1
|
White AL, Bix GJ. VEGFA Isoforms as Pro-Angiogenic Therapeutics for Cerebrovascular Diseases. Biomolecules 2023; 13:biom13040702. [PMID: 37189449 DOI: 10.3390/biom13040702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Therapeutic angiogenesis has long been considered a viable treatment for vasculature disruptions, including cerebral vasculature diseases. One widely-discussed treatment method to increase angiogenesis is vascular endothelial growth factor (VEGF) A. In animal models, treatment with VEGFA proved beneficial, resulting in increased angiogenesis, increased neuronal density, and improved outcome. However, VEGFA administration in clinical trials has thus far failed to replicate the promising results seen in animal models. The lack of beneficial effects in humans and the difficulty in medicinal translation may be due in part to administration methods and VEGFA's ability to increase vascular permeability. One solution to mitigate the side effects of VEGFA may be found in the VEGFA isoforms. VEGFA is able to produce several different isoforms through alternative splicing. Each VEGFA isoform interacts differently with both the cellular components and the VEGF receptors. Because of the different biological effects elicited, VEGFA isoforms may hold promise as a tangible potential therapeutic for cerebrovascular diseases.
Collapse
Affiliation(s)
- Amanda Louise White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
| |
Collapse
|
2
|
Yin J, Shi C, He W, Yan W, Deng J, Zhang B, Yin M, Pei H, Wang H. Specific bio-functional CBD-PR1P peptide binding VEGF to collagen hydrogels promotes the recovery of cerebral ischemia in rats. J Biomed Mater Res A 2022; 110:1579-1589. [PMID: 35603700 DOI: 10.1002/jbm.a.37409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke was a leading cause of death and long-term disability. It was an effective way to improve cerebral ischemia injury by promoting angiogenesis and neuroprotection. Vascular endothelial growth factor (VEGF) was a potent pro-angiogenic factor, and had neuroprotective effect. A short peptide (PR1P) derived from the extracellular VEGF-binding glycoprotein-Prominin-1 was reported to specifically bind to VEGF. In order to realize sustained release of VEGF, a bio-functional peptide-CBD-PR1P was constructed, which target VEGF to collagen hydrogels to limit the diffusion of VEGF. When the collagen hydrogels loading with CBD-PR1P and VEGF were injected into the cerebral ischemic cortex, increased angiogenesis, decreased apoptosis and enhanced neurons survival were observed in the ischemic area, that promoted the motor functional recovery of cerebral ischemic injury. Thus, this targeting delivery system of VEGF provided a promising therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Jia Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenli He
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Deng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Yin
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Haitao Pei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Naoluo Xintong Decoction Ameliorates Cerebral Ischemia-Reperfusion Injury by Promoting Angiogenesis through Activating the HIF-1α/VEGF Signaling Pathway in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9341466. [PMID: 35449809 PMCID: PMC9017488 DOI: 10.1155/2022/9341466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Background Naoluo Xintong decoction (NLXTD) is a traditional Chinese medicine (TCM) formula which has been used to improve neuronal functional recovery after cerebral ischemic stroke. However, the molecular mechanism underlying NLXTD's amelioration of ischemic stroke remains unclear. The present study was designed to explore the effect and mechanism of NLXTD on brain angiogenesis in a rat model with cerebral ischemia-reperfusion (I/R) injury targeting the hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Materials and Methods Cerebral I/R model was established by the classical middle cerebral artery occlusion (MCAO) method. Sprague-Dawley (SD) male rats (n = 80) were randomly divided into the sham-operation group, the model group, the HIF-1α inhibitor 2-methoxyestradiol (2ME2) group, the 2ME2 with NLXTD group, and the NLXTD group. Neurological deficit test, TTC staining, H&E staining, TUNEL staining, immunohistochemistry (IH), immunofluorescence (IF), western blot, and quantitative RT-PCR were performed to evaluate the effect of NLXTD after MCAO. Results Administration of NLXTD significantly decreased neuron deficiency scores, reduced brain infarct volume, and lowered damaged and apoptotic cells after brain I/R injury in rats. Meanwhile, NLXTD had a protective effect on angiogenesis by increasing the MVD and the expressions of BrdU and CD34, which enhanced the number of endothelial cells in the ischemic penumbra brain. NLXTD treatment significantly raised the protein and mRNA levels of HIF-1α, VEGF, VEGFR2, and Notch1 compared with the model treatment. In contrast, a specific HIF-1α inhibitor, 2ME2, inhibited the improvement of neurological function and angiogenesis in NLXTD-induced rats with cerebral I/R injury, suggesting that NLXTD played a positive role in ischemic brain injury by activating the HIF-1α/VEGF signaling pathway. Conclusions NLXTD exerts neuroprotection targeting angiogenesis by upregulating the HIF-1α/VEGF signaling pathway on cerebral I/R injury rats.
Collapse
|
4
|
Basu S, Choudhury IN, Nazareth L, Chacko A, Shelper T, Vial ML, Ekberg JAK, St John JA. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci Rep 2022; 12:662. [PMID: 35027585 PMCID: PMC8758747 DOI: 10.1038/s41598-021-04222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral glial cell transplantation with Schwann cells (SCs) is a promising approach for treating spinal cord injury (SCI). However, improvements are needed and one avenue to enhance regenerative functional outcomes is to combine growth factors with cell transplantation. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) are neuroprotective, and a combination of these factors has improved outcomes in rat SCI models. Thus, transplantation of SCs combined with VEGF and PDGF may further improve regenerative outcomes. First, however, we must understand how the two factors modulate SCs. In this in vitro study, we show that an inflammatory environment decreased the rate of SC-mediated phagocytosis of myelin debris but the addition of VEGF and PDGF (alone and combined) improved phagocytosis. Cytokine expression by SCs in the inflammatory environment revealed that addition of PDGF led to significantly lower level of pro-inflammatory cytokine, TNF-α, but IL-6 and anti-inflammatory cytokines (TGF-β and IL-10), remained unaltered. Further, PDGF was able to decrease the expression of myelination associated gene Oct6 in the presence of inflammatory environment. Overall, these results suggest that the use of VEGF and/or PDGF combined with SC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Indra N Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Marie-Laure Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
5
|
Allam E, Abdel Moniem R, Soliman G. Functional and structural assessment of the possible protective effect of platelet-rich plasma against ischemia/reperfusion-induced ovarian injury in adult rats. CHINESE J PHYSIOL 2022; 65:64-71. [DOI: 10.4103/cjp.cjp_3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
6
|
Liu L, Zhang Q, Xie HY, Gua WJ, Bao CR, Wang NH, Wu Y. Differences in Post-ischemic Motor Recovery and Angiogenesis of MCAO Rats Following Electroacupuncture at Different Acupoints. Curr Neurovasc Res 2021; 17:71-78. [PMID: 31870267 DOI: 10.2174/1567202617666191223151553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Electroacupuncture (EA) can promote nerve and vascular regeneration, confer neuroprotection, inhibit apoptosis and inflammatory reactions, reduce oxidative stress injury, regulate neurochemicals and inhibit the formation of brain oedema in cerebral ischemic. However, the precise site of EA stimulation in the treatment of cerebral ischemic is unclear. OBJECTIVE In the present study, we investigated the effect of EA at the acupoints of different meridians in motor function recovery and the involvement of Vascular Endothelial Growth Factor (VEGF), phosphorylated Protein Kinase B (P-Akt), phosphorylated endothelial nitric oxide synthase (p-eNOS) and Platelet Endothelial Cell Adhesion Molecule-1(CD31) were examined in the peri-infarction cortex of rats. METHODS The Middle cerebral artery occlusion (MCAO) model or sham surgery was performed in a total of Ninety male Sprague-Dawley rats. Rats were randomly divided into five groups: a sham group, a middle cerebral artery occlusion (MCAO) group, a Yang meridian group, a Yin meridian group and a combined Yang and Yin meridian group. EA stimulus was given during the middle cerebral artery occlusion. The neurobehavioural function was measured using Modified Neurological Severity Scores (mNSS), the rotarod test and the ladder rung walking test, and the protein expression of VEGF, P-Akt, p-eNOS in the peri-infarction cortex was detected by Western blot. Immunofluorescence was used to measure the vascular density of the peri-infarction cortex. RESULTS EA at different meridian acupoints has no effect on the infarction volume, while EA at Yin meridian acupoints significantly promoted neurobehavioural functional recovery, increased the vascular density and enhanced protein kinase B/Endothelial nitric oxide synthase (Akt/eNOS) phosphorylation and VEGF expression. CONCLUSION In the early stage of stroke, EA at Yin meridian acupoints can improve neurobehavioural functional recovery and the mechanism of this effect may be related to the enhanced expression of VEGF, P-Akt and p-eNOS in the peri-infarction cortex of rats.
