1
|
Zhang H, Singal PK, Ravandi A, Rabinovich-Nikitin I. Sex-Specific Differences in the Pathophysiology of Hypertension. Biomolecules 2025; 15:143. [PMID: 39858537 PMCID: PMC11763887 DOI: 10.3390/biom15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Hypertension is one of the most common comorbidities in cardiometabolic diseases, affecting nearly one third of adults. As a result, its pathophysiological mechanisms have been studied extensively and are focused around pressure natriuresis, the renin-angiotensin system (RAS), the sympathetic nervous system, oxidative stress, and endothelial dysfunction. Additionally, hypertension secondary to other underlying etiologies also exists. While clinical evidence has clearly shown differences in hypertension development in males and females, relatively little is known about the pathophysiological mechanisms behind these differences. Sex hormones likely play a key role, as they modulate many factors related to hypertension development. In this review, we postulate the potential role for sexually dimorphic fat metabolism in the physiology of hypertension. In brief, estrogen promotes subcutaneous fat deposition over visceral fat and increases in mass via adaptive hyperplasia rather than pathogenic hypertrophy. This adipose tissue subsequently produces anti-inflammatory effects and inhibits metabolic dysfunction-associated fatty liver disease (MAFLD) and RAS activation, ultimately leading to decreased levels of hypertension in pre-menopausal females. On the other hand, androgens and the lack of estrogens promote visceral and ectopic fat deposition, including in the liver, and lead to increased circulating pro-inflammatory cytokines and potentially subsequent RAS activation and hypertension development in males and post-menopausal females. Understanding the sex-specific differences in fat metabolism may provide deeper insights into the patho-mechanisms associated with hypertension and lead to more comprehensive sex-specific care.
Collapse
Affiliation(s)
- Hannah Zhang
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada; (H.Z.); (P.K.S.); (A.R.)
- Department of Pharmacology and Therapeutics, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
2
|
Mallén A, Rodriguez-Urquia R, Alvarez R, Dorca-Duch E, Navarro E, Hueso M. Sex Differences in Glomerular Lesions, in Atherosclerosis Progression, and in the Response to Angiotensin-Converting Enzyme Inhibitors in the ApoE -/- Mice Model. Int J Mol Sci 2023; 24:13442. [PMID: 37686247 PMCID: PMC10487579 DOI: 10.3390/ijms241713442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This study analyzes sex-based differences in renal structure and the response to the Angiotensin-Converting Enzyme (ACE) inhibitor enalapril in a mouse model of atherosclerosis. Eight weeks old ApoE-/- mice received enalapril (5 mg/kg/day, subcutaneous) or PBS (control) for an additional 14 weeks. Each group consisted of six males and six females. Females exhibited elevated LDL-cholesterol levels, while males presented higher creatinine levels and proteinuria. Enalapril effectively reduced blood pressure in both groups, but proteinuria decreased significantly only in females. Plaque size analysis and assessment of kidney inflammation revealed no significant sex-based differences. However, males displayed more severe glomerular injury, with increased mesangial expansion, mesangiolysis, glomerular foam cells, and activated parietal epithelial cells (PECs). Enalapril mitigated mesangial expansion, glomerular inflammation (particularly in the female group), and hypertrophy of the PECs in males. This study demonstrates sex-based differences in the response to enalapril in a mouse model of atherosclerosis. Males exhibited more severe glomerular injury, while enalapril provided renal protection, particularly in females. These findings suggest potential sex-specific considerations for ACE inhibitor therapy in chronic kidney disease and atherosclerosis cardiovascular disease. Further research is needed to elucidate the underlying mechanism behind these observations.
Collapse
Affiliation(s)
- Adrián Mallén
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain; (A.M.); (E.N.)
| | - Ronny Rodriguez-Urquia
- Department of Nephrology, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.R.-U.); (R.A.)
| | - Rafael Alvarez
- Department of Nephrology, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.R.-U.); (R.A.)
| | - Eduard Dorca-Duch
- Department of Pathology, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | - Estanis Navarro
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain; (A.M.); (E.N.)
| | - Miguel Hueso
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, 08907 L’Hospitalet de Llobregat, Spain; (A.M.); (E.N.)
- Department of Nephrology, Hospital Universitari Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.R.-U.); (R.A.)
| |
Collapse
|
3
|
Schneider BK, Ward J, Sotillo S, Garelli-Paar C, Guillot E, Prikazsky M, Mochel JP. Breakthrough: a first-in-class virtual simulator for dose optimization of ACE inhibitors in translational cardiovascular medicine. Sci Rep 2023; 13:3300. [PMID: 36843132 PMCID: PMC9968717 DOI: 10.1038/s41598-023-30453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
The renin-angiotensin-aldosterone-systems (RAAS) play a central role in the pathophysiology of congestive heart failure (CHF), justifying the use of angiotensin converting enzyme inhibitors (ACEi) in dogs and humans with cardiac diseases. Seminal studies in canine CHF had suggested that the pharmacological action of benazepril was relatively independent of doses greater than 0.25 mg/kg P.O, thereby providing a rationale for the European labeled dose of benazepril in dogs with CHF. However, most of these earlier studies relied on measures of ACE activity, a sub-optimal endpoint to characterize the effect of ACEi on the RAAS. The objectives of this study were (i) to expand on previous mathematical modeling efforts of the dose-exposure-response relationship of benazepril on biomarkers of the RAAS which are relevant to CHF pathophysiology and disease prognosis; and (ii) to develop a software implementation capable of simulating clinical trials in benazepril in dogs bedside dose optimization. Our results suggest that 0.5 mg/kg PO q12h of benazepril produces the most robust reduction in angiotensin II and upregulation of RAAS alternative pathway biomarkers. This model will eventually be expanded to include relevant clinical endpoints, which will be evaluated in an upcoming prospective trial in canine patients with CHF.
