, suggesting a possible a role for IGF-1 in brain recovery. Exogenous administration of IGF-1 within a few hours after brain injury is now known to be protective in both gray and white matter and leads to improved somatic function. In contrast, pre-treatment is ineffective, likely reflecting limited intracerebral penetration of IGF-1 into the uninjured brain. The neuroprotective effects of IGF-1 are mediated by IGF-1 receptors and its binding proteins and are specific to particular cellular phenotypes and brain regions. The window of opportunity for treatment with IGF-1 is limited to a few hours after normothermic brain injury, reflecting its specific actions on early, intracellular events in the apoptotic cascade. However, injury-associated mild post-hypoxic hypothermia, which delays the development of cell death, can shift and dramatically extend the window of opportunity for delayed treatment with IGF-1. Such a combined approach is likely to be essential for any clinical treatment.
Collapse
Affiliation(s)
- J Guan
- Faculty of Medicine and Health Sciences, The Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
8
|
Guan J, Miller OT, Waugh KM, McCarthy DC, Gluckman PD. Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats. Neuroscience 2002; 105:299-306. [PMID: 11672597 DOI: 10.1016/s0306-4522(01)00145-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Treatment with insulin-like growth factor-1 has been demonstrated to reduce the extent of cortical infarction 5 days after hypoxic-ischemic brain injury. As neuronal death can be progressive and long lasting after initial injury, the present study examined the long-term effects of insulin-like growth factor-1 on late neuronal loss 20 days after hypoxic-ischemic injury, together with evaluating neurobehavioral outcome as assumed by somatosensory function. Unilateral brain injury was induced in adult rats by carotid artery ligation followed by 10 min of hypoxia (6% O2). A single dose of insulin-like growth factor-1 (50 microg) was administered intracerebroventricularly via a stereotaxically pre-fixed cannula 2 h after injury. A bilateral tactile stimulation test was used to examine the degree of somatosensory function at 3, 5, 10 and 20 days after the hypoxia in both insulin-like growth factor-1- (n=12) and its vehicle- (n=12) treated rats, along with sham-operated rats (n=9). Cortical infarction and percentage of selective neuronal loss in the cerebral cortex were examined 20 days after the hypoxic-ischemic injury in both treatment groups. Hypoxic-ischemic injury resulted in a significant delay in the time taken to contact the patch over the period examined (left/right ratio 5.1+/-0.79), particularly at 3 days (7.0+/-2.8) after the hypoxia, compared to sham-operated rats (1.1+/-0.9, P<0.05). The overall effect of insulin-like growth factor-1 in reducing the time taken to contact the patch was significant (P=0.03, 2.6+/-0.79) compared to the vehicle group. There was a trend towards a reduction of cortical infarction after insulin-like growth factor-1 treatment (P=0.058), however insulin-like growth factor-1 significantly reduced the percentage of selective neuronal loss (P=0.027) 20 days following the hypoxia. From these data we suggest that insulin-like growth factor-1 improves somatosensory function by reducing both the extent of cortical infarction and ongoing progressive neuronal death during brain recovery from hypoxic-ischemic injury.
Collapse
Affiliation(s)
- J Guan
- Liggins Institute, Faculty of Medicine and Health Sciences, The University of Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
9
|
Sherrard RM, Bower AJ. BDNF and NT3 extend the critical period for developmental climbing fibre plasticity. Neuroreport 2001; 12:2871-4. [PMID: 11588593 DOI: 10.1097/00001756-200109170-00023] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect on neonatal brain plasticity of two neurotrophins, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), was studied using the rat olivocerebellar projection as a model. Unilateral transection of climbing fibres (CFs) in the rat before postnatal day 7 induces reinnervation of the deafferented hemicerebellum, but this does not occur if the transection is performed after postnatal day 10. Eleven-day-old day rats underwent unilateral CF transection followed by neurotrophin injection into the denervated cerebellar cortex 24 h later. The exogenous neurotrophins induced CF reinnervation of the denervated hemicerebellum. However BDNF was more efficacious than NT-3. Thus two neurotrophins can extend the window of neonatal brain plasticity, therefore suggesting potential therapeutic use after brain trauma.
Collapse
Affiliation(s)
- R M Sherrard
- School of Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | | |
Collapse
|
10
|
Lackey BR, Gray SL, Henricks DM. Actions and interactions of the IGF system in Alzheimer's disease: review and hypotheses. Growth Horm IGF Res 2000; 10:1-13. [PMID: 10753587 DOI: 10.1054/ghir.1999.0129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factors (IGF) are pleiotrophic polypeptides affecting all aspects of growth and development. The IGF system, including ligands, receptors, binding proteins and proteases is also involved in pathophysiological conditions, such as cancer and degenerative conditions. In this review, the actions and interactions of the IGF system as it relates to Alzheimer's disease will be investigated.
Collapse
Affiliation(s)
- B R Lackey
- Endocrine Physiology Laboratory, Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | | |
Collapse
|
11
|
Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 1999; 11:2019-30. [PMID: 10336671 DOI: 10.1046/j.1460-9568.1999.00623.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exogenous administration of insulin-like growth factor I (IGF-I) restores motor function in rats with neurotoxin-induced cerebellar deafferentation. We first determined that endogenous IGFs are directly involved in the recovery process because infusion of an IGF-I receptor antagonist into the lateral ventricle blocks gradual recovery of limb coordination that spontaneously occurs after partial deafferentation of the olivo-cerebellar circuitry. We then analysed mechanisms whereby exogenous IGF-I restores motor function in rats with complete damage of the olivo-cerebellar pathway. Treatment with IGF-I normalized several markers of cell function in the cerebellum, including calbindin, glutamate receptor 1 (GluR1), gamma-aminobutyric acid (GABA) and glutamate, which are all depressed after 3-acetylpyridine (3AP)-induced deafferentation. IGF-I also promoted functional reinnervation of the cerebellar cortex by inferior olive (IO) axons. In the IO, increased expression of bax in neurons and bcl-X in astrocytes after 3AP was significantly reduced by IGF-I treatment. On the contrary, IGF-I prevented the decrease in poly-sialic-acid neural cell adhesion molecule (PSA-NCAM) and GAP-43 expression induced by 3AP in IO cells. IGF-I also significantly increased the number of neurons expressing bcl-2 in brainstem areas surrounding the IO. Altogether, these results indicate that subcutaneous IGF-I therapy promotes functional recovery of the olivo-cerebellar pathway by acting at two sites within this circuitry: (i) by modulating death- and plasticity-related proteins in IO neurons; and (ii) by impinging on homeostatic mechanisms leading to normalization of cell function in the cerebellum. These results provide insight into the neuroprotective actions of IGF-I and may be of practical consequence in the design of new therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|