Collapse
Affiliation(s)
- Li Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei-Jia Gua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chun-Rong Bao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nian-Hong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
7
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
8
|
Yu R, Kim NS, Li Y, Jeong JY, Park SJ, Zhou B, Oh WJ. Vascular Sema3E-Plexin-D1 Signaling Reactivation Promotes Post-stroke Recovery through VEGF Downregulation in Mice. Transl Stroke Res 2021; 13:142-159. [PMID: 33978913 PMCID: PMC8766426 DOI: 10.1007/s12975-021-00914-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Post-stroke vascular remodeling, including angiogenesis, facilitates functional recovery. Proper vascular repair is important for efficient post-stroke recovery; however, the underlying mechanisms coordinating the diverse signaling pathways involved in vascular remodeling remain largely unknown. Recently, axon guidance molecules were revealed as key players in injured vessel remodeling. One such molecule, Semaphorin 3E (Sema3E), and its receptor, Plexin-D1, control vascular development by regulating vascular endothelial growth factor (VEGF) signaling. In this study, using a mouse model of transient brain infarction, we aimed to investigate whether Sema3E-Plexin-D1 signaling was involved in cerebrovascular remodeling after ischemic injury. We found that ischemic damage rapidly induced Sema3e expression in the neurons of peri-infarct regions, followed by Plexin-D1 upregulation in remodeling vessels. Interestingly, Plexin-D1 reemergence was concurrent with brain vessels entering an active angiogenic process. In line with this, Plxnd1 ablation worsened neurological deficits, infarct volume, neuronal survival rate, and blood flow recovery. Furthermore, reduced and abnormal vascular morphogenesis was caused by aberrantly increased VEGF signaling. In Plxnd1 knockout mice, we observed significant extravasation of intravenously administered tracers in the brain parenchyma, junctional protein downregulation, and mislocalization in regenerating vessels. This suggested that the absence of Sema3E-Plexin-D1 signaling is associated with blood–brain barrier (BBB) impairment. Finally, the abnormal behavioral performance, aberrant vascular phenotype, and BBB breakdown defects in Plxnd1 knockout mice were restored following the inhibition of VEGF signaling during vascular remodeling. These findings demonstrate that Sema3E-Plexin-D1 signaling can promote functional recovery by downregulating VEGF signaling in the injured adult brain.
Collapse
Affiliation(s)
- Ri Yu
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.,College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nam-Suk Kim
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Yan Li
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jin-Young Jeong
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Sang-Joon Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bin Zhou
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Won-Jong Oh
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
9
|
Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111328. [DOI: 10.1016/j.msec.2020.111328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023]
|
10
|
Memanishvili T, Monni E, Tatarishivili J, Lindvall O, Tsiskaridze A, Kokaia Z, Tornero D. Poly(ester amide) microspheres are efficient vehicles for long-term intracerebral growth factor delivery and improve functional recovery after stroke. Biomed Mater 2020; 15:065020. [DOI: 10.1088/1748-605x/aba4f6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Vincenzi F, Pasquini S, Setti S, Salati S, Cadossi R, Borea PA, Varani K. Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-Like SH-SY5Y Cells from Oxygen-Glucose Deprivation. Int J Mol Sci 2020; 21:ijms21218053. [PMID: 33126773 PMCID: PMC7663527 DOI: 10.3390/ijms21218053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Pulsed electromagnetic fields (PEMFs) are emerging as an innovative, non-invasive therapeutic option in different pathological conditions of the central nervous system, including cerebral ischemia. This study aimed to investigate the mechanism of action of PEMFs in an in vitro model of human astrocytes, which play a key role in the events that occur following ischemia. 1321N1 cells were exposed to PEMFs or hypoxic conditions and the release of relevant neurotrophic and angiogenic factors, such as VEGF, EPO, and TGF-β1, was evaluated by means of ELISA or AlphaLISA assays. The involvement of the transcription factor HIF-1α was studied by using the specific inhibitor chetomin and its expression was measured by flow cytometry. PEMF exposure induced a time-dependent, HIF-1α-independent release of VEGF from 1321N1 cells. Astrocyte conditioned medium derived from PEMF-exposed astrocytes significantly reduced the oxygen-glucose deprivation-induced cell proliferation and viability decrease in the neuron-like cells SH-SY5Y. These findings contribute to our understanding of PEMFs action in neuropathological conditions and further corroborate their therapeutic potential in cerebral ischemia.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
- Correspondence: ; Tel.: +39-0532-455214
| | - Silvia Pasquini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
| | - Stefania Setti
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | - Simona Salati
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | - Ruggero Cadossi
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | | | - Katia Varani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
| |
Collapse
|
12
|
Vukojević J, Vrdoljak B, Malekinušić D, Siroglavić M, Milavić M, Kolenc D, Boban Blagaić A, Batelja L, Drmić D, Seiverth S, Sikirić P. The effect of pentadecapeptide BPC 157 on hippocampal ischemia/reperfusion injuries in rats. Brain Behav 2020; 10:e01726. [PMID: 32558293 PMCID: PMC7428500 DOI: 10.1002/brb3.1726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE We focused on the, yet undescribed, therapy effect of the stable gastric pentadecapeptide BPC 157 in hippocampal ischemia/reperfusion injuries, after bilateral clamping of the common carotid arteries in rats. The background is the proven therapy effect of BPC 157 in ischemia/reperfusion injuries in different tissues. Furthermore, there is the subsequent oxidative stress counteraction, particularly when given during reperfusion. The recovering effect it has on occluded vessels, results with activation of the alternative pathways, bypassing the occlusion in deep vein thrombosis. Finally, the BPC 157 therapy benefits with its proposed role as a novel mediator of Roberts' cytoprotection and bidirectional effects in the gut-brain axis. MATERIALS AND METHODS Male Wistar rats underwent bilateral clamping of the common carotid arteries for a 20-min period. At 30 s thereafter, we applied medication (BPC 157 10 µg/kg; or saline) as a 1 ml bath directly to the operated area, that is, trigonum caroticum. We documented, in reperfusion, the resolution of the neuronal damages sustained in the brain, resolution of the damages reflected in memory, locomotion, and coordination disturbances, with the presentation of the particular genes expression in hippocampal tissues. RESULTS In the operated rats, at 24 and 72 hr of the reperfusion, the therapy counteracted both early and delayed neural hippocampal damage, achieving full functional recovery (Morris water maze test, inclined beam-walking test, lateral push test). mRNA expression studies at 1 and 24 hr, provided strongly elevated (Egr1, Akt1, Kras, Src, Foxo, Srf, Vegfr2, Nos3, and Nos1) and decreased (Nos2, Nfkb) gene expression (Mapk1 not activated), as a way how BPC 157 may act. CONCLUSION Together, these findings suggest that these beneficial BPC 157 effects may provide a novel therapeutic solution for stroke.
