1
|
Giunti E, Collu R, Dedoni S, Castelli MP, Fratta W, Scherma M, Fadda P. Food restriction and hyperactivity induce changes in corticolimbic brain dopamine and serotonin levels in female rats. Behav Brain Res 2023; 444:114374. [PMID: 36863461 DOI: 10.1016/j.bbr.2023.114374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN. We exposed female rats to the ABA paradigm and measured the levels of DA, 5-HT, the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and the dopaminergic type 2 (D2) receptors density in feeding- and reward-implicated brain regions (i.e., cerebral cortex, Cx; prefrontal cortex, PFC; caudate putamen, CPu; nucleus accumbens, NAcc; amygdala, Amy; hypothalamus, Hyp; hippocampus, Hipp). DA levels were significantly increased in the Cx, PFC and NAcc, while 5-HT was significantly enhanced in the NAcc and Hipp of ABA rats. Following recovery, DA was still elevated in the NAcc, while 5-HT was increased in the Hyp of recovered ABA rats. DA and 5-HT turnover were impaired at both ABA induction and recovery. D2 receptors density was increased in the NAcc shell. These results provide further proof of the impairment of the dopaminergic and serotoninergic systems in the brain of ABA rats and support the knowledge of the involvement of these two important neurotransmitter systems in the development and progression of AN. Thus, providing new insights on the corticolimbic regions involved in the monoamine dysregulations in the ABA model of AN.
Collapse
Affiliation(s)
- Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience, Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
2
|
Nilsson IAK, Hökfelt T, Schalling M. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. NEUROMETHODS 2021:297-317. [DOI: 10.1007/978-1-0716-0924-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
D'Addario C, Zaplatic E, Giunti E, Pucci M, Micioni Di Bonaventura MV, Scherma M, Dainese E, Maccarrone M, Nilsson IA, Cifani C, Fadda P. Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int J Eat Disord 2020; 53:432-446. [PMID: 32275093 DOI: 10.1002/eat.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Lipid Neurochemistry Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ida A Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
4
|
Nilsson IAK. The anx/anx Mouse - A Valuable Resource in Anorexia Nervosa Research. Front Neurosci 2019; 13:59. [PMID: 30804742 PMCID: PMC6370726 DOI: 10.3389/fnins.2019.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 01/31/2023] Open
Abstract
Animal models are invaluable resources in research concerning the neurobiology of anorexia nervosa (AN), to a large extent since valid clinical samples are rare. None of the existing models can capture all aspects of AN but they are able to mirror the core features of the disorder e.g., elective starvation, emaciation and premature death. The anorectic anx/anx mouse is of particular value for the understanding of the abnormal response to negative energy balance seen in AN. These mice appear normal at birth but gradually develops starvation and emaciation despite full access to food, and die prematurely around three weeks of age. Several changes in hypothalamic neuropeptidergic and -transmitter systems involved in regulating food intake and metabolism have been documented in the anx/anx mouse. These changes are accompanied by signs of inflammation and degeneration in the same hypothalamic regions; including activation of microglia cells and expression of major histocompatibility complex I by microglia and selective neuronal populations. These aberrances are likely related to the dysfunction of complex I (CI) in the oxidative phosphorylation system of the mitochondria, and subsequent increased oxidative stress, which also has been revealed in the hypothalamus of these mice. Interestingly, a similar CI dysfunction has been shown in leukocytes from patients with AN. In addition, a higher expression of the Neurotrophic Receptor Tyrosine Kinase 3 gene has been shown in the anx/anx hypothalamus. This agrees with AN being associated with specific variants of the genes for brain derived neurotrophic factor and Neurotrophic Receptor Tyrosine Kinase 2. The anx/anx mouse is also glucose intolerant and display pancreatic dysfunction related to increased levels of circulating free fatty acids (FFA) and pancreatic inflammation. An increased incidence of eating disorders has been reported for young diabetic women, and as well has increased levels of circulating FFAs in AN. Also similar to individuals with AN, the anx/anx mouse has reduced leptin and increased cholesterol levels in serum. Thus, the anx/anx mouse shares several characteristics with patients with AN, including emaciation, starvation, premature death, diabetic features, increased FFA and low leptin, and is therefore a unique resource in research on the (neuro)biology of AN.