Collapse
Affiliation(s)
- Benjamin K Schneider
- SMART Pharmacology, Iowa State University College of Vet. Medicine, 2448 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-1250, USA
| | - Jessica Ward
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | - Samantha Sotillo
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | | | | | | | - Jonathan P Mochel
- SMART Pharmacology, Iowa State University College of Vet. Medicine, 2448 Lloyd, 1809 S Riverside Dr., Ames, IA, 50011-1250, USA.
| |
Collapse
|
4
|
Hu R, McDonough AA, Layton AT. Sex differences in solute and water handling in the human kidney: Modeling and functional implications. iScience 2021; 24:102667. [PMID: 34169242 PMCID: PMC8209279 DOI: 10.1016/j.isci.2021.102667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The kidneys maintain homeostasis by controlling the amount of water and electrolytes in the blood. That function is accomplished by the nephrons, which transform glomerular filtrate into urine by a transport process mediated by membrane transporters. We postulate that the distribution of renal transporters along the nephron is markedly different between men and women, as recently shown in rodents. We hypothesize that the larger abundance of a renal Na+ transport in the proximal tubules in females may also better prepare them for the fluid retention adaptations required during pregnancy and lactation. Also, kidneys play a key role in blood pressure regulation, and a popular class of anti-hypertensive medications and angiotensin converting enzymes (ACE) inhibitors have been reported to be less effective in women. Model simulations suggest that the blunted natriuretic and diuretic effects of ACE inhibition in women can be attributed, in part, to their higher distal baseline transport capacity.
Collapse
Affiliation(s)
- Rui Hu
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Sex Differences in the Renal Vascular Responses of AT 1 and Mas Receptors in Two-Kidney-One-Clip Hypertension. Int J Hypertens 2021; 2021:8820646. [PMID: 33688433 PMCID: PMC7914082 DOI: 10.1155/2021/8820646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 01/20/2023] Open
Abstract
Background The prevalence and severity of hypertension, as well as the activity of the systemic and local renin angiotensin systems (RASs), are gender related, with more symptoms in males than in females. However, the underlying mechanisms are not well understood. In this study, we investigated sex differences in renal vascular responses to angiotensin II (Ang II) administration with and without Ang II type 1 and Mas receptor (AT1R and MasR) antagonists (losartan and A779) in the 2K1C rat model of renovascular hypertension. Methods Male and female 2K1C rats were divided into 8 experimental groups (4 of each sex) treated with vehicle, losartan, A779, or A779+losartan. Responses of mean arterial pressure (MAP), renal blood flow (RBF), and renal vascular resistance (RVR) to Ang II were determined. Results In both sexes, the basal MAP, RBF, and RVR were not significantly different between the four groups during the control period. The Ang II administration decreased RBF and increased RVR in a dose-related manner in both sexes pretreated with vehicle or A779 (Pdose < 0.0001), but in vehicle pretreated groups, RBF and RVR responses were different between male and female rats (Pgroup < 0.05). AT1R blockade increased RBF and decreased RVR responses to Ang II, and no difference between the sexes was detected. Coblockades of AT1R and MasR receptors increased RBF response to Ang II significantly in males alone but not in females (Pgroup=0.04). Conclusion The impact of Ang II on RBF and RVR responses seems to be gender related with a greater effect on males, and this sex difference abolishes by Mas receptor blockade. However, the paradoxical role of dual losartan and A779 may provide the different receptor interaction in RAS between male and female rats.
Collapse
|
6
|
Branyan TE, Sohrabji F. Sex differences in stroke co-morbidities. Exp Neurol 2020; 332:113384. [PMID: 32585156 PMCID: PMC7418167 DOI: 10.1016/j.expneurol.2020.113384] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Males and females possess distinct biological differences that manifest in diverse risk profiles for acute and chronic diseases. A well-documented example of this is ischemic stroke. It has been demonstrated that older females have greater prevalence of, and worse outcome after, ischemic stroke than do males and younger females. Loss of estrogen after menopause is heavily implicated as a contributing factor for this phenomenon; however, there is mounting evidence to suggest that certain risk factors tend to occur more often in older females, such as hypertension and atrial fibrillation, while others more adversely affect females than they do males, such as diabetes and smoking. Sex-specific risk factors, such as oral contraceptive use and menopause, could also contribute to the discrepancy in stroke prevalence and outcome. Additionally, there is evidence to suggest that females tend to present with more nontraditional symptoms of acute stroke than do males, making it more difficult for clinicians to correctly identify the occurrence of a stroke, which may delay the administration of thrombolytic intervention. Finally, certain sociodemographic factors, such as the fact that females were more likely to live alone prior to stroke, may contribute to poorer recovery in females. This review will explore the various co-morbidities and sociodemographic factors that contribute to the greater prevalence of and poorer outcome after stroke in older females and will highlight the critical need for considering sex as a predisposing biological variable in stroke studies.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, College Station, TX 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, USA; Texas A&M Institute for Neuroscience, College Station, TX 77840, USA.
