1
|
Schragenheim J, Bellner L, Cao J, Singh SP, Bamshad D, McClung JA, Maayan O, Meissner A, Grant I, Stier CT, Abraham NG. EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter. Prostaglandins Other Lipid Mediat 2018; 137:30-39. [PMID: 29787809 DOI: 10.1016/j.prostaglandins.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on renal and adipose tissue function, in addition to its vasodilatory action; it increases insulin sensitivity and inhibits inflammation. In an examination of the signaling mechanisms by which EET reduces renal and peri-renal fat function, we hypothesized that EET ameliorates obesity-induced renal dysfunction by improving sodium excretion, reducing the sodium-chloride cotransporter NCC, lowering blood pressure, and enhancing mitochondrial and thermogenic gene levels in PGC-1α dependent mice. METHODS EET-agonist treatment normalized glucose metabolism, renal ENaC and NCC protein expression, urinary sodium excretion and blood pressure in obese (db/db) mice. A marked improvement in mitochondrial integrity, thermogenic genes, and PGC-1α-HO-1-adiponectin signaling occurred. Knockout of PGC-1α in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in sodium excretion, elevation of blood pressure and an increase in the pro-inflammatory adipokine nephroblastoma overexpressed gene (NOV). In the elucidation of the effects of EET on peri-renal adipose tissue, EET increased adiponectin, mitochondrial integrity, thermogenic genes and decreased NOV, i.e. "Browning' peri-renal adipose phenotype that occurs under high fat diets. Taken together, these data demonstrate a critical role of an EET agonist in the restoration of healthy adipose tissue with reduced release of inflammatory molecules, such as AngII and NOV, thereby preventing their detrimental impact on sodium absorption and NCC levels and the development of obesity-induced renal dysfunction.
Collapse
Affiliation(s)
- Joseph Schragenheim
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - Jian Cao
- Chinese PLA General Hospital, Beijing, 100853, China
| | - Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - David Bamshad
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - Omri Maayan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States
| | - Aliza Meissner
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - Ilana Grant
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States
| | - Charles T Stier
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States.
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, United States; Department of Medicine, New York Medical College, Valhalla, NY, 10595, United States; Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, United States.
| |
Collapse
|
2
|
Cebová M, Košútová M, Pecháňová O. Cardiovascular effects of gasotransmitter donors. Physiol Res 2017; 65:S291-S307. [PMID: 27775418 DOI: 10.33549/physiolres.933441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gasotransmitters represent a subfamily of the endogenous gaseous signaling molecules that include nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H(2)S). These particular gases share many common features in their production and function, but they fulfill their physiological tasks in unique ways that differ from those of classical signaling molecules found in tissues and organs. These gasotransmitters may antagonize or potentiate each other's cellular effects at the level of their production, their downstream molecular targets and their direct interactions. All three gasotransmitters induce vasodilatation, inhibit apoptosis directly or by increasing the expression of anti-apoptotic genes, and activate antioxidants while inhibiting inflammatory actions. NO and CO may concomitantly participate in vasorelaxation, anti-inflammation and angiogenesis. NO and H(2)S collaborate in the regulation of vascular tone. Finally, H(2)S may upregulate the heme oxygenase/carbon monoxide (HO/CO) pathway during hypoxic conditions. All three gasotransmitters are produced by specific enzymes in different cell types that include cardiomyocytes, endothelial cells and smooth muscle cells. As translational research on gasotransmitters has exploded over the past years, drugs that alter the production/levels of the gasotransmitters themselves or modulate their signaling pathways are now being developed. This review is focused on the cardiovascular effects of NO, CO, and H(2)S. Moreover, their donors as drug targeting the cardiovascular system are briefly described.
