1
|
Browne S, Petit N, Quondamatteo F. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Cell Tissue Res 2024; 395:133-145. [PMID: 38051351 DOI: 10.1007/s00441-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.
Collapse
Affiliation(s)
- Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, H91 W2TY, Galway, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
| |
Collapse
|
2
|
Feldman D. Designing a Biomaterial Approach to Control the Adaptive Response to a Skin Injury. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6366. [PMID: 36143676 PMCID: PMC9503963 DOI: 10.3390/ma15186366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The goal of this review is to explain how to design a biomaterial approach to control the adaptive response to injury, with an emphasis on skin wounds. The strategies will be selected based on whether they have a reasonable probability of meeting the desired clinical outcome vs. just comparing the pros and cons of different strategies. To do this, the review will look at the normal adaptive response in adults and why it does not meet the desired clinical outcome in most cases. In addition, the adaptive response will be looked at in cases where it does meet the clinical performance requirements including animals that regenerate and for fetal wound healing. This will lead to how biomaterials can be used to alter the overall adaptive response to allow it to meet the desired clinical outcome. The important message of the review is that you need to use the engineering design process, not the scientific method, to design a clinical treatment. Also, the clinical performance requirements are functional, not structural. The last section will give some specific examples of controlling the adaptive response for two skin injuries: burns and pressure ulcers. For burns, it will cover some preclinical studies used to justify a clinical study as well as discuss the results of a clinical study using this system. For pressure ulcers, it will cover some preclinical studies for two different approaches: electrical stimulation and degradable/regenerative scaffolds. For electrical stimulation, the results of a clinical study will be presented.
Collapse
Affiliation(s)
- Dale Feldman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Farhadihosseinabadi B, Salimi M, Kazemi B, Samadikuchaksaraei A, Ghanbarian H, Mozafari M, Niknejad H. Inducing type 2 immune response, induction of angiogenesis, and anti-bacterial and anti-inflammatory properties make Lacto-n-Neotetraose (LNnT) a therapeutic choice to accelerate the wound healing process. Med Hypotheses 2020; 134:109389. [PMID: 31627122 DOI: 10.1016/j.mehy.2019.109389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
Abstract
The healing process of non-healing and full-thickness wounds is currently facing some serious challenges. In such ulcers, losing a large part of skin causes a chronic infection due to the entrance of various pathogens in the wound bed. Moreover, poor vascularization, uncontrolled inflammation, and delayed re-epithelialization increase the healing time in patients suffering from such wounds. In this light, tissue engineering provides a wide range of strategies using a variety of biomaterials, biofactors and stem cells to decrease the healing time and restore the function of the damaged site. A suitable wound healing agent should possess some critical parameters such as inducing re-epithelialization, anti-inflammatory and anti-bacterial properties, and angiogenic capability. The Lacto-n-Neotetraose (LNnT) with chemical formula C26H45NO21 is an oligosaccharide present in human milk and soluble antigens extracted from Schistosoma mansoni eggs. It is reported that LNnT induces type 2 immune response (Th2 immunity). Th2 immunity promotes re-epithelialization, angiogenesis and wound contraction by recruiting the cells which produce Th2-related cytokines. Moreover, LNnT shows some special characteristics such as angiogenic capability, anti-inflammatory, and anti-bacterial effects which can address the mentioned challenges in the treatment of non-healing and full-thickness wounds. Here, we hypothesize that utilizing LNnT is an appropriate biofactor which would improve the healing process in full-thickness and non-healing wounds.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), PO Box 14155-4777, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Goldstein RL, Tsui JM, Runyan G, Randolph MA, McCormack MC, Mihm MC, Redmond RW, Austen WG. Photochemical Tissue Passivation Prevents Contracture of Full Thickness Wounds in Mice. Lasers Surg Med 2019; 51:910-919. [DOI: 10.1002/lsm.23128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Rachel L. Goldstein
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Jane M. Tsui
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Gem Runyan
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Mark A. Randolph
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
- Wellman Center for Photomedicine, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Michael C. McCormack
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - Martin C. Mihm