Collapse
Affiliation(s)
- Jakša Vukojević
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Borna Vrdoljak
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Dominik Malekinušić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Marko Siroglavić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Marija Milavić
- Department of Pathology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Danijela Kolenc
- Department of Pathology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Lovorka Batelja
- Department of Pathology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Sven Seiverth
- Department of Pathology, Medical School, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikirić
- Department of Pharmacology, Medical School, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Isaiah S, Loots DT, Solomons R, van der Kuip M, Tutu Van Furth AM, Mason S. Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Front Neurosci 2020; 14:296. [PMID: 32372900 PMCID: PMC7186443 DOI: 10.3389/fnins.2020.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
A new paradigm in neuroscience has recently emerged - the brain-gut axis (BGA). The contemporary focus in this paradigm has been gut → brain ("bottom-up"), in which the gut-microbiome, and its perturbations, affects one's psychological state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The emerging brain → gut ("top-down") concept, the subject of this review, proposes that dysfunctional brain health can alter the gut-microbiome. Feedback of this alternative bidirectional highway subsequently aggravates the neurological pathology. This paradigm shift, however, focuses upon non-communicable neurological diseases (progressive neuroinflammation). What of infectious diseases, in which pathogenic bacteria penetrate the blood-brain barrier and interact with the brain, and what is this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation? Persistent immune activity in the CNS due to chronic neuroinflammation can lead to irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid (CSF), such as immunological markers, are used to diagnose brain disorders. But what of metabolic markers for such purposes? If a BGA exists, then chronic CNS bacterial infection(s) should theoretically be reflected in the urine. The premise here is that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed metabolism in both the CNS and gut will release metabolites into the blood that are filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial infection(s) of the CNS, in the context of information attained via metabolomics-based studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious disease - tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and examine three previously validated CSF immunological biomarkers - vascular endothelial growth factor, interferon-gamma and myeloperoxidase - in terms of the expected changes in normal brain metabolism. We then model the downstream metabolic effects expected, predicting pivotal altered metabolic pathways that would be reflected in the urinary profiles of TBM subjects. Our cascading metabolic model should be adjustable to account for other types of CNS bacterial infection(s) associated with chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in the resource-constrained settings of poor communities.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martijn van der Kuip
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - A. Marceline Tutu Van Furth
- Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Academic Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, Stetler RA, Chen J, Yin KJ. Endothelium-Targeted Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neurological Recovery. Circ Res 2020; 126:1040-1057. [PMID: 32131693 DOI: 10.1161/circresaha.119.315886] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE Angiogenesis promotes neurological recovery after stroke and is associated with longer survival of stroke patients. Cerebral angiogenesis is tightly controlled by certain microRNAs (miRs), such as the miR-15a/16-1 cluster, among others. However, the function of the miR-15a/16-1 cluster in endothelium on postischemic cerebral angiogenesis is not known. OBJECTIVE To investigate the functional significance and molecular mechanism of endothelial miR-15a/16-1 cluster on angiogenesis in the ischemic brain. METHODS AND RESULTS Endothelial cell-selective miR-15a/16-1 conditional knockout (EC-miR-15a/16-1 cKO) mice and wild-type littermate controls were subjected to 1 hour middle cerebral artery occlusion followed by 28-day reperfusion. Deletion of miR-15a/16-1 cluster in endothelium attenuates post-stroke brain infarction and atrophy and improves the long-term sensorimotor and cognitive recovery against ischemic stroke. Endothelium-targeted deletion of the miR-15a/16-1 cluster also enhances post-stroke angiogenesis by promoting vascular remodeling and stimulating the generation of newly formed functional vessels, and increases the ipsilateral cerebral blood flow. Endothelial cell-selective deletion of the miR-15a/16-1 cluster up-regulated the protein expression of pro-angiogenic factors VEGFA (vascular endothelial growth factor), FGF2 (fibroblast growth factor 2), and their receptors VEGFR2 (vascular endothelial growth factor receptor 2) and FGFR1 (fibroblast growth factor receptor 1) after ischemic stroke. Consistently, lentiviral knockdown of the miR-15a/16-1 cluster in primary mouse or human brain microvascular endothelial cell cultures enhanced in vitro angiogenesis and up-regulated pro-angiogenic proteins expression after oxygen-glucose deprivation, whereas lentiviral overexpression of the miR-15a/16-1 cluster suppressed in vitro angiogenesis and down-regulated pro-angiogenic proteins expression. Mechanistically, miR-15a/16-1 translationally represses pro-angiogenic factors VEGFA, FGF2, and their receptors VEGFR2 and FGFR1, respectively, by directly binding to the complementary sequences within 3'-untranslated regions of those messenger RNAs. CONCLUSIONS Endothelial miR-15a/16-1 cluster is a negative regulator for postischemic cerebral angiogenesis and long-term neurological recovery. Inhibition of miR-15a/16-1 function in cerebrovascular endothelium may be a legitimate therapeutic approach for stroke recovery.
Collapse
Affiliation(s)
- Ping Sun
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Kai Zhang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Sulaiman H Hassan
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Xuejing Zhang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Xuelian Tang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Hongjian Pu
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - R Anne Stetler
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Jun Chen
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.).,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, PA (J.C., K.-J.Y.)
| | - Ke-Jie Yin
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.).,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, PA (J.C., K.-J.Y.)
| |
Collapse
|
15
|
Jin ML, Zou ZH, Tao T, Li J, Xu J, Luo KJ, Liu Z. Effect of the Recombinant Adenovirus-Mediated HIF-1 Alpha on the Expression of VEGF in the Hypoxic Brain Microvascular Endothelial Cells of Rats. Neuropsychiatr Dis Treat 2020; 16:397-406. [PMID: 32103959 PMCID: PMC7012637 DOI: 10.2147/ndt.s238616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the effect of recombinant adenovirus-mediated HIF-1 alpha (HIF-1α) on the expression of vascular endothelial growth factor (VEGFA) and HIF-1α in hypoxic brain microvascular endothelial cells (BMEC) in rats. METHODS Primary cultured rat BMEC in vitro were treated without or with either recombinant adenovirus-mediated hypoxia-inducible factor-1 alpha (AdHIF-1α) or recombinant adenovirus empty vector (Ad) in the presence of CoCl2 (simulating hypoxia conditions), or were grown under normoxia conditions. The expression of VEGFA and HIF-1α was analyzed at 12h, 24h, 48h and 72h incubation time, respectively. We also accessed a GEO dataset of stroke to analyze in vivo the alteration of HIF-1α and VEGFA expression, and the correlations between HIF-1α, VEGFA and CD31 mRNA levels in vascular vessels after stroke. RESULTS VEGFA and HIF-1α expression were significantly higher in at each time point in the AdHIF-1α than other groups (p<0.05), whereas the Ad group and hypoxia group, showed no statistically significant difference (p>0.05). Moreover, VEGFA and HIF-1α levels were significantly higher in BMEC under hypoxia conditions than normoxia conditions (p <0.05). Both HIF-1α and VEGFA expression significantly increased after stroke in vivo with 1.30 and 1.57 fold-change in log2, respectively. There were significantly positive associations between HIF-1α, VEGFA and CD31 mRNA levels in vivo after stroke. CONCLUSION Hypoxia-induced HIF-1α and VEGFA expression in vascular vessels, and recombinant AdHIF-1α could up-regulate VEGFA, and enhance HIF-1ααlevels in BMEC in vitro, which may play an important role in the recovery of stroke.