| |
Collapse
|
7
|
He FJ, Tan M, Ma Y, MacGregor GA. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75:632-647. [PMID: 32057379 DOI: 10.1016/j.jacc.2019.11.055] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
There is strong evidence for a causal relationship between salt intake and blood pressure. Randomized trials demonstrate that salt reduction lowers blood pressure in both individuals who are hypertensive and those who are normotensive, additively to antihypertensive treatments. Methodologically robust studies with accurate salt intake assessment have shown that a lower salt intake is associated with a reduced risk of cardiovascular disease, all-cause mortality, and other conditions, such as kidney disease, stomach cancer, and osteoporosis. Multiple complex and interconnected physiological mechanisms are implicated, including fluid homeostasis, hormonal and inflammatory mechanisms, as well as more novel pathways such as the immune response and the gut microbiome. High salt intake is a top dietary risk factor. Salt reduction programs are cost-effective and should be implemented or accelerated in all countries. This review provides an update on the evidence relating salt to health, with a particular focus on blood pressure and cardiovascular disease, as well as the potential mechanisms.
Collapse
Affiliation(s)
- Feng J He
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Monique Tan
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Graham A MacGregor
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Tahaei E, Coleman R, Saritas T, Ellison DH, Welling PA. Distal convoluted tubule sexual dimorphism revealed by advanced 3D imaging. Am J Physiol Renal Physiol 2020; 319:F754-F764. [PMID: 32924546 DOI: 10.1152/ajprenal.00441.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is more abundant in kidneys of female subjects than of male subjects. Because morphological remodeling of the distal convoluted tubule (DCT) is dependent on NCC activity, it has been generally assumed that there is a corresponding sexual dimorphism in the structure of the DCT, leading to a larger female DCT. Until now, this has never been directly examined. Here, optical clearing techniques were combined with antibody labeling of DCT segment markers, state-of-the-art high-speed volumetric imaging, and analysis tools to visualize and quantify DCT morphology in male and female mice and study the DCT remodeling response to furosemide. We found an unexpected sex difference in the structure of the DCT. Compared with the male mice, female mice had a shorter DCT, a higher cellular density of NCC, and a greater capacity to elongate in response to loop diuretics. Our study revealed a sexual dimorphism of the DCT. Female mice expressed a greater density of NCC transporters in a shorter structure to protect Na+ balance in the face of greater basal distal Na+ delivery yet have a larger reserve and structural remodeling capacity to adapt to unique physiological stresses. These observations provide insight into mechanisms that may drive sex differences in the therapeutic responses to diuretics.
Collapse
Affiliation(s)
- Ebrahim Tahaei
- Division of Nephrology, Department of Medicine, and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Coleman
- Division of Nephrology, Department of Medicine, and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Turgay Saritas
- Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health and Science University and Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Seeley A, Prynn J, Perera R, Street R, Davis D, Etyang AO. Pharmacotherapy for hypertension in Sub-Saharan Africa: a systematic review and network meta-analysis. BMC Med 2020; 18:75. [PMID: 32216794 PMCID: PMC7099775 DOI: 10.1186/s12916-020-01530-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The highest burden of hypertension is found in Sub-Saharan Africa (SSA) with a threefold greater mortality from stroke and other associated diseases. Ethnicity is known to influence the response to antihypertensives, especially in black populations living in North America and Europe. We sought to outline the impact of all commonly used pharmacological agents on both blood pressure reduction and cardiovascular morbidity and mortality in SSA. METHODS We used similar criteria to previous large meta-analyses of blood pressure agents but restricted results to populations in SSA. Quality of evidence was assessed using a risk of bias tool. Network meta-analysis with random effects was used to compare the effects across interventions and meta-regression to explore participant heterogeneity. RESULTS Thirty-two studies of 2860 participants were identified. Most were small studies from single, urban centres. Compared with placebo, any pharmacotherapy lowered SBP/DBP by 8.51/8.04 mmHg, and calcium channel blockers (CCBs) were the most efficacious first-line agent with 18.46/11.6 mmHg reduction. Fewer studies assessing combination therapy were available, but there was a trend towards superiority for CCBs plus ACE inhibitors or diuretics compared to other combinations. No studies examined the effect of antihypertensive therapy on morbidity or mortality outcomes. CONCLUSION Evidence broadly supports current guidelines and provides a clear rationale for promoting CCBs as first-line agents and early initiation of combination therapy. However, there is a clear requirement for more evidence to provide a nuanced understanding of stroke and other cardiovascular disease prevention amongst diverse populations on the continent. TRIAL REGISTRATION PROSPERO, CRD42019122490. This review was registered in January 2019.
Collapse
Affiliation(s)
- Anna Seeley
- Medical Research Council Unit Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London, UK.