- Department of Dermatology, Harvard Medical SchoolBrigham and Women's Hospital 75 Francis St Boston Massachusetts 02115
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| | - William G. Austen
- Division of Plastic and Recontructive Surgery, Department of Surgery, Harvard Medical SchoolMassachusetts General Hospital 55 Fruit Street Boston Massachusetts 02114
| |
Collapse
|
5
|
Feldman DS. Biomaterial Enhanced Regeneration Design Research for Skin and Load Bearing Applications. J Funct Biomater 2019; 10:E10. [PMID: 30691135 PMCID: PMC6462970 DOI: 10.3390/jfb10010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Biomaterial enhanced regeneration (BER) falls mostly under the broad heading of Tissue Engineering: the use of materials (synthetic and natural) usually in conjunction with cells (both native and genetically modified as well as stem cells) and/or biological response modifiers (growth factors and cytokines as well as other stimuli, which alter cellular activity). Although the emphasis is on the biomaterial as a scaffold it is also the use of additive bioactivity to enhance the healing and regenerative properties of the scaffold. Enhancing regeneration is both moving more toward regeneration but also speeding up the process. The review covers principles of design for BER as well as strategies to select the best designs. This is first general design principles, followed by types of design options, and then specific strategies for applications in skin and load bearing applications. The last section, surveys current clinical practice (for skin and load bearing applications) including limitations of these approaches. This is followed by future directions with an attempt to prioritize strategies. Although the review is geared toward design optimization, prioritization also includes the commercializability of the devices. This means a device must meet both the clinical performance design constraints as well as the commercializability design constraints.
Collapse
Affiliation(s)
- Dale S Feldman
- UAB, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham 35294, AL, USA.
| |
Collapse
|
6
|
The Feasibility of Using Pulsatile Electromagnetic Fields (PEMFs) to Enhance the Regenerative Ability of Dermal Biomaterial Scaffolds. J Funct Biomater 2018; 9:jfb9040066. [PMID: 30463198 PMCID: PMC6306936 DOI: 10.3390/jfb9040066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 11/16/2022] Open
Abstract
Degradable regenerative scaffolds usually require adjunctive treatment to meet the clinical healing performance requirements. This study was designed to look at pulsatile electromagnetic fields (PEMF) as an adjunctive therapy for these scaffolds in skin wounds; however, no scaffold was used in this study in order to isolate the effects of PEMF alone. In this study, New Zealand rabbits received four full-thickness defects with a size of 3 cm × 3 cm on the dorsolateral aspect. The rabbits in the treatment group were placed in a chamber and subjected to a PEMF at six different predetermined frequency and intensity combinations for 2 h a day for a 2-week period. At the end of the 2-week period, the animals were sacrificed and tissue samples were taken. Half of each tissue sample was used for histomorphometric analysis and the other half was for tensile testing. The study showed an increased healing response by all the PEMF treatments compared to that in the control, although different combinations led to increases in different aspects of the healing response. This suggests that although some treatments are better for the critical clinical parameter—healing rate, it might be beneficial to use treatments in the early stages to increase angiogenesis before the treatment is switched to the one best for the healing rate to get an even better haling rate.
Collapse
|
7
|
Abstract
There is substantial need for the replacement of tissues in the craniofacial complex due to congenital defects, disease, and injury. The field of tissue engineering, through the application of engineering and biological principles, has the potential to create functional replacements for damaged or pathologic tissues. Three main approaches to tissue engineering have been pursued: conduction, induction by bioactive factors, and cell transplantation. These approaches will be reviewed as they have been applied to key tissues in the craniofacial region. While many obstacles must still be overcome prior to the successful clinical restoration of tissues such as skeletal muscle and the salivary glands, significant progress has been achieved in the development of several tissue equivalents, including skin, bone, and cartilage. The combined technologies of gene therapy and drug delivery with cell transplantation will continue to increase treatment options for craniofacial cosmetic and functional restoration.
Collapse
Affiliation(s)
- E Alsberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109-2136, USA
| | | | | |
Collapse
|
8
|
Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:298-313. [PMID: 25517923 DOI: 10.1089/ten.teb.2014.0290] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling.