Collapse
Affiliation(s)
- Ming-Lu Jin
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China.,Department of Neurology, Qijiang Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 404100, People's Republic of China.,Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Zhe-Hua Zou
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China.,Department of General Practice, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, People's Republic of China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, People's Republic of China
| | - Jun Li
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China.,Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, People's Republic of China
| | - Jian Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Kai-Jian Luo
- Guizhou Cancer Hospital, Guiyang, Guizhou 550000, People's Republic of China
| | - Zhi Liu
- Department of Pharmacy, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| |
Collapse
|
16
|
Zhang Y, Ma L, Su Y, Su L, Lan X, Wu D, Han S, Li J, Kvederis L, Corey S, Borlongan CV, Ji X. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res 2019; 1725:146432. [PMID: 31491422 DOI: 10.1016/j.brainres.2019.146432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
Therapeutic transplantation of autologous bone marrow mesenchymal stem cells (BMSCs) holds great promise for ischemic stroke, yet the efficacy is negatively impacted by aging. Here, we examined whether hypoxia conditioning could enhance aged human BMSCs-induced neuroprotection via secretome action. Primary cultured mouse neurons were exposed to oxygen glucose deprivation (OGD) to mimic ischemic stroke in vitro, then randomized into a hypoxia conditioned aged human BMSCs-conditioned medium (BMSC-hypoCM) versus normoxia conditioned (BMSC-norCM). After 22 h of reperfusion, cell viability was significantly increased in neurons treated with BMSC-hypoCM rather than BMSC-norCM. ELISA revealed that hypoxia conditioning enhanced vascular endothelial growth factor (VEGF) release into BMSC-derived CM. Blocking the VEGF receptor negated BMSC-hypoCM-induced protection for neurons against OGD insult. Altogether, our data indicates that hypoxia conditioning improves aged human BMSCs' therapeutic efficacy for neurons with ischemic challenge, in part via promoting secretion of VEGF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yuwen Su
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Li Su
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoxi Lan
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lauren Kvederis
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
17
|
Xie YZ, Zhang XJ, Zhang C, Yang Y, He JN, Chen YX. Protective effects of leonurine against ischemic stroke in mice by activating nuclear factor erythroid 2-related factor 2 pathway. CNS Neurosci Ther 2019; 25:1006-1017. [PMID: 31087454 PMCID: PMC6698971 DOI: 10.1111/cns.13146] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aims Leonurine has been shown to trigger antioxidant responses during ischemic stroke, and nuclear factor erythroid 2‐related factor 2 (Nrf‐2) imparts protective effects against oxidative injury. The present study has determined that leonurine prevents ischemic injury of brain tissues via Nrf‐2 pathway activation. Methods Male ICR mice and Nrf‐2−/− mice were subjected to permanent middle cerebral artery occlusion (pMCAO) and received leonurine treatment at 2 hours after pMCAO by intraperitoneal injection. Neurological deficit scores as well as infarct volume were assessed to determine the neuroprotective role of leonurine. Nrf‐2 was investigated using Western blotting and real‐time polymerase chain reaction (RT‐PCR) analysis to elucidate the neuroprotective mechanism of leonurine. Commercial kits were employed to determine reactive oxygen species (ROS), superoxide (SOD), catalase (CAT), glutathione peroxidase (GSH‐Px), malonaldehyde (MDA), and glutathione (GSH). Vascular endothelial growth factor (VEGF) was evaluated by Western blotting and RT‐PCR analysis, and VEGF was localized using immunofluorescence. Results The application of leonurine on ICR mice resulted in an improvement in neurological deficit scores and a reduction in infarct volume. Leonurine upregulated nuclear Nrf‐2 protein and increased total Nrf‐2 protein expression and mRNA levels. Leonurine regulated SOD, MDA, CAT, GSH, and GSH‐Px, and it significantly inhibited ROS production in ICR mice. Leonurine improved VEGF expression and increased VEGF expression in neurons, astrocytes, and endothelial cells. However, leonurine had no obvious beneficial effects on Nrf‐2−/− mice. Conclusions Leonurine exerted neuroprotective effects, promoted antioxidant responses, and upregulated VEGF expression by activating the Nrf‐2 pathway.
Collapse
Affiliation(s)
- Yan-Zhao Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China.,The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Jian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Cong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Yang Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Jun-Na He
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Yan-Xia Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China.,Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
19
|
Cheng ZJ, Dai TM, Shen YY, He JL, Li J, Tu JL. Atorvastatin Pretreatment Attenuates Ischemic Brain Edema by Suppressing Aquaporin 4. J Stroke Cerebrovasc Dis 2018; 27:3247-3255. [PMID: 30093197 DOI: 10.1016/j.jstrokecerebrovasdis.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cerebral edema, a serious complication of acute cerebral infarction, has a crucial impact on morbidity and mortality in the early stage of cerebral infarction. And aquaporin 4 (AQP4), a bidirectional water transporting protein, plays a pivotal role in edema formation. At experimental model, it has proven that atorvastatin could exert pleiotropic neuroprotection on acute cerebral infarction independent of its cholesterol-lowering action. It was a common protective manifestation that atorvastatin can reduce the infarct volume and cerebral edema. However, little is known about atorvastatin improving ischemic brain edema by regulating AQP4 expression. This study intended to investigate the neuroprotection effects of atorvastatin pretreatment in rats with cerebral ischemia and further explore the potential relationship between atorvastatin and AQP4 expression. METHODS Fifty-one adult male Sprague Dawley rats were randomly divided into 3 groups: sham, middle cerebral artery occlusion (MCAO), and atorvastatin pretreatment (Ator) group. For Ator group, 20 mg/kg of atorvastatin injectable suspension was administered once for 7days by gavage before operation, whereas the others were administered the same volume of saline matching. Except for sham group, MCAO and Ator groups were subjected to permanent MCAO by modified intraluminal suture method. Infarct volume, neurological deficit, brain water content (BWC), immunohistochemistry, western blot, and polymerase chain reaction (PCR) were measured at 24 hours after MCAO. RESULTS Compared with sham group, the mNSS, infarct volume, and BWC of ischemic hemisphere were significantly increased (P < 0.001) in MCAO group. Positive cells and protein levels of p-p38MAPK and AQP4 in peri-infarction were significantly increased (P < 0.01). The mRNA levels of p38MAPK and AQP4 were also prominently upregulated (P < 0.01). Interestingly, preadministration of atorvastatin dramatically decreased infarct volume and the BWC of ischemic hemisphere compared with MCAO group (P < 0.05). The overexpressions of p-p38MAPK and AQP4 in peri-infarction were significantly decreased (P < 0.05) and their mRNA levels were downregulated by atorvastatin pretreatment (P < 0.05). Neurological deficits were also dramatically improved (P < 0.001). CONCLUSION To the best of our knowledge, this is the first study that demonstrates an effect of atorvastatin on expression of AQP4, and we propose that decreased AQP4 expression through a p38MAPK-suppression pathway may be the mechanism of atorvastatin alleviating ischemic cerebral edema.
Collapse
Affiliation(s)
- Zhi-Juan Cheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, China.
| | - Ting-Min Dai
- Department of Neurology, Affiliated Hospital of Jiujiang University, China.
| | - Yao-Yao Shen
- Department of Neurology, Affiliated Hospital of Jiujiang University, China.
| | - Jian-Le He
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, China.
| | - Juan Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, China.
| | - Jiang-Long Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
20
|
Boese AC, Le QSE, Pham D, Hamblin MH, Lee JP. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther 2018; 9:154. [PMID: 29895321 PMCID: PMC5998588 DOI: 10.1186/s13287-018-0913-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) play vital roles in brain homeostasis and exhibit a broad repertoire of potentially therapeutic actions following neurovascular injury. One such injury is stroke, a worldwide leading cause of death and disability. Clinically, extensive injury from ischemic stroke results from ischemia-reperfusion (IR), which is accompanied by inflammation, blood-brain barrier (BBB) damage, neural cell death, and extensive tissue loss. Tissue plasminogen activator (tPA) is still the only US Food and Drug Administration-approved clot-lysing agent. Whereas the thrombolytic role of tPA within the vasculature is beneficial, the effects of tPA (in a non-thrombolytic role) within the brain parenchyma have been reported as harmful. Thus, new therapies are needed to reduce the deleterious side effects of tPA and quickly facilitate vascular repair following stroke. The Stroke Treatment Academic Industry Roundtable (STAIR) recommends that stroke therapies "focus on drugs/devices/treatments with multiple mechanisms of action and that target multiple pathways". Thus, based on multifactorial ischemic cascades in various stroke stages, effective stroke therapies need to focus on targeting and ameliorating early IR injury as well as facilitating angiogenesis, neurogenesis, and neurorestorative mechanisms following stroke. This review will discuss the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury and will emphasize both the subacute and chronic phase of ischemic stroke.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Quan-Son Eric Le
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Dylan Pham
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Baek A, Cho SR, Kim SH. Elucidation of Gene Expression Patterns in the Brain after Spinal Cord Injury. Cell Transplant 2018; 26:1286-1300. [PMID: 28933220 PMCID: PMC5657738 DOI: 10.1177/0963689717715822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease. The pathophysiological mechanisms of SCI have been reported to be relevant to central nervous system injury such as brain injury. In this study, gene expression of the brain after SCI was elucidated using transcriptome analysis to characterize the temporal changes in global gene expression patterns in a SCI mouse model. Subjects were randomly classified into 3 groups: sham control, acute (3 h post-injury), and subacute (2 wk post-injury) groups. We sought to confirm the genes differentially expressed between post-injured groups and sham control group. Therefore, we performed transcriptome analysis to investigate the enriched pathways associated with pathophysiology of the brain after SCI using Database for Annotation Visualization, and Integrated Discovery (DAVID), which yielded Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Following enriched pathways were found in the brain: oxidative phosphorylation pathway; inflammatory response pathways—cytokine–cytokine receptor interaction and chemokine signaling pathway; and endoplasmic reticulum (ER) stress-related pathways—antigen processing and presentation and mitogen-activated protein kinase signaling pathway. Oxidative phosphorylation pathway was identified at acute phase, while inflammation response and ER stress-related pathways were identified at subacute phase. Since the following pathways—oxidative phosphorylation pathway, inflammatory response pathways, and ER stress-related pathways—have been well known in the SCI, we suggested a link between SCI and brain injury. These mechanisms provide valuable reference data for better understanding pathophysiological processes in the brain after SCI.