- Nuffiend Department of Primary Health Care Sciences, Woodstock Road, Oxford, OX2 6GG, UK.
| | | | - Rachel Perera
- Medical Research Council Unit Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London, UK
| | - Rebecca Street
- Medical Research Council Unit Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London, UK
| | - Daniel Davis
- Medical Research Council Unit Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, University College London, London, UK
| | - Anthony O Etyang
- Department of Epidemiology and Demography, KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
10
|
Abstract
OBJECTIVE Epidemiological studies confirm that hypertensive patients respond differently to renin-angiotensin system (RAS) inhibition depending on their gender. The aim of present work is to focus on sex-dependent differences in RAS regulation under conditions of increased salt intake. METHOD To investigate RAS, we measured the expression of angiotensinogen (Agt) mRNA, angiotensin receptor type 1 (AT1) mRNA and mitochondria assembly receptor (MasR) in the liver of rats under control conditions and after feeding with a salt diet (2% NaCl). In parallel, vascular endothelial growth factor A (VEGF-A) mRNA was analyzed. RESULTS Regression analysis revealed sex-dependent differences in the correlation between mRNA expression of AT1 and that of Agt, MasR and VEGF-A in both groups. There was a significant negative correlation between AT1 and Agt mRNA expression in the male control group, but this correlation disappeared in males exposed to a salt diet. In females, AT1 and Agt expression correlated only in the group exposed to the salt diet. In control males, there was a borderline trend to correlation between AT1 and MasR mRNA expression. The correlation between AT1 and VEGF-A mRNA expression was significant only in the control females, however, after exposure to a salt diet, this correlation diminished. CONCLUSIONS We hypothesize that RAS components expression is compensated differently in males and females. The observed loss of compensatory relationships in RAS between AT1 and Agt and AT1 and MasR in male rats under a salt diet can contribute to the differences observed in human with hypertension associated with an unhealthy diet.
Collapse
|
11
|
Leete J, Layton AT. Sex-specific long-term blood pressure regulation: Modeling and analysis. Comput Biol Med 2018; 104:139-148. [PMID: 30472496 DOI: 10.1016/j.compbiomed.2018.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/17/2023]
Abstract
Hypertension is a global health challenge: it affects one billion people worldwide and is estimated to account for >60% of all cases or types of cardiovascular disease. In part because sex differences in blood pressure regulation mechanisms are not sufficiently well understood, fewer hypertensive women achieve blood pressure control compared to men, even though compliance and treatment rates are generally higher in women. Thus, the objective of this study is to identify which factors contribute to the sexual dimorphism in response to anti-hypertensive therapies targeting the renin angiotensin system (RAS). To accomplish that goal, we develop sex-specific blood pressure regulation models. Sex differences in the RAS, baseline adosterone level, and the reactivity of renal sympathetic nervous activity (RSNA) are represented. A novel aspect of the model is the representation of sex-specific vasodilatory effect of the bound angiotensin II type two receptor (AT2R-bound Ang II) on renal vascular resistance. Model simulations suggest that sex differences in RSNA are the largest cause of female resistance to developing hypertension due to the direct influence of RSNA on afferent arteriole resistance. Furthermore, the model predicts that the sex-specific vasodilatory effects of AT2R-bound Ang II on renal vascular resistance may explain the higher effectiveness of angiotensin receptor blockers in treating hypertensive women (but not men), compared to angiotensin converting enzyme inhibitors.
Collapse
Affiliation(s)
- Jessica Leete
- Computational Biology & Bioinformatics Program, Duke University, Durham, NC, USA.
| | - Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, NC, USA; Department of Applied Mathematics and School of Pharmacy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
12
|
van der Wel MC, Biermans M, Akkermans R, Lenders JWM, van Weel C, Deinum J. Patient characteristics do not predict the individual response to antihypertensive medication: a cross-over trial. Fam Pract 2018; 35:67-73. [PMID: 28968870 DOI: 10.1093/fampra/cmx075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND International guidelines on hypertension management do not agree on whether patient characteristics can be used for the first choice of treatment of uncomplicated essential hypertension. OBJECTIVE We wanted to identify predictive patient characteristics to the response of two different classes of antihypertensive drugs in patients with newly diagnosed hypertension in primary care. METHODS We conducted a prospective, open label, blinded endpoint cross-over trial in 120 patients with a new diagnosis of hypertension from 10 family practices. Patients received 4 weeks of 12.5 mgr hydrochlorothiazide once daily and 4 weeks of 80 mgr valsartan once daily, each followed by a 4-week washout. The sequence of drugs was randomized. Age, sex and menopausal state were recorded at run in and 24 h ambulatory blood pressure, office blood pressure, plasma renin concentration, NT-proBNP, potassium, estimated glomerular filtration rate, urinary albumin, body mass index and waist circumference at each regimen change. The difference in systolic blood pressure response between both study drugs, calculated from mean daytime ambulatory blood pressures, was the main outcome measure. RESULTS Ninety-eight patients (52% female; median age 53 years) were eligible for per-protocol-analysis. None of the studied variables were predictive for the difference in systolic blood pressure response. Individual systolic blood pressure responses ranged from an increase by 18 mmHg to a decrease of 39 mmHg. CONCLUSION In a relevant group of primary care patients with newly diagnosed hypertension, we were unable to detect predictors of treatment response. This study rather supports the United States and European guidelines than the United Kingdom and Dutch guidelines on hypertension.
Collapse
Affiliation(s)
- Mark C van der Wel
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marion Biermans
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinier Akkermans
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques W M Lenders
- Division of General Internal Medicine, Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Chris van Weel
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Health Services Research and Policy, Australian National University, Canberra, Australia
| | - Jaap Deinum
- Division of General Internal Medicine, Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Kitada K, Nishiyama A. Sodium intake affects sex difference in aldosterone concentration. Am J Physiol Renal Physiol 2017; 313:F957-F958. [DOI: 10.1152/ajprenal.00353.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
14
|
Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci 2016; 159:20-29. [PMID: 26939577 DOI: 10.1016/j.lfs.2016.02.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 02/08/2023]
Abstract
Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.