Collapse
Affiliation(s)
- Luis M Delgado
- 1Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Yves Bayon
- 2Covidien - Sofradim Production, Trévoux, France
| | - Abhay Pandit
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
9
|
Influence of Acidic Fibroblast Growth Factor on Bone Regeneration in Experimental Cranial Defects Using Spongostan and Bio-Oss as Protein Carriers. J Craniofac Surg 2013; 24:1507-14. [DOI: 10.1097/scs.0b013e31828f2469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
|
11
|
Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012; 25:349-70. [PMID: 22820962 DOI: 10.1097/01.asw.0000418541.31366.a3] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.
Collapse
|
12
|
Matsumoto G, Hoshino J, Kinoshita Y, Sugita Y, Kubo K, Maeda H, Ikada Y, Kinoshita Y. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: An experimental study in the dog. J Biomater Appl 2011; 27:485-93. [PMID: 22071349 DOI: 10.1177/0885328211414940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the effects of combining porous poly-lactic acid-co-glycolic acid-co-ε-caprolactone (PLGC) as a barrier membrane and collagen sponge containing basic fibroblast growth factor (bFGF) to promote bone regeneration in the canine mandible. In six beagle dogs, two lateral bone defects per side were created in the mandible. The lateral bone defects on the left side were treated with a PLGC membrane plus a collagen sponge containing bFGF. In half of these, the collagen sponge contained 50 µg of bFGF. In the other half, it contained 250 µg of bFGF. As a control, we treated the right-side bone defects in each animal with the same PLGC membrane but with a collagen sponge containing phosphate buffered saline. Computed tomography (CT) images were recorded at 3 and 6 months post-op to evaluate regeneration of the bone defects. After a healing period of 6 months, whole mandibles were removed for micro-CT and histological analyses. The post-op CT images showed that more bone had formed at all experimental sites than at control sites. At 3 months post-op, the volume of bone at defect sites covered with PLGC membrane plus 250 µg of bFGF was significantly greater than it was at defect sites covered with PLGC membrane plus 50 µg of bFGF. At 6 months post-op, however, this difference was smaller and not statistically significant. Micro-CT measurement showed that the volume of new bone regenerated at bone-defect sites, covered with PLGC membrane plus bFGF, was significantly greater than that of control sites. However, the presence or absence of bFGF in the collagen sponge did not significantly affect the bone density of new bone. These results suggest that the macroporous bioresorbable PLGC membrane plus collagen sponge containing bFGF effectively facilitates healing in GBR procedures.
Collapse
Affiliation(s)
- Goichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580, Japan
- Foundation for Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Jyunichi Hoshino
- Institute for Frontier Oral Science, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Yasuhiko Kinoshita
- Foundation for Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yoshito Ikada
- Department of Indoor Environmental Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Yukihiko Kinoshita
- Foundation for Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
13
|
Lammers G, Verhaegen PD, Ulrich MM, Schalkwijk J, Middelkoop E, Weiland D, Nillesen ST, Van Kuppevelt TH, Daamen WF. An Overview of Methods for the In Vivo Evaluation of Tissue-Engineered Skin Constructs. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:33-55. [DOI: 10.1089/ten.teb.2010.0473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gerwen Lammers
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pauline D.H.M. Verhaegen
- Association of Dutch Burn Centres, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive, and Hand Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Magda M.W. Ulrich
- Department of Plastic, Reconstructive, and Hand Surgery, Academic Medical Centre, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU Medical Center, Amsterdam, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU Medical Center, Amsterdam, The Netherlands
| | - Daniela Weiland
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Suzan T.M. Nillesen
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Toin H. Van Kuppevelt
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Willeke F. Daamen