Collapse
Affiliation(s)
- M Cebová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
4
|
Rochette L, Vergely C, Rochette F, Girard C. Carbon monoxide: a new pharmaceutical agent? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-011-0430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Li N, Yi F, dos Santos EA, Donley DK, Li PL. Role of Renal Medullary Heme Oxygenase in the Regulation of Pressure Natriuresis and Arterial Blood Pressure. Hypertension 2007; 49:148-54. [PMID: 17075028 DOI: 10.1161/01.hyp.0000250086.06137.fb] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have demonstrated that inhibition of renal medullary heme oxygenase (HO) activity and carbon monoxide (CO) significantly decreases renal medullary blood flow and sodium excretion. Given the crucial role of renal medullary blood flow in the control of pressure natriuresis, the present study was designed to determine whether renal medullary HO activity and resulting CO production participate in the regulation of pressure natriuresis and thereby the long-term control of arterial blood pressure. In anesthetized Sprague-Dawley rats, increases in renal perfusion pressure induced significant elevations of CO concentrations in the renal medulla. Renal medullary infusion of chromium mesoporphyrin (CrMP), an inhibitor of HO activity, remarkably inhibited HO activity and the renal perfusion pressure-dependent increases in CO levels in the renal medulla and significantly blunted pressure natriuresis. In conscious Sprague-Dawley rats, continuous infusion of CrMP into the renal medulla significantly increased mean arterial pressure (129±2.5 mm Hg in CrMP group versus 118±1.6 mm Hg in vehicle group) when animals were fed a normal salt diet (1% NaCl). After rats were switched to a high-salt diet (8% NaCl) for 10 days, CrMP-treated animals exhibited further increases in mean arterial pressure compared with CrMP-treated animals that were kept on normal salt diet (152±4.1 versus 130±4.2 mm Hg). These results suggest that renal medullary HO activity plays a crucial role in the control of pressure natriuresis and arterial blood pressure and that impairment of this HO/CO-mediated antihypertensive mechanism in the renal medulla may result in the development of hypertension.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
The enzymatic action of heme oxygenase yields carbon monoxide, biliverdin and iron. Carbon monoxide is implicated in many physiological processes, including the regulation of vascular tissue contractility and apoptosis. By stimulating the soluble guanylyl cyclase (sGC)/cGMP pathway and activating K channels in vascular smooth muscle cells (SMCs), carbon monoxide relaxes vascular tissues under physiological conditions. Altered metabolism and functions of carbon monoxide have been linked to the pathogenesis and maintenance of hypertension. The expression and activity of heme oxygenase-1, sGC and cGMP in vascular SMCs are associated with different stages of development of hypertension in spontaneously hypertensive rats (SHRs). The importance of altered heme oxygenase-2 expression in vascular tissues in hypertension remains unclear. Increased vascular contractility, unbalanced cellular apoptosis and proliferation in the vascular wall, increased oxidative stress, and the altered interaction of carbon monoxide and nitric oxide are among the consequences of heme oxygenase/carbon monoxide system dysfunction in hypertension. Acute application of pharmacological inducers to upregulate the expression of heme oxygenase-1 or the use of gene delivery method to overexpress heme oxygenase-1 decreases blood pressure in young SHRs and other animal models of hypertension. These blood pressure-decreasing effects are annulled by metalloporphyrins. In adult SHRs, the heme oxygenase/carbon monoxide system appears to be normalized as a compensatory reaction. To date, acute manipulation of the expression of heme oxygenase-1 has not been successful in decreasing blood pressure in adult SHRs. In conclusion, abnormality of the heme oxygenase/carbon monoxide system has a critical role in the pathogenesis of hypertension, and novel therapeutic approaches should be pursued to achieve selective improvement in the function of this system in hypertension.
Collapse
Affiliation(s)
- Joseph F Ndisang
- Departments of Physiology and Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
9
|
Quinn S, O'Brien C, McLoughlin P. Role of cyclooxygenase and haemoxygenase products in nitric oxide-independent vasodilatation in the porcine ciliary artery. Eye (Lond) 2003; 17:628-36. [PMID: 12855973 DOI: 10.1038/sj.eye.6700437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Vascular endothelial cell dysfunction has been noted in patients with normal pressure glaucoma. Although nitric oxide (NO) accounts for a large proportion of vasorelaxation in the posterior ciliary artery, considerable relaxation remains unexplained. We investigated the roles of haemoxygenase (HO) and cyclooxygenase (COX), which produce the vasodilators carbon monoxide (CO) and prostacyclin, respectively, in NO-independent endothelium-dependent vasodilatation in porcine posterior ciliary arteries. METHODS Isolated vascular rings were mounted in a Mulvaney-Halpern small vessel myograph for the measurement of isometric tension development. Vasodilator responses to bradykinin (BK) were elicited in each ring on three separate occasions following preconstriction with prostaglandin F(2alpha): first in the absence of inhibitors, second in the presence of the NO synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME, 10(-3) M), and third in the presence of L-NAME and either a COX (indomethacin, 10(-6) M) or an HO inhibitor (tin protoporphyrin-IX 10(-5) M). Results were expressed as a percentage of the maximal relaxation in the presence of L-NAME alone. RESULTS Incubation with indomethacin (n=6), in the presence of L-NAME, significantly reduced (P<0.01) maximum BK-induced relaxation (-103.5+/-8.8%) compared to paired rings in the presence of L-NAME alone (-130.8+/-8.8%). HO inhibition did not reduce NO-independent, BK-induced relaxation when compared to paired control vessels. CONCLUSIONS These data suggest that in the presence of L-NAME, a COX product accounts for a significant proportion of NO-independent vasodilatation. In contrast, endogenous CO production does not have a functionally significant role in the porcine ciliary artery. Eye (2003) 17, 628-636. doi:10.1038/sj.eye.6700437
Collapse
Affiliation(s)
- S Quinn
- Department of Human Anatomy and Physiology, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | |
Collapse
|