Collapse
|
15
|
Sexually dimorphic proteinuria in Wistar rats: Relevance to clinical models. PATHOPHYSIOLOGY 2016; 23:51-9. [DOI: 10.1016/j.pathophys.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
|
16
|
Toering TJ, van der Graaf AM, Visser FW, Buikema H, Navis G, Faas MM, Lely AT. Gender differences in response to acute and chronic angiotensin II infusion: a translational approach. Physiol Rep 2015; 3:3/7/e12434. [PMID: 26149279 PMCID: PMC4552520 DOI: 10.14814/phy2.12434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Women with renal disease progress at a slower rate to end stage renal disease than men. As angiotensin II has both hemodynamic and direct renal effects, we hypothesized that the female protection may result from gender differences in responses to angiotensin II. Therefore, we studied gender differences in response to angiotensin II, during acute (human) and chronic (rats) angiotensin II administration. In young healthy men (n = 18) and women (n = 18) we studied the responses of renal hemodynamics (125I-iothalamate and 131I-Hippuran) and blood pressure to graded angiotensin II infusion (0.3, 1.0, and 3.0 ng/kg/min for 1 h). Men had increased responses of diastolic blood pressure (P = 0.01), mean arterial pressure (P = 0.05), and a more pronounced decrease in effective renal plasma flow (P = 0.009) than women. We measured the changes in proteinuria and blood pressure in response to chronic administration (200 ng/kg/min for 3 weeks) of angiotensin II in rats. Male rats had an increased response of proteinuria compared with females (GEE analysis, P = 0.001). Male, but not female, angiotensin II-treated rats had increased numbers of renal interstitial macrophages compared to sham-treated rats (P < 0.001). In conclusion, gender differences are present in the response to acute and chronic infusion of angiotensin II. Difference in angiotensin II sensitivity could play a role in gender differences in progression of renal disease.
Collapse
Affiliation(s)
- Tsjitske J Toering
- Division of Nephrology, Department of Internal Medicine, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - Anne Marijn van der Graaf
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert W Visser
- Division of Nephrology, Department of Internal Medicine, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrik Buikema
- Department of Clinical Pharmacology, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Division of Nephrology, Department of Internal Medicine, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| | - A Titia Lely
- Department of Obstetrics & Gynaecology, University of Groningen University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Pessôa BS, Slump DE, Ibrahimi K, Grefhorst A, van Veghel R, Garrelds IM, Roks AJM, Kushner SA, Danser AHJ, van Esch JHM. Angiotensin II type 2 receptor- and acetylcholine-mediated relaxation: essential contribution of female sex hormones and chromosomes. Hypertension 2015; 66:396-402. [PMID: 26056343 DOI: 10.1161/hypertensionaha.115.05303] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)-induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor-mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y(-)) from the Y chromosome, allowing XY(-) mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY(-)Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY(-)Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY(-) female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Denise E Slump
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Khatera Ibrahimi
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid M Garrelds
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - Steven A Kushner
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands.
| | - Joep H M van Esch
- From the Division of Vascular Medicine and Pharmacology (B.S.P., K.I., R.v.V., I.M.G., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Division of Endocrinology, Department of Internal Medicine (A.G.), and Department of Psychiatry (D.E.S., S.A.K.), Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Evolution of clinical profile, treatment and blood pressure control in treated hypertensive patients according to the sex from 2002 to 2010 in Spain. J Hypertens 2015; 33:1098-107. [DOI: 10.1097/hjh.0000000000000502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Sandberg K, Umans JG. Recommendations concerning the new U.S. National Institutes of Health initiative to balance the sex of cells and animals in preclinical research. FASEB J 2015; 29:1646-52. [PMID: 25713032 PMCID: PMC6137686 DOI: 10.1096/fj.14-269548] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/11/2022]
Abstract
The U.S. National Institutes of Health (NIH) announced last May that steps will be taken to address the over-reliance on male cells and animals in preclinical research. To further address this announcement, in September 2014, scientists with varying perspectives came together at Georgetown University to discuss the following questions. (1) What metrics should the NIH use to assess tangible progress on policy changes designed to address the over-reliance on male cells and animals in preclinical research? (2) How effective can education be in reducing the over-reliance on male cells and animals in preclinical research and what educational initiatives sponsored by the NIH would most likely effect change? (3) What criteria should the NIH use to determine rigorously defined exceptions to the future proposal requirement of a balance of male and female cells and animals in preclinical studies? (4) What additional strategies in addition to proposal requirements should NIH use to reduce the overreliance of male cells and animals in preclinical research? The resulting consensus presented herein includes input from researchers not only from diverse disciplines of basic and translational science including biology, cell and molecular biology, biochemistry, physiology, pharmacology, neuroscience, cardiology, endocrinology, nephrology, psychiatry, and obstetrics and gynecology, but also from recognized experts in publishing, industry, advocacy, science policy, clinical medicine, and population health. We offer our recommendations to aid the NIH as it selects, implements, monitors, and optimizes strategies to correct the over-reliance on male cells and animals in preclinical research.