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Hong KS, Kim EC, Bang SH, Chung CH, Lee YI, Hyun JK, Lee HH, Jang JH, Kim TI, Kim HW. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res A 2010; 94:1187-94. [PMID: 20694985 DOI: 10.1002/jbm.a.32799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the bone regeneration potential of a novel hybrid membrane consisting of collagen and nano-bioactive glass (nBG) incorporating basic fibroblast growth factor (FGF2) for use in guided bone regeneration. nBG was added to a reconstitution of collagen at a concentration of 30%, and the hybrid was formulated into a thin membrane. FGF2 (50 microg/ml) was adsorbed to the hybrid membrane. This level of FGF2 was found to be the optimal concentration to stimulate osteoblastic differentiation in vitro. Three membrane groups, including pure collagen, collagen-nBG hybrid and its combination with FGF2 were implanted within a rat calvarium defect (phi = 5 mm) for a period of 3 weeks. Histomorphometric analysis was carried out to evaluate the bone regeneration within the defect. The results showed that the defect in the collagen-nBG-FGF2 membrane was recovered almost completely, while partial recovery was observed in the other membrane groups (collagen and collagen-BG). However, there was little defect recovery in the blank control. The new bone formation was as high as approximately 60, approximately 45, and approximately 30% of the defect treated with the collagen-nBG-FGF2, collagen-BG, and collagen, respectively, whilst only 4% of new bone was observed in the blank control. Overall, the nBG was shown to stimulate bone formation of the collagen membrane, and FGF2 synergistically accelerated the bone regeneration within a rat calvarium defect.
Collapse
Affiliation(s)
- Ki Seok Hong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Quaglia F. Bioinspired tissue engineering: The great promise of protein delivery technologies. Int J Pharm 2008; 364:281-97. [DOI: 10.1016/j.ijpharm.2008.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
|
16
|
Lee HW, Reddy MS, Geurs N, Palcanis KG, Lemons JE, Rahemtulla FG, Ho KJ, Chen DT, Davis CR, Feldman DS. Efficacy of Platelet-Rich Plasma on Wound Healing in Rabbits. J Periodontol 2008; 79:691-6. [DOI: 10.1902/jop.2008.070449] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Ma B, Cheng DS, Xia ZF, Ben DF, Lu W, Cao ZF, Wang Q, He J, Chai JK, Shen CA, Sun YH, Zhang GA, Hu XH. Randomized, multicenter, double-blind, and placebo-controlled trial using topical recombinant human acidic fibroblast growth factor for deep partial-thickness burns and skin graft donor site. Wound Repair Regen 2008; 15:795-9. [PMID: 18028126 DOI: 10.1111/j.1524-475x.2007.00307.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wound healing is a dynamic and complex biologic process that could be accelerated by growth factors. To investigate the efficacy of topical recombinant human acidic fibroblast growth factor (rh-aFGF) treatment in deep partial-thickness burn or skin graft donor sites, we designed a randomized, multicenter, double-blind, and placebo-controlled clinical trial. The healing rate, fully healed rate, and healing time were evaluated to assess the efficacy of rh-aFGF application. Laboratory examinations and abnormal signs were used to assess the side and toxic effects. The results showed that the healing rate of burn wounds and skin graft donor sites treated by rh-aFGF was significantly higher than that by placebo, and the mean healed time of burn wounds and skin graft donor sites in the rh-aFGF group was significantly the shorter than that in the placebo group. In conclusion, topical administration of rh-aFGF can accelerate the wound healing process and shorten the healed time. It is a potential therapeutic application for promoting healing of deep partial-thickness burns or skin graft donor sites.
Collapse
Affiliation(s)
- Bing Ma
- Department of Burn Surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shepherd BR, Hoying JB, Williams SK. Microvascular transplantation after acute myocardial infarction. ACTA ACUST UNITED AC 2008; 13:2871-9. [PMID: 17883324 DOI: 10.1089/ten.2007.0025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The primary objective of this study was to evaluate epicardial transplantation of an intact microvascular network for treatment of myocardial ischemia in a murine model of acute myocardial infarction. We describe transplantation of an intact microvascular network constructed from isolated microvascular segments stabilized in a 3-dimensional matrix to the epicardial surface after acute myocardial infarction. This microvascular graft was implanted as a patch on the epicardium of mice after left coronary artery ligation. After 14 and 28 days of implantation, left ventricular (LV) function was assessed and grafts evaluated via histology and cytochemistry. Inosculation of microvessels within the graft with host coronary microcirculation occurred as early as 7 days after initial tissue grafting. Morphologic evaluation of the grafts revealed arterioles, venules, capillaries, and erythrocytes within vascular lumina. Control grafts of collagen alone remained avascular. LV infarct size was smaller, and LV function improved in treated animals. Engraftment of whole microvascular units can be achieved to support cell-assisted vascular remodeling. Microvascular grafts may provide therapeutic benefit as a primary treatment or serve as a microvascular platform for cardiac repair and regeneration.