Collapse
Affiliation(s)
- Ahreum Baek
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- 2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,5 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
22
|
Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke. Int J Mol Sci 2018; 19:ijms19051362. [PMID: 29734653 PMCID: PMC5983623 DOI: 10.3390/ijms19051362] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Cecilie Morland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
- Institute for Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0166 Oslo, Norway.
| |
Collapse
|
23
|
Cheng CY, Ho TY, Hsiang CY, Tang NY, Hsieh CL, Kao ST, Lee YC. Angelica sinensis Exerts Angiogenic and Anti-apoptotic Effects Against Cerebral Ischemia–Reperfusion Injury by Activating p38MAPK/HIF-1α/VEGF-A Signaling in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1683-1708. [PMID: 29121798 DOI: 10.1142/s0192415x17500914] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study evaluated the effects of Angelica sinensis extract [Dang Gui (DG)] administered before 60[Formula: see text]min of middle cerebral artery occlusion followed by 3[Formula: see text]d of reperfusion and investigated the involvement of mitogen-activated protein kinase (MAPK)/hypoxia-inducible factor (HIF)-1[Formula: see text] signaling in the cortical ischemic penumbra. DG was intraperitoneally administered at a dose of 0.25[Formula: see text]g/kg (DG-0.25g), 0.5[Formula: see text]g/kg (DG-0.5g), or 1[Formula: see text]g/kg (DG-1g) 30[Formula: see text]min before the onset of cerebral ischemia. Our study results revealed that DG-0.5g and DG-1g pretreatment effectively attenuated cerebral infarct and improved neurological deficits. DG-0.5g and DG-1g pretreatment significantly downregulated glial fibrillary acidic protein (GFAP), cytochrome c, and cleaved caspase-3 expression and upregulated phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK, phospho-cAMP response element-binding protein (p-CREB)/CREB, cytosolic and mitochondrial phospho-Bad (p-Bad)/Bad ratios, and HIF-1[Formula: see text], vascular endothelial growth factor-A (VEGF-A), phospho-90 kDa ribosomal S6 kinase (p-p90RSK), and von Willebrand factor (vWF) expression in the cortical ischemic penumbra. Pretreatment with SB203580, a p38 MAPK inhibitor, dramatically abrogated the upregulating effects of DG-1g on p-p38 MAPK/p38 MAPK, p-CREB/CREB, and p-Bad/Bad ratios and HIF-1[Formula: see text], VEGF-A, and vWF expression and the downregulating effects of DG-1g on GFAP, cytochrome c, cleaved caspase-3, and cerebral infarction. DG-0.5g and DG-1g pretreatment provided neuroprotective effects against astrocyte-mediated cerebral infarction by activating angiogenic and anti-apoptotic signaling. Moreover, the angiogenic and anti-apoptotic effects of DG pretreatment can be attributed to the activation of p38 MAPK/HIF-1[Formula: see text]/VEGF-A/vWF signaling and p38 MAPK/HIF-1[Formula: see text]/VEGF-A/p-Bad-related regulation of cytochrome c/caspase-3 signaling, respectively, in the cortical ischemic penumbra 3[Formula: see text]d after reperfusion.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
| | - Tin-Yun Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology, China Medical University, Taichung 40402, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ching-Liang Hsieh
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Chen Lee
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
24
|
Su Z, Jing H, Zhang Z, Tu M, Ying H, Zhuge Q, Zeng Y, Zhang Y. Expression of Vascular Endothelial Growth Factor after Transfection of Human Neural Stem Cells with the Lentiviral Vector Encoding the VEGF165 Gene. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9678-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
A new analytical model for the changes of vascular endothelial growth factor in ischemic diseases. Med Hypotheses 2017; 109:73-76. [DOI: 10.1016/j.mehy.2017.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022]
|
26
|
Xu Z, Han K, Chen J, Wang C, Dong Y, Yu M, Bai R, Huang C, Hou L. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J Neurochem 2017. [PMID: 28632969 DOI: 10.1111/jnc.14108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zheng Xu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Kaiwei Han
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Jigang Chen
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chunhui Wang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Yan Dong
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Mingkun Yu
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Rulin Bai
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Chenguang Huang
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| | - Lijun Hou
- Department of Neurosurgery in Chang Zheng Hospital; Neurosurgery Research Institution of Shanghai; Second Military Medical University; Shanghai China
| |
Collapse
|
27
|
Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human Neural Stem Cell Therapy for Chronic Ischemic Stroke: Charting Progress from Laboratory to Patients. Stem Cells Dev 2017; 26:933-947. [PMID: 28446071 PMCID: PMC5510676 DOI: 10.1089/scd.2017.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic disability after stroke represents a major unmet neurologic need. ReNeuron's development of a human neural stem cell (hNSC) therapy for chronic disability after stroke is progressing through early clinical studies. A Phase I trial has recently been published, showing no safety concerns and some promising signs of efficacy. A single-arm Phase II multicenter trial in patients with stable upper-limb paresis has recently completed recruitment. The hNSCs administrated are from a manufactured, conditionally immortalized hNSC line (ReNeuron's CTX0E03 or CTX), generated with c-mycERTAM technology. This technology has enabled CTX to be manufactured at large scale under cGMP conditions, ensuring sufficient supply to meets the demands of research, clinical development, and, eventually, the market. CTX has key pro-angiogenic, pro-neurogenic, and immunomodulatory characteristics that are mechanistically important in functional recovery poststroke. This review covers the progress of CTX cell therapy from its laboratory origins to the clinic, concluding with a look into the late stage clinical future.
Collapse
|
28
|
O'Hare FM, Watson RWG, O'Neill A, Segurado R, Sweetman D, Downey P, Mooney E, Murphy J, Donoghue V, Molloy EJ. Serial cytokine alterations and abnormal neuroimaging in newborn infants with encephalopathy. Acta Paediatr 2017; 106:561-567. [PMID: 28097694 DOI: 10.1111/apa.13745] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 01/11/2017] [Indexed: 01/20/2023]
Abstract
AIM Inflammatory cytokines may play a role in the final common pathway in the pathogenesis of hypoxic-ischaemic injury in experimental models. We aimed to profile the systemic pro-and anti-inflammatory response over the first week of life in term infants at risk of neonatal encephalopathy. METHOD In a tertiary referral university neonatal intensive care unit, serial blood samples were analysed from 41 term infants (requiring resuscitation at birth) in this prospective observational pilot study. Serum levels of 10 pro-and anti-inflammatory cytokines were evaluated including interleukin(IL)-1α, IL-1β, IL-6, IL-8, IL-10, tumour necrosis factor(TNF)-α, interferon (IFN)-γ, vascular endothelial growth factor (VEGF), granulocyte/colony-stimulating factor (G-CSF) and granulocyte macrophage/colony-stimulating factor (GM-CSF). RESULTS Infants with neonatal encephalopathy and abnormal neuroimaging (n = 15) had significantly elevated granulocyte macrophage/colony-stimulating factor at 0-24 h and interleukin-8, interleukin-6 and interleukin-10 at 24-48 hour. Tumour necrosis factor-α and vascular endothelial growth factor levels were lower at 72-96 hour (p < 0.05). Significantly elevated levels of interleukin-10 were associated with mortality. CONCLUSION Serum cytokine changes and innate immune dysregulation in the first week of life may be indicators of outcome in neonatal encephalopathy but require validation in larger studies.