Collapse
Affiliation(s)
- Kathryn Sandberg
- *Center for the Study of Sex Differences in Health, Aging and Disease and Division of Nephrology and Hypertension, Department of Medicine, and Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, DC, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA; and MedStar Health Research Institute, Hyattsville, Maryland, USA
| | - Jason G Umans
- *Center for the Study of Sex Differences in Health, Aging and Disease and Division of Nephrology and Hypertension, Department of Medicine, and Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University, Washington, DC, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA; and MedStar Health Research Institute, Hyattsville, Maryland, USA
| |
Collapse
|
20
|
Sullivan JC, Rodriguez-Miguelez P, Zimmerman MA, Harris RA. Differences in angiotensin (1-7) between men and women. Am J Physiol Heart Circ Physiol 2015; 308:H1171-6. [PMID: 25659489 DOI: 10.1152/ajpheart.00897.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
UNLABELLED In experimental animal models of hypertension, angiotensin (1-7) [ANG-(1-7)] is higher in females compared with males; however, it is less clear whether the same applies to humans. Therefore, this study sought to compare circulating concentrations of ANG-(1-7) in apparently healthy men and women under normal physiological conditions. With the use of a cross-sectional experimental design, blood was collected in EDTA anticoagulant from 42 volunteers (21 men and 21 women; and age range, 19-48 yr) for analysis of plasma concentrations of ANG-(1-7) and ANG II. Blood pressure was measured and vascular endothelial function was determined (n = 25) using the brachial artery flow-mediated dilation (FMD) test. As a result, women exhibited a higher circulating concentration of ANG-(1-7) (P = 0.04) compared with men, whereas values of ANG II were similar between groups. Baseline arterial diameter, peak diameter, and shear rate were significantly greater (P < 0.02) in men compared with women. No significant differences in FMD, FMD normalized for shear, or time to peak dilation were observed between men and women. In addition, a positive correlation between ANG-(1-7) and FMD (P = 0.04) and negative association between ANG-(1-7) with ANG II (P = 0.01) were only identified in men, whereas a positive relationship between ANG-(1-7) and diastolic blood pressure (P = 0.03) was observed in women. IN CONCLUSION , women exhibit significantly higher plasma concentrations of ANG-(1-7) compared with men. In addition, this study describes a relationship between ANG-(1-7), vascular function, and diastolic blood pressure that appears to be sex dependent.
Collapse
Affiliation(s)
| | - Paula Rodriguez-Miguelez
- Division of Clinical Translational Science, Georgia Prevention Institute, Department of Pediatrics, Georgia Regents University, Augusta, Georgia; and
| | | | - Ryan A Harris
- Division of Clinical Translational Science, Georgia Prevention Institute, Department of Pediatrics, Georgia Regents University, Augusta, Georgia; and Sport and Exercise Science Research Institute, University of Ulster, Jordanstown, Northern Ireland, United Kingdom
| |
Collapse
|
21
|
Pechère-Bertschi A, Maillard M, Bischof P, Fathi M, Burnier M. Hemodynamic effect of angiotensin II receptor blockade in postmenopausal women on a high-sodium diet: A double-blind, randomized, placebo-controlled study. Curr Ther Res Clin Exp 2014; 69:467-79. [PMID: 24692821 DOI: 10.1016/j.curtheres.2008.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hypertension becomes increasingly prevalent after menopause. Postmenopausal women are more responsive to salt than premenopausal women, and they have been reported to develop marked renal vasoconstriction on a high-sodium diet. OBJECTIVE The aim of this study was to assess whether angiotensin II receptor blockade can restore a normal pattern of renal response to salt in postmenopausal women on a high-sodium diet. We also assessed segmental renal sodium handling in that population. METHODS Normotensive and hypertensive postmenopausal women not receiving hormone replacement therapy were enrolled in this prospective, double-blind, placebo-controlled, crossover study. They were assigned to receive irbesartan 150 mg or placebo for 6 weeks; the sequence in which they received irbesartan or placebo was randomized. During the last week of treatment, they received a high-sodium diet (250 mmol/d). Ambulatory blood pressure (ABP), glomerular filtration rate (GFR), and effective renal plasma flow (ERPF) were measured using sinistrin and para-amino-hippurate clearances. Renal sodium handling was assessed by measuring endogenous lithium clearance on day 7 of the high-salt diet. RESULTS Nineteen women (mean age, 54.7 years; range, 43-72 years; 7 normotensive subjects [mean age, 53.4 years; range, 47-61 years] and 12 hypertensive subjects [mean age, 55.4 years; range, 43-72 years]) were included in the study. When the data for all 19 subjects were pooled, ABP was significantly lower with irbesartan than placebo both during the day (120 [3]/79 [2] vs 127 [3]/85 [2] mm Hg; both, P < 0.01) and at night (systolic BP, 107 [4] vs 111 [4] mm Hg [P < 0.01] and diastolic BP, 71 [2] vs 75 [2] mm Hg [P < 0.05]). Compared with placebo, irbesartan was not associated with a significant change in GFR in either the normotensive or the hypertensive women. When the data for all 19 subjects were pooled, irbesartan was associated with a significant increase in ERPF compared with placebo (372 [21] vs324 [18] mL/min · 1.73 m(2); P < 0.05). When the hypertensive and normotensive women were considered separately, the effect was more pronounced in the hypertensive women than in the normotensive women, but the changes did not reach statistical significance. When the data for all subjects were pooled, irbesartan was associated with a significant increase in daytime urinary sodium excretion compared with placebo (135 [13] vs 106 [13] μmol/min; P < 0.05) and a significant decrease at night (109 [13] vs 136 [19] μmol/min; P < 0.05). Fractional excretion of lithium (FELi), an inverse marker of proximal sodium reabsorption, increased significantly during the daytime with irbesartan compared with placebo (47% [6.5%] vs 35% [4.7%]; P < 0.05). At nighttime, FELi was significantly higher in the hypertensive subjects receiving irbesartan compared with placebo (43% [7.2%] vs 29% [6.5%]; P < 0.05). The fractional distal reabsorption of sodium did not change significantly with irbesartan compared with placebo. CONCLUSIONS The results from this study suggest that angiotensin II receptor blockade had a favorable impact on BP, renal hemodynamics, and renal sodium handling in these salt-replete postmenopausal women. Blockade of the renin-angiotensin system restored the normal pattern of renal response to high sodium intake in these women.