Collapse
Affiliation(s)
- Ida A K Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.,Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Viltart O, Duriez P, Tolle V. Metabolic and neuroendocrine adaptations to undernutrition in anorexia nervosa: from a clinical to a basic research point of view. Horm Mol Biol Clin Investig 2018; 36:hmbci-2018-0010. [PMID: 29804101 DOI: 10.1515/hmbci-2018-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
The exact mechanisms linking metabolic and neuroendocrine adaptations to undernutrition and the pathophysiology of anorexia nervosa (AN) are not fully understood. AN is a psychiatric disorder of complex etiology characterized by extreme starvation while the disease is progressing into a chronic state. Metabolic and endocrine alterations associated to this disorder are part of a powerful response to maintain whole body energy homeostasis. But these modifications may also contribute to associated neuropsychiatric symptoms (reward abnormalities, anxiety, depression) and thus participate to sustain the disease. The current review presents data with both a clinical and basic research point of view on the role of nutritional and energy sensors with neuroendocrine actions in the pathophysiology of the disease, as they modulate metabolic responses, reproductive functions, stress responses as well as physical activity. While clinical data present a full description of changes occurring in AN, animal models that integrate either spontaneous genetic mutations or experimentally-induced food restriction with hyperactivity and/or social stress recapitulate the main metabolic and endocrine alterations of AN and provide mechanistic information between undernutrition state and symptoms of the disease. Further progress on the central and peripheral mechanism involved in the pathophysiology of eating disorders partly relies on the development and/or refinement of existing animal models to include recently identified genetic traits and better mimic the complex and multifactorial dimensions of the disease.
Collapse
Affiliation(s)
- Odile Viltart
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université de Lille (Sciences et technologies), Lille, France
| | - Philibert Duriez
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, Paris, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
7
|
|
8
|
Mercader JM, González JR, Lozano JJ, Bak M, Kauppinen S, Sumoy L, Dierssen M, Fernández-Aranda F, Visa J, Gratacòs M, Estivill X. Aberrant brain microRNA target and miRISC gene expression in the anx/anx anorexia mouse model. Gene 2012; 497:181-90. [DOI: 10.1016/j.gene.2012.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 11/17/2022]
|
9
|
Hypothalamic mitochondrial dysfunction associated with anorexia in the anx/anx mouse. Proc Natl Acad Sci U S A 2011; 108:18108-13. [PMID: 22025706 DOI: 10.1073/pnas.1114863108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The anorectic anx/anx mouse exhibits disturbed feeding behavior and aberrances, including neurodegeneration, in peptidergic neurons in the appetite regulating hypothalamic arcuate nucleus. Poor feeding in infants, as well as neurodegeneration, are common phenotypes in human disorders caused by dysfunction of the mitochondrial oxidative phosphorylation system (OXPHOS). We therefore hypothesized that the anorexia and degenerative phenotypes in the anx/anx mouse could be related to defects in the OXPHOS. In this study, we found reduced efficiency of hypothalamic OXPHOS complex I assembly and activity in the anx/anx mouse. We also recorded signs of increased oxidative stress in anx/anx hypothalamus, possibly as an effect of the decreased hypothalamic levels of fully assembled complex I, that were demonstrated by native Western blots. Furthermore, the Ndufaf1 gene, encoding a complex I assembly factor, was genetically mapped to the anx interval and found to be down-regulated in anx/anx mice. These results suggest that the anorexia and hypothalamic neurodegeneration of the anx/anx mouse are associated with dysfunction of mitochondrial complex I.
Collapse
|
10
|
Nilsson IAK, Thams S, Lindfors C, Bergstrand A, Cullheim S, Hökfelt T, Johansen JE. Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 2010; 59:45-57. [DOI: 10.1002/glia.21075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 12/28/2022]
|
11
|
Mercader JM, Lozano JJ, Sumoy L, Dierssen M, Visa J, Gratacòs M, Estivill X. Hypothalamus transcriptome profile suggests an anorexia-cachexia syndrome in the anx/anx mouse model. Physiol Genomics 2008; 35:341-50. [DOI: 10.1152/physiolgenomics.90255.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anx/anx mouse displays poor appetite and lean appearance and is considered a good model for the study of anorexia nervosa. To identify new genes involved in feeding behavior and body weight regulation we performed an expression profiling in the hypothalamus of the anx/anx mice. Using commercial microarrays we detected 156 differentially expressed genes and validated 92 of those using TaqMan low-density arrays. The expression of a set of 87 candidate genes selected based on literature evidences was also quantified by TaqMan low-density arrays. Our results showed enrichment in deregulated genes involved in cell death, cell morphology, and cancer, as well as an alteration of several signaling circuits involved in energy balance including neuropeptide Y and melanocortin signaling. The expression profile along with the phenotype led us to conclude that anx/anx mice resemble the anorexia-cachexia syndrome typically observed in cancer, infection with human immunodeficiency virus or chronic diseases, rather than starvation, and that anx/anx mice could be considered a good model for the treatment and investigation of this condition.