Collapse
Affiliation(s)
- Fiona M. O'Hare
- Paediatrics; National Maternity Hospital; Dublin Ireland
- UCD School of Medicine & Medical Sciences & Conway Institute of Biomolecular and Biomedical Sciences; University College Dublin; Dublin Ireland
- National Children's Research Centre; Crumlin, Dublin Ireland
| | - R William G. Watson
- UCD School of Medicine & Medical Sciences & Conway Institute of Biomolecular and Biomedical Sciences; University College Dublin; Dublin Ireland
| | - Amanda O'Neill
- UCD School of Medicine & Medical Sciences & Conway Institute of Biomolecular and Biomedical Sciences; University College Dublin; Dublin Ireland
| | - Ricardo Segurado
- UCD CSTAR; School of Public Health; Physiotherapy and Population Science; University College Dublin; Dublin Ireland
| | - Deirdre Sweetman
- Paediatrics; National Maternity Hospital; Dublin Ireland
- National Children's Research Centre; Crumlin, Dublin Ireland
- Paediatrics; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Paul Downey
- Pathology; National Maternity Hospital; Dublin Ireland
| | - Eoghan Mooney
- Pathology; National Maternity Hospital; Dublin Ireland
| | - John Murphy
- Paediatrics; National Maternity Hospital; Dublin Ireland
- UCD School of Medicine & Medical Sciences & Conway Institute of Biomolecular and Biomedical Sciences; University College Dublin; Dublin Ireland
- Paediatrics; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Veronica Donoghue
- Paediatrics; National Maternity Hospital; Dublin Ireland
- Radiology; Children's University Hospital; Dublin Ireland
| | - Eleanor J. Molloy
- Paediatrics; National Maternity Hospital; Dublin Ireland
- UCD School of Medicine & Medical Sciences & Conway Institute of Biomolecular and Biomedical Sciences; University College Dublin; Dublin Ireland
- Paediatrics; Royal College of Surgeons in Ireland; Dublin Ireland
- Neonatology; Our Lady's Children's Hospital; Crumlin, Dublin Ireland
- Paediatrics; Trinity College Dublin; The University of Dublin; National Children's Hospital; Tallaght, Dublin Ireland. Paediatrics; Coombe Womens and Infants University Hospital; Dublin Ireland
| |
Collapse
|
29
|
Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H, Ding Y, Ji X. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 2017; 157:79-91. [PMID: 28110083 DOI: 10.1016/j.pneurobio.2017.01.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023]
Abstract
Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Adam Hafeez
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fatima Noorulla
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, CA, USA
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
30
|
Abstract
The application of targeted temperature management has become common practice in the neurocritical care setting. It is important to recognize the pathophysiologic mechanisms by which temperature control impacts acute neurologic injury, as well as the clinical limitations to its application. Nonetheless, when utilizing temperature modulation, an organized approach is required in order to avoid complications and minimize side-effects. The most common clinically relevant complications are related to the impact of cooling on hemodynamics and electrolytes. In both instances, the rate of complications is often related to the depth and rate of cooling or rewarming. Shivering is the most common side-effect of hypothermia and is best managed by adequate monitoring and stepwise administration of medications specifically targeting the shivering response. Due to the impact cooling can have upon pharmacokinetics of commonly used sedatives and analgesics, there can be significant delays in the return of the neurologic examination. As a result, early prognostication posthypothermia should be avoided.
Collapse
Affiliation(s)
- N Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Rud'ko AS, Efendieva MK, Budzinskaya MV, Karpilova MA. [Influence of vascular endothelial growth factor on angiogenesis and neurogenesis]. Vestn Oftalmol 2017; 133:75-81. [PMID: 28745660 DOI: 10.17116/oftalma2017133375-80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is known as a key mediator of angiogenesis, but there is also evidence of its broad significance in neurogenesis and neuroprotection. Cytokines of the VEGF family affect neovascularization and neural development in the brain, particularly during cerebral ischemia, in which there is a coordinated interaction of angiogenesis and neurogenesis that contributes to rapid functional recovery. This review examines the involvement of VEGF family members and their receptors in physiological and pathophysiological processes as well as the relationship between VEGF-A plasma levels and ischemic stroke.
Collapse
Affiliation(s)
- A S Rud'ko
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M Kh Efendieva
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M V Budzinskaya
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| | - M A Karpilova
- Research Institute of Eye Disease, 11 A, B, Rossolimo St., Moscow, Russia, 119021
| |
Collapse
|
32
|
Kim DS, Min SJ, Kim MJ, Kim JE, Kang TC. Leptomycin B ameliorates vasogenic edema formation induced by status epilepticus via inhibiting p38 MAPK/VEGF pathway. Brain Res 2016; 1651:27-35. [DOI: 10.1016/j.brainres.2016.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 12/21/2022]
|
33
|
Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia. Mol Neurobiol 2016; 54:6984-6998. [DOI: 10.1007/s12035-016-0219-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
34
|
Dmitrieva VG, Stavchansky VV, Povarova OV, Skvortsova VI, Limborska SA, Dergunova LV. Effects of ischemia on the expression of neurotrophins and their receptors in rat brain structures outside the lesion site, including on the opposite hemisphere. Mol Biol 2016. [DOI: 10.1134/s0026893316030067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med 2016; 12:1671-1680. [PMID: 27602084 PMCID: PMC4998226 DOI: 10.3892/etm.2016.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/11/2016] [Indexed: 01/19/2023] Open
Abstract
The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment induced significantly improved motor functional recovery, as compared with the NC-G group (P<0.05). Increased cytokine expression levels were detected in the NC-G and GC-G groups, as compared with the TBI-G; however, no differences were found between the two groups. These data suggested that transplanted immature neural cells may promote the survival of neural cells in cortical lesion and motor functional recovery. Furthermore, transplanted glial cells may be used as an effective therapeutic tool for TBI patients with abnormalities in motor functional recovery and cytokine expression.
Collapse
|
36
|
Arai K, Harada Y, Tomiyama H, Michishita M, Kanno N, Yogo T, Suzuki Y, Hara Y. Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury. Res Vet Sci 2016; 107:88-94. [PMID: 27473980 DOI: 10.1016/j.rvsc.2016.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Intramedullary bone marrow-derived mononuclear cell (BM-MNC) transplantation has demonstrated neuroprotective effects in the chronic stage of spinal cord injury (SCI). However, no previous study has evaluated its effects in the acute stage, even though cell death occurs mainly within 1week after injury in all neuronal cells. Moreover, the mechanism underlying these effects remains unclear. We aimed to investigate the survival of intramedullary transplanted allogeneic BM-MNCs and the production of growth factors after transplantation to clarify the therapeutic potential of intramedullary transplanted BM-MNCs and their protective effects in acute SCI. Sprague-Dawley rats were subjected to traumatic SCI and received intramedullary transplantation of EGFP(+)BM-MNCs (n=6), BM-MNCs (n=10), or solvent (n=10) immediately after injury. To evaluate the transplanted BM-MNCs and their therapeutic effects, immunohistochemical evaluations were performed at 3 and 7days post-injury (DPI). BM-MNCs were observed at the injected site at both 3 (683±83 cells/mm(2)) and 7 DPI (395±64 cells/mm(2)). The expression of hepatocyte growth factor was observed in approximately 20% transplanted BM-MNCs. Some BM-MNCs also expressed monocyte chemotactic protein-1 or vascular endothelial growth factor. The demyelinated area and number of cleaved caspase-3-positive cells were significantly smaller in the BM-MNC-transplanted group at 3 DPI. Hindlimb locomotor function was significantly improved in the BM-MNC-transplanted group at 7 DPI. These results suggest that intramedullary transplantation of BM-MNCs is an efficient method for introducing a large number of growth factor-producing cells that can induce neuroprotective effects in the acute stage of SCI.