Collapse
|
19
|
Yao CC, Yao P, Wu H, Zha ZG. Absorbable collagen sponge combined with recombinant human basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:1969-72. [PMID: 17554604 DOI: 10.1007/s10856-007-3093-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 06/19/2006] [Indexed: 05/15/2023]
Abstract
Recombinant human basic fibroblast growth factor (rhbFGF) is a peptide with many bioactivities such as promoting proliferation and migration of various cells. It plays an important role in neuroprotection and enhancement of nerve regeneration. Due to its short half-life in the body, local administration by injection is limited. To prolong the bioactivity of rhbFGF and to enhance its biological effects, absorbable collagen sponge was used as matrixes and carriers for controlled release of rhbFGF. The effects of rhbFGF soaked into an absorbable collagen sponge (rhbFGF/ACS) for the repair of rat sciatic nerve injury were evaluated. The functional, electrophysiological and histological examinations demonstrate the treatment with rhbFGF/ACS can enhance rat sciatic nerve repair, and its effectiveness is better than free rhbFGF alone. It is concluded the rhbFGF/ACS is a promising biomaterial to improve the repair and regeneration of sciatic nerve injury.
Collapse
Affiliation(s)
- Cheng-Can Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | | | | | | |
Collapse
|
20
|
Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007; 59:249-62. [PMID: 17482310 DOI: 10.1016/j.addr.2007.03.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 03/28/2007] [Indexed: 01/08/2023]
Abstract
A wide range of polymeric scaffolds have been intensively studied for use as implantable and temporal devices in tissue engineering. Biodegradable and biocompatible scaffolds having a highly open porous structure and good mechanical strength are needed to provide an optimal microenvironment for cell proliferation, migration, and differentiation, and guidance for cellular in-growth from host tissue. A variety of natural and synthetic polymeric scaffolds can be fabricated in the form of a solid foam, nanofibrous matrix, microsphere, or hydrogel. Biodegradable porous scaffolds can be surface engineered to provide an extracellular matrix mimicking environment for better cell adhesion and tissue in-growth. Furthermore, scaffolds can be designed to release bioactive molecules, such as growth factors, DNA, or drugs, in a sustained manner to facilitate tissue regeneration. This paper reviews the current status of surface engineered and drug releasing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | |
Collapse
|
21
|
Kilpadi DV, Feeley TD, Kiel JW. V.A.C. Therapy Normalizes Vascular Response of Injured Tissue in Full-Thickness Wounds in Rabbits. Ann Plast Surg 2007; 58:555-60. [PMID: 17452843 DOI: 10.1097/01.sap.0000244991.90285.c3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
V.A.C. Therapy applied to a cutaneous wound was hypothesized to alter vascular regulation in underlying tissue. Two full-thickness wounds were created on the dorsum of 7 New Zealand albino rabbits. One site was treated with V.A.C. Therapy; the other, with saline-moistened gauze. Local perfusion levels in the muscle were measured using laser Doppler flowmetry. Using vena caval occlusion, blood pressure was decreased progressively from baseline under vasonormal conditions and during systemic infusion of a vasodilator and a vasoconstrictor. The pressure-flow relationships for the carotid and V.A.C. Therapy-treated wound sites showed 3 distinct curves, with vasodilator curves shifted upwards and vasoconstrictor curves downwards relative to vasonormal curves (P < 0.05). By contrast, vasodilator curves in the saline-gauze treated sites were indistinguishable from vasonormal curves. Thus, in a rabbit model, application of V.A.C. Therapy to cutaneous wounds normalized the vascular response to vasoactive drugs in a manner similar to undisturbed carotid circulation.