Collapse
Affiliation(s)
- Antoinette Pechère-Bertschi
- Primary Care and Endocrinology, Diabetology and Nutrition Services, University Hospital, Geneva, Switzerland
| | - Marc Maillard
- Nepbrology Service, University Hospital, Lausanne, Switzerland
| | - Paul Bischof
- Reproduction Laboratory, University Hospital, Geneva, Switzerland
| | - Marc Fathi
- Chemical Laboratory, University Hospital, Geneva, Switzerland
| | - Michel Burnier
- Nepbrology Service, University Hospital, Lausanne, Switzerland
| |
Collapse
|
22
|
Abstract
Many patients with hypertension require two or more antihypertensive drugs with complementary mechanisms of action to lower their blood pressure and attain the therapeutic goals specified in internationally accepted guidelines. Yet, these latter guidelines offer the choice of fixed dose combinations as possible first-step therapies. The angiotensin II type 1-receptor antagonist telmisartan and the diuretic hydrochlorothiazide are two antihypertensive agents that have a well-recognized clinical efficacy. Their combination was shown in randomized, controlled trials to be more effective than each agent alone in lowering blood pressure, due to a dual and synergistic mechanism. Indeed, combining telmisartan with hydrochlorothiazide enhances the antihypertensive efficacy of telmisartan in almost two-thirds of hypertensive patients with mild-to-moderate hypertension. The pharmacokinetics and -dynamics of the combination are similar to monotherapy, and the addition of hydrochlorothiazide to telmisartan does not modify the excellent tolerability profile of the drug.
Collapse
Affiliation(s)
- Marc Maillard
- Service de Néphrologie, Rue du Bugnon 17, CHUV 1011 Lausanne, Switzerland
| | | |
Collapse
|
23
|
Abstract
Hypertension is a complex and multifaceted disease, and there are well established sex differences in many aspects of blood pressure (BP) control. The intent of this review is to highlight recent work examining sex differences in the molecular mechanisms of BP control in hypertension to assess whether the "one-size-fits-all" approach to BP control is appropriate with regard to sex.
Collapse
|
24
|
Sampson AK, Jennings GLR, Chin-Dusting JPF. Y are males so difficult to understand?: a case where "X" does not mark the spot. Hypertension 2012; 59:525-31. [PMID: 22291445 DOI: 10.1161/hypertensionaha.111.187880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amanda K Sampson
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004 Australia.
| | | | | |
Collapse
|
25
|
Sex-related differences in pharmacokinetics and pharmacodynamics of anti-hypertensive drugs. Hypertens Res 2011; 35:245-50. [DOI: 10.1038/hr.2011.189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Wong MCS, Lau RKC, Jiang JY, Griffiths SM. Discontinuation of angiotensin-converting enzyme inhibitors: a cohort study. J Clin Pharm Ther 2011; 37:335-41. [DOI: 10.1111/j.1365-2710.2011.01300.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
He FJ, Burnier M, MacGregor GA. Nutrition in cardiovascular disease: salt in hypertension and heart failure. Eur Heart J 2011; 32:3073-80. [DOI: 10.1093/eurheartj/ehr194] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol 2011; 24:687-98. [PMID: 20608988 DOI: 10.1111/j.1472-8206.2010.00854.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Premenopausal women are protected to some extent from cardiovascular and kidney diseases. Because this protection weakens after menopause, sex hormones are believed to play an important role in the pathogenesis of cardiovascular and kidney diseases. The cardiovascular system and the kidneys are regulated by the renin-angiotensin-aldosterone system (RAAS), which in turn, appears to be regulated by sex hormones. In general, oestrogen increases angiotensinogen levels and decreases renin levels, angiotensin-converting enzyme (ACE) activity, AT(1) receptor density, and aldosterone production. Oestrogen also activates counterparts of the RAAS such as natriuretic peptides, AT(2) receptor density, and angiotensinogen (1-7). Progesterone competes with aldosterone for mineralocorticoid receptor. Less is known about androgens, but testosterone seems to increase renin levels and ACE activity. These effects of sex hormones on the RAAS can explain at least some of the gender differences in cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Kimiaki Komukai
- Division of Cardiology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | |
Collapse
|
29
|
Messerli FH, Makani H, Benjo A, Romero J, Alviar C, Bangalore S. Antihypertensive Efficacy of Hydrochlorothiazide as Evaluated by Ambulatory Blood Pressure Monitoring. J Am Coll Cardiol 2011; 57:590-600. [PMID: 21272751 DOI: 10.1016/j.jacc.2010.07.053] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/15/2022]
Affiliation(s)
- Franz H Messerli
- St. Luke's Roosevelt Hospital, Columbia University College of Physicians and Surgeons, New York, New York 10019, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Electronic monitoring of patient adherence to oral antihypertensive medical treatment: a systematic review. J Hypertens 2009; 27:1540-51. [DOI: 10.1097/hjh.0b013e32832d50ef] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Sex differences in ambulatory blood pressure monitoring. Am J Med 2008; 121:509-14. [PMID: 18501232 DOI: 10.1016/j.amjmed.2008.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/19/2008] [Indexed: 11/23/2022]
Abstract
PURPOSE Referral to ambulatory blood pressure monitoring may have bearing upon blood pressure control and prognosis. We describe sex-related differences in referral for ambulatory monitoring and their prognostic impact. METHODS Between 1991 and 2005, 3957 patients were monitored in our ambulatory monitoring service, of whom 2114 (53%) were women. Demographic and clinical data were analyzed according to sex. RESULTS Age (58+/-15 vs 52+/-17 years, respectively) and body mass index (27.5+/-4.9 vs 26.9+/-4.0 kg/m(2), respectively) were higher in women than men. Treatment for hypertension was more prevalent in women (62% vs 53%, respectively). Clinic systolic blood pressure (148+/-24 vs 146+/-20 mm Hg, respectively) and clinic pulse pressure (65+/-22 vs 59+/-18 mm Hg, respectively) were higher in women compared with men. In women, the white-coat effect was increased, compared with men; 5.2+/-12.4% vs 1.5+/-10.7% systolic, and 5.4+/-11.2% vs 3.6+/-10.3% diastolic. Consequently, women had lower ambulatory blood pressure than men. In women, 24-hour blood pressure was 136+/-17/76+/-10 vs 140+/-15/81+/-10 mm Hg in men, awake blood pressure 141+/-17/80+/-11 vs 144+/-15/84+/-10 mm Hg, and sleep blood pressure was 125+/-19/67+/-10 vs 127+/-18/71+/-11 mm Hg. Age-adjusted ambulatory blood pressure also was lower in women. Ambulatory heart rate was higher in women (P <.0001). Kaplan-Meier survival did not differ by sex (P=.66), despite older age and higher clinic blood pressure. CONCLUSIONS The results might imply that referral was driven by the physicians' overall patient risk perception. The greater magnitude of white-coat effect in women, and correspondingly lower ambulatory blood pressure, might in part account for similar mortality in the face of older age and higher clinic blood pressure.
Collapse
|
32
|
Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1220-6. [PMID: 18287217 DOI: 10.1152/ajpregu.00864.2007] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this review is to examine sex differences in response to stimulation and inhibition of the renin-angiotensin system (RAS). The RAS plays a prominent role in the development of chronic renal disease, and there are known sex differences not only in the expression level of components of the RAS but also in how males and females respond to perturbations of the RAS. In men, renal injury increases in parallel with increased activation of the RAS, while in women, increases in ANG II do not necessarily translate into increases in renal injury. Moreover, both epidemiological and experimental studies have noted sex differences in the therapeutic benefits following angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment. Despite these differences, RAS inhibitors are the most commonly prescribed drugs for the treatment of chronic renal disease, irrespective of sex. This review will examine how males and females respond to stimulation and inhibition of the RAS, with a focus on renal disease.
Collapse
Affiliation(s)
- Jennifer C Sullivan
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
33
|
Eap CB, Bochud M, Elston RC, Bovet P, Maillard MP, Nussberger J, Schild L, Shamlaye C, Burnier M. CYP3A5 and ABCB1 genes influence blood pressure and response to treatment, and their effect is modified by salt. Hypertension 2007; 49:1007-14. [PMID: 17372036 DOI: 10.1161/hypertensionaha.106.084236] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The permeability-glycoprotein efflux-transporter encoded by the multidrug resistance 1 (ABCB1) gene and the cytochromes P450 3A4/5 encoded by the CYP3A4/5 genes are known to interact in the transport and metabolism of many drugs. Recent data have shown that the CYP3A5 genotypes influence blood pressure and that permeability-glycoprotein activity might influence the activity of the renin-angiotensin system. Hence, these 2 genes may contribute to blood pressure regulation in humans. We analyzed the association of variants of the ABCB1 and CYP3A5 genes with ambulatory blood pressure, plasma renin activity, plasma aldosterone, endogenous lithium clearance, and blood pressure response to treatment in 72 families (373 individuals; 55% women; mean age: 46 years) of East African descent. The ABCB1 and CYP3A5 genes interact with urinary sodium excretion in their effect on ambulatory blood pressure (daytime systolic: P=0.05; nighttime systolic and diastolic: P<0.01), suggesting a gene-gene-environment interaction. The combined action of these genes is also associated with postproximal tubular sodium reabsorption, plasma renin activity, plasma aldosterone, and with an altered blood pressure response to the angiotensin-converting enzyme inhibitor lisinopril (P<0.05). This is the first reported association of the ABCB1 gene with blood pressure in humans and demonstration that genes encoding for proteins metabolizing and transporting drugs and endogenous substrates contribute to blood pressure regulation.
Collapse
Affiliation(s)
- Chin B Eap
- Unité de Biochimie et Psychopharmacologie Clinique, Centre des Neurosciences Psychiatriques, Département de Psychiatrie-Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|