Collapse
Affiliation(s)
- Kiyotaka Arai
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yasuji Harada
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Hiroyuki Tomiyama
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Nobuo Kanno
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Takuya Yogo
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka 530-8507, Japan
| | - Yasushi Hara
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
37
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
38
|
Yang Z, Cai X, Xu A, Xu F, Liang Q. Bone marrow stromal cell transplantation through tail vein injection promotes angiogenesis and vascular endothelial growth factor expression in cerebral infarct area in rats. Cytotherapy 2016; 17:1200-12. [PMID: 26276003 DOI: 10.1016/j.jcyt.2015.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AIMS This study sought to identify correlations between vascular endothelial growth factor (VEGF) expression after tail-vein injection of rat-derived bone marrow stromal cells (BMSCs) and neurogenesis and angiogenesis in cerebral infarct of rats. METHODS Rats with intraluminal middle cerebral artery occlusion were injected in a tail vein with Hoechst-labeled BMSCs. Functional recovery from cerebral infarction was observed through the use of a locomotion score. The brains of injected rats were sliced, and Hoechst-labeled BMSCs in the infarct and peri-infarct areas and subventricular zone (SVZ) were detected with the use of fluorescence microscopy. Ki-67 (as a cell proliferation marker) and VEGF expression were determined by means of immunohistochemistry. Neurofibril formation and angiogenesis were examined by means of Bielschowsky staining. RESULTS Within 1 to 2 weeks after BMSC injection, rats showed significantly improved locomotion scores compared with rats without BMSC injection (P < 0.01). Viable BMSCs were found in the peri-infarct area. The numbers of Ki-67-positive and VEGF-positive cells in the peri-infarct area and SVZ of injected rats were significantly increased compared with the control group (P < 0.01). Numerous new vessels, neurofibrils and anastomosed vasculatures were present in the infarct area. These neurofibrils mainly surrounded the neovasculatures. CONCLUSIONS These results indicate that BMSC-transplantation in rats through tail vein injection can increase neurogenesis, perhaps as the result of VEGF-mediated and/or Ki-67-mediated angiogenesis.
Collapse
Affiliation(s)
- Zhihua Yang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueli Cai
- Department of Neurology, the Fifth Affiliated Hospital of Wenzhou Medical college, Zhejiang, China
| | - Anding Xu
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Fengxia Xu
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qin Liang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
He QQ, He X, Wang YP, Zou Y, Xia QJ, Xiong LL, Luo CZ, Hu XS, Liu J, Wang TH. Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves brain ischemia-induced pulmonary injury in rats associated to TNF-α expression. Behav Brain Funct 2016; 12:9. [PMID: 26931747 PMCID: PMC4774175 DOI: 10.1186/s12993-016-0093-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023] Open
Abstract
Background Bone marrow mesenchymal stem cell (BMSCs)-based therapy seems to be a promising treatment for acute lung injury, but the therapeutic effects of BMSCs transplantation on acute lung injury induced by brain ischemia and the mechanisms have not been totally elucidated. This study explores the effects of transplantation of BMSCs on acute lung injury induced by focal cerebral ischemia and investigates the underlying mechanism. Methods Acute lung injury model was induced by middle cerebral artery occlusion (MCAO). BMSCs (with concentration of 1 × 106/ml) were transplanted into host through tail vein 1 day after MCAO. Then, the survival, proliferation and migration of BMSCs in lung were observed at 4 days after transplantation, and histology observation and lung function were assessed for 7 days. Meanwhile, in situ hybridization (ISH), qRT-PCR and western blotting were employed to detect the expression of TNF-α in lung. Results Neurobehavioral deficits and acute lung injury could be seen in brain ischemia rats. Implanted BMSCs could survive in the lung, and relieve pulmonary edema, improve lung function, as well as down regulate TNF-α expression. Conclusions The grafted BMSCs can survive and migrate widespread in lung and ameliorate lung injury induced by focal cerebral ischemia in the MCAO rat models. The underlying molecular mechanism, at least partially, is related to the suppression of TNF-α.
Collapse
Affiliation(s)
- Qin-qin He
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiang He
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yan-ping Wang
- Institute of Neuroscience and Experiment Animal Center, Kunming Medical University, Kunming, 650031, China.
| | - Yu Zou
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qing-jie Xia
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liu-Lin Xiong
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chao-zhi Luo
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiao-song Hu
- Center for Experimental Technology for Preclinical Medicine, Chengdu Medical College, Chengdu, 610083, Sichuan, China.
| | - Jia Liu
- Institute of Neuroscience and Experiment Animal Center, Kunming Medical University, Kunming, 650031, China.
| | - Ting-hua Wang
- Department of Anesthesia and Critical Care Medicine Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Institute of Neuroscience and Experiment Animal Center, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
40
|
Roslavtceva V, Salmina A, Prokopenko S, Pozhilenkova E, Kobanenko I, Rezvitskaya G. The role of vascular endothelial growth factor in the regulation of development and functioning of the brain: new target molecules for pharmacotherapy. ACTA ACUST UNITED AC 2016; 62:124-33. [DOI: 10.18097/pbmc20166202124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair. Most of these actions involve VEGF-A and the VEGFR-2 receptor. VEGF signaling pathways represent an important potential for treatment of neurological diseases affecting the brain
Collapse
Affiliation(s)
- V.V. Roslavtceva
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - A.B. Salmina
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - S.V. Prokopenko
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - E.A. Pozhilenkova
- Voyno-Yasenetski Krasnoyarsk State Medical Academy, Krasnoyarsk, Russia
| | - I.V. Kobanenko
- Berzon Krasnoyarsk Regional Clinical Hospital N 20, Krasnoyarsk Russia
| | - G.G. Rezvitskaya
- Berzon Krasnoyarsk Regional Clinical Hospital N 20, Krasnoyarsk Russia
| |
Collapse
|
41
|
Shen SW, Duan CL, Chen XH, Wang YQ, Sun X, Zhang QW, Cui HR, Sun FY. Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature neurons in rat brains after stroke. Neuropharmacology 2015; 108:451-61. [PMID: 26603138 DOI: 10.1016/j.neuropharm.2015.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/22/2015] [Accepted: 11/12/2015] [Indexed: 01/19/2023]
Abstract
To study the cellular mechanism of vascular endothelial growth factor (VEGF)-enhanced neurogenesis in ischemic brain injury, we used middle cerebral artery occlusion (MCAO) model to induce transient focal ischemic brain injury. The results showed that ischemic injury significantly increased glial fibrillary acidic protein immunopositive (GFAP(+)) and nestin(+) cells in ipsilateral striatum 3 days following MCAO. Most GFAP(+) cells colocalized with nestin (GFAP(+)-nestin(+)), Pax6 (GFAP(+)-Pax6(+)), or Olig2 (GFAP(+)-Olig2(+)). VEGF further increased GFAP(+)-nestin(+) and GFAP(+)-Pax6(+) cells, and decreased GFAP(+)-Olig2(+) cells. We used striatal injection of GFAP targeted enhanced green fluorescence protein (pGfa2-EGFP) vectors combined with multiple immunofluorescent staining to trace the neural fates of EGFP-expressing (GFP(+)) reactive astrocytes. The results showed that MCAO-induced striatal reactive astrocytes differentiated into neural stem cells (GFP(+)-nestin(+) cells) at 3 days after MCAO, immature (GFP(+)-Tuj-1(+) cells) at 1 week and mature neurons (GFP(+)-MAP-2(+) or GFP(+)-NeuN(+) cells) at 2 weeks. VEGF increased GFP(+)-NeuN(+) and BrdU(+)-MAP-2(+) newborn neurons after MCAO. Fluorocitrate, an astrocytic inhibitor, significantly decreased GFAP and nestin expression in ischemic brains, and also reduced VEGF-enhanced neurogenic effects. This study is the first time to report that VEGF-mediated increase of newly generated neurons is dependent on the presence of reactive astrocytes. The results also illustrate cellular mechanism of VEGF-enhanced neural repair and functional plasticity in the brains after ischemic injury. We concluded that neurogenic effect of VEGF is related to increase of striatal astrocytes transdifferentiation into new mature neurons, which should be very important for the reconstruction of neurovascular units/networks in non-neurogenic regions of the mammalian brain.