Collapse
|
22
|
Wang TW, Sun JS, Wu HC, Tsuang YH, Wang WH, Lin FH. The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 2006; 27:5689-97. [PMID: 16908060 DOI: 10.1016/j.biomaterials.2006.07.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Tissue-engineered skin substitutes provided a feasibility to overcome the shortage of skin autograft by culturing keratinocytes and dermal fibroblasts in vitro. In this study, we applied bi-layer gelatin-chondrointin-6-sulfate-hyaluronic acid (gelatin-C6S-HA) biomatrices onto the severe combined immunodeficiency (SCID) mice to evaluate its effect on promoting wound healing. Human foreskin keratinocytes and dermal fibroblasts were cultured with reconstructed skin equivalent (rSE) for 7 days. The rSE was then grafted to the dorsum of SCID mice to evaluate its biocompatibility by histologic and immunohistochemistry analysis. The results showed that human epidermis were well-developed with the expression of differentiated markers and basement membrane-specific proteins at 4 weeks. After implantation, the percentages of skin graft take were satisfactory, while cell-seeded group was better than non-cell-seeded one. The basement membrane proteins including laminin, type IV collagen, type VII collagen, integrin alpha6, and integrin beta4 were all detected at the dermal-epidermal junction, which showed a continuous structure in the 4 weeks after grafting. This bi-layer gelatin-C6S-HA skin substitute not only has positive effect on promoting wound healing, but also has high rate of graft take. This rSE would have the potential to be applied on the extensively and deeply burned patients who suffer from severe skin defect in the near future.
Collapse
Affiliation(s)
- Tzu-Wei Wang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Yao C, Yao P, Wu H, Zha Z. Acceleration of wound healing in traumatic ulcers by absorbable collagen sponge containing recombinant basic fibroblast growth factor. Biomed Mater 2006; 1:33-7. [PMID: 18458383 DOI: 10.1088/1748-6041/1/1/005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to examine the safety and efficacy of topical application of recombinant basic fibroblast growth factor loaded on a kind of absorbable collagen sponge (rbFGF/ACS) in patients with chronic traumatic ulcers. This double-blind controlled trial included 58 patients with chronic traumatic ulcers. The patients were randomized into two groups. After debridement, the wounds were covered with rbFGF/ACS and then bound up with sterile gauze in the rbFGF/ACS group (n = 30), or bound up with petrolatum sterile gauze in the placebo group (n = 28). The complete closure of the wounds was assessed by photography. The wounds that failed to heal were defined as incomplete healing after 3 weeks. Compared with the placebo group, rbFGF/ACS significantly increased the incidence of complete wound closure by 68% (90.0% versus 53.6%, P = 0.0019) after 3 weeks and shortened the time to achieve complete wound closure by 24% (10.6 days versus 13.9 days, P = 0.0171). There was no difference in side effects between the two groups. rbFGF/ACS significantly increased the incidence of complete wound closure, shortened the complete healing time and improved the healing quality of chronic traumatic ulcers. The safety profile in the rbFGF/ACS group was similar to that in placebo group.
Collapse
Affiliation(s)
- Chengcan Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | | | | | | |
Collapse
|
24
|
Côté MF, Laroche G, Gagnon E, Chevallier P, Doillon CJ. Denatured collagen as support for a FGF-2 delivery system: physicochemical characterizations and in vitro release kinetics and bioactivity. Biomaterials 2004; 25:3761-72. [PMID: 15020152 DOI: 10.1016/j.biomaterials.2003.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 09/25/2003] [Indexed: 11/24/2022]
Abstract
Collagen-based materials have scaffold properties to support bioactive molecules such as growth factor (GF). Gelatin, a denatured collagen, may have also some potential to interact with GF. An alternative process to denature collagen using trifluoroacetic acid (TFA) was investigated. Physicochemical characterization (XPS, DSC, isoelectric point, water uptake) of TFA-denatured collagen was comparable