Collapse
Affiliation(s)
- Josep Maria Mercader
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Juan José Lozano
- Bioinformatics and Genomics Program, CRG-UPF, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Lauro Sumoy
- Bioinformatics and Genomics Program, CRG-UPF, Barcelona, Catalonia, Spain
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Catalonia, Spain
| | - Joana Visa
- Servei Estabulari, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Mònica Gratacòs
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Xavier Estivill
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Experimental and Health Sciences Department, Pompeu Fabra University, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Castro-Fornieles J, Deulofeu R, Baeza I, Casulà V, Saura B, Lázaro L, Puig J, Toro J, Bernardo M. Psychopathological and nutritional correlates of plasma homovanillic acid in adolescents with anorexia nervosa. J Psychiatr Res 2008; 42:213-20. [PMID: 17141272 DOI: 10.1016/j.jpsychires.2006.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 10/11/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
Dopaminergic abnormalities have been described in anorexia nervosa but studies about plasma level of homovanillic acid (pHVA) have yielded conflicting results probably due to the small number and the heterogeneity of patients. Plasma HVA, nutritional and hormonal parameters and several scales - the Eating Attitudes Test (EAT), the Beck Depression Inventory (BDI), the Leyton Obsessional Inventory-child version (LOI-C) and the State and Trait Anxiety Inventory (STAI) - were assessed in 44 adolescent anorexia nervosa patients (mean age 14.7 years, SD 1.7) consecutively admitted to an Eating Disorder Unit. They were evaluated at admission, at discharge and, in 34 cases, after 9 months of follow-up. pHVA was also assessed in 16 control adolescents. Patients had significantly higher pHVA than controls (p = .002). About 31% of patients had a very high level of pHVA, a significantly higher (p = .006) mean score in the BDI and a non significantly higher mean score in the EAT. After weight recovery some laboratory parameters improved as well as the EAT (p = .019), the BDI (p = 001) and the Interference score of the LOI-C (p = .004). Moreover, pHVA decreased significantly (p=.036). At follow-up, patients with normal weight had lower (p = .037) pHVA than patients with low weight. The conclusion would be that there is a dopaminergic dysfunction in anorexic patients, specially in a subgroup with high depressive and anorexic symptomatology. With weight recovery and psychopathological improvement, pHVA tends to normalization.
Collapse
Affiliation(s)
- Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, Institute Clinic of Neurosciences, Hospital Clinic University, Barcelano, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Johansen JE, Fetissov SO, Bergström U, Nilsson I, Faÿ C, Ranscht B, Hökfelt T, Schalling M. Evidence for hypothalamic dysregulation in mouse models of anorexia as well as in humans. Physiol Behav 2007; 92:278-82. [PMID: 17560618 DOI: 10.1016/j.physbeh.2007.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eating disorders constitute major medical health problems in the western world. Even though little is known about the molecular mechanisms behind abnormal eating behavior, it has become clear that the central nervous system (CNS), particularly the hypothalamus, plays a significant role. The anorexic anx/anx mouse is a unique model for studying food intake and energy expenditure. The anx mutation is linked to marked alterations in hypothalamic distributions of signal substances known to have potent regulatory roles in the control of food intake. Another mouse model that displays an anorectic phenotype similar to the anx/anx mouse is the Contactin KO mouse. This model displays very similar hypothalamic alterations as seen in the anx/anx mouse, arguing for a role of these specific hypothalamic changes in an anorectic phenotype. In human eating disorders, hypothalamic systems corresponding to those defective in mouse models could be compromised since autoantibodies against melanocortin peptides have been detected in anorectic and bulimic patients. These findings represent research avenues that may lead to a better understanding of eating disorders and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Jeanette E Johansen
- Karolinska Institutet, Department of Molecular Medicine and Surgery, L8:00, Karolinska University Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fetissov SO, Bergström U, Johansen JE, Hökfelt T, Schalling M, Ranscht B. Alterations of arcuate nucleus neuropeptidergic development in contactin-deficient mice: comparison with anorexia and food-deprived mice. Eur J Neurosci 2006; 22:3217-28. [PMID: 16367788 DOI: 10.1111/j.1460-9568.2005.04513.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A mutation in the Contactin-1 gene results in an ataxic and anorectic phenotype that is apparent by postnatal day 10 and lethal by postnatal day 19 [Berglund et al. (1999) Neuron 24, 739-750]. The resemblance of this phenotype with the anorexia (anx/anx) mouse mutation prompted us to investigate the hypothalamic neurochemistry of Contactin knock-out (KO) mice. Contactin was expressed in the hypothalamic neuropil of wild-type (WT) but not Contactin KO mice. In the KO condition, neuropeptide Y (NPY) and agouti-related protein (AgRP) immunoreactivity (IR) accumulated in the somata of arcuate nucleus neurons, whereas IR for these neuropeptides as well as for alpha-melanocyte-stimulating hormone (alpha-MSH) decreased in the corresponding axon projections. These changes in the pattern of neuropeptide expression in the Contactin-deficient hypothalamus were similar but more pronounced than those found in anx/anx mice. Increased levels of NPY and AgRP and decreased concentrations of pro-opiomelanocortin mRNA in arcuate neurons accompanied these changes. In relating these alterations a 24-h food deprivation period, we observed in 3-week-old WT mice an elevation of NPY- and AgRP-IR in the perikarya of arcuate neurons without notable reduction of NPY- or AgRP-IR in nerve fibers, suggesting that the decrease of arcuate projections can be associated with postnatal anorectic phenotype. Our data implicate Contactin in the postnatal development of the NPY/AgRP and alpha-MSH arcuate neurons and suggest that similar to anx/anx mutant mice, compromised orexigenic signaling via NPY/AgRP neurons may contribute to reduced food intake by the Contactin-mutant animals.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|