Collapse
Affiliation(s)
- Shu-Wen Shen
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Chun-Ling Duan
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Xian-Hua Chen
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Yong-Quan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Xiao Sun
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Qiu-Wan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Hui-Ru Cui
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Feng-Yan Sun
- Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China; Institute for Biomedical Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China; Research Center on Aging and Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
42
|
Iijima K, Kurachi M, Shibasaki K, Naruse M, Puentes S, Imai H, Yoshimoto Y, Mikuni M, Ishizaki Y. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions. J Neurochem 2015. [DOI: 10.1111/jnc.13262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masae Naruse
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Sandra Puentes
- Department of Neurosurgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Hideaki Imai
- Department of Neurosurgery; Tokyo University Graduate School of Medicine; Bunkyo-ku Tokyo Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masahiko Mikuni
- Department of Psychiatry and Neuroscience; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| |
Collapse
|
43
|
Park HW, Moon HE, Kim HSR, Paek SL, Kim Y, Chang JW, Yang YS, Kim K, Oh W, Hwang JH, Kim JW, Kim DG, Paek SH. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res 2015; 93:1814-25. [PMID: 26332684 DOI: 10.1002/jnr.23616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/11/2022]
Abstract
Cell therapy is a potential therapeutic method for cerebral ischemia, which remains a serious problem. In the search for more effective therapeutic methods, many kinds of stem cells from various tissues have been developed and tested as candidate therapeutic agents. Among them, human umbilical cord blood (hUCB)-derived mesenchymal stem cells (MSCs) are widely used for cell therapy because of their genetic flexibility. To confirm that they are effective and understand how they affect ischemic neural cells, hUCB-MSCs were directly administered ipsilaterally into an ischemic zone induced by middle cerebral artery occlusion (MCAO). We found that the neurobehavioral performance of the hUCB-MSC group was significantly improved compared with that of the vehicle-injected control group. The infarct was also remarkably smaller in the hUCB-MSC group. Additionally, hUCB-MSC transplantation resulted in a greater number of newly generated cells and angiogenic and tissue repair factors and a lower number of inflammatory events in the penumbra zone. To determine why these events occurred, hUCB-MSCs were assayed under hypoxic and normoxic conditions in vitro. The results showed that hUCB-MSCs exhibit higher expression levels of thrombospondin1, pantraxin3, and vascular endothelial growth factor under hypoxic conditions than under normoxic conditions. These results were found to be correlated with our in vivo immunofluorescent staining results. On the basis of these findings, we suggest that hUCB-MSCs may have a beneficial effect on cerebral ischemia, especially through angiogenesis, neurogenesis, and anti-inflammatory effects, and thus could be used as a therapeutic agent to treat neurological disorders such as cerebral ischemia.
Collapse
Affiliation(s)
- Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo-Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Soo R Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Leal Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
| | - Yona Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, Medipost Co., Ltd., Seoul, Korea
| | - KwanWoo Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, Medipost Co., Ltd., Seoul, Korea
| | - Jae Ha Hwang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Gutiérrez-Fernández M, Otero-Ortega L, Ramos-Cejudo J, Rodríguez-Frutos B, Fuentes B, Díez-Tejedor E. Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opin Biol Ther 2015; 15:873-81. [PMID: 25959243 DOI: 10.1517/14712598.2015.1040386] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Based on the positive results observed in experimental animal models, adipose tissue-derived mesenchymal stem cells (AD-MSCs) constitute a promising therapy for stroke treatment. However, several aspects need to be clarified to identify the optimal conditions for successful clinical translation. AREAS COVERED This review focuses on AD-MSC treatment for ischemic and hemorrhagic stroke in experimental animal models. In addition, we will explore the optimization of treatment conditions including AD-MSC production, administration routes and therapeutic windows for their appropriate use in patients. Finally we will provide an update on clinical trials on this therapy. EXPERT OPINION Compared with other cell types, AD-MSCs have been less investigated in stroke studies. Currently, experimental animal models have shown safety and efficacy with this treatment after stroke. Due to several advantages of AD-MSCs, such as their abundance and accessibility, they can be considered a promising strategy for use in patients. However, many questions are still to be resolved regarding their mechanisms of action, immune system modulation and the effects of AD-MSCs on all components of the brain that may be affected after ischemic and hemorrhagic strokes.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autónoma University of Madrid , Paseo de la Castellana 261, 28046, Madrid , Spain
| | | | | | | | | | | |
Collapse
|
45
|
Liu F, Ni JJ, Huang JJ, Kou ZW, Sun FY. VEGF overexpression enhances the accumulation of phospho-S292 MeCP2 in reactive astrocytes in the adult rat striatum following cerebral ischemia. Brain Res 2015; 1599:32-43. [DOI: 10.1016/j.brainres.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
|
46
|
Lin X, Miao P, Mu Z, Jiang Z, Lu Y, Guan Y, Chen X, Xiao T, Wang Y, Yang GY. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography. Phys Med Biol 2015; 60:1655-65. [PMID: 25632958 DOI: 10.1088/0031-9155/60/4/1655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.
Collapse
Affiliation(s)
- Xiaojie Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Ying G, Ren C, Jizhang Y, Brogan D, Liu Z, Li S, Ding Y, Borlongan CV, Zhang J, Ji X. Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke. Brain Res 2015; 1594:267-73. [DOI: 10.1016/j.brainres.2014.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/20/2014] [Accepted: 10/18/2014] [Indexed: 01/05/2023]
|
48
|
Bikis C, Moris D, Vasileiou I, Patsouris E, Theocharis S. FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Targets 2014; 19:539-49. [PMID: 25474489 DOI: 10.1517/14728222.2014.990374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Tan J, Zheng X, Zhang S, Yang Y, Wang X, Yu X, Zhong L. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells. Neural Regen Res 2014; 9:1763-9. [PMID: 25422637 PMCID: PMC4238164 DOI: 10.4103/1673-5374.141785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into five groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular endothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. The cerebral palsy model was established by ligating the left common carotid artery followed by exposure to hypoxia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. After transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vascular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for finding water and the finding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. These findings indicate that the transplantation of vascular endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deficits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.
Collapse
Affiliation(s)
- Jielu Tan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shanshan Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaohe Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Zhong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
50
|
Tado M, Mori T, Fukushima M, Oshima H, Maeda T, Yoshino A, Aizawa S, Katayama Y. Increased expression of vascular endothelial growth factor attenuates contusion necrosis without influencing contusion edema after traumatic brain injury in rats. J Neurotrauma 2014; 31:691-8. [PMID: 24294928 DOI: 10.1089/neu.2013.2940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To clarify the role of vascular endothelial growth factor (VEGF) in the formation of contusion edema and necrosis after traumatic brain injury, we examined the time course of changes in the VEGF expression (enzyme-linked immunosorbent assay), cerebrovascular permeability (extravasation of Evans blue), and water content (dry-wet weight method) of the contused brain tissue in a cortical impact injury model using rats. In addition, we tested the effects of administration of bevacizumab (VEGF monoclonal antibody) on changes in the cerebrovascular permeability and water content of the contused brain tissue, as well as the neurological deficits (rota rod test) and volume of contusion necrosis. Increased VEGF expression was maximal at 72 h after injury (p<0.003). Increases in cerebrovascular permeability and water content, however, became maximal within 24 h (p<0.001) after injury (p<0.01), respectively. Administration of bevacizumab did not influence these changes in cerebrovascular permeability and water content, but led to a significant rise in the neurological deficits at 72 h-14 days (p<0.05 or 0.01) and the volume of contusion necrosis at 21 days (p<0.001) after injury. These findings suggest that increased expression of VEGF after injury does not contribute to the formation of contusion edema, but attenuates the formation of contusion necrosis. This is probably because of an increased angiogenesis and improved microcirculation in the areas surrounding the core of contusion.
Collapse
Affiliation(s)
- Masahiro Tado
- 1 Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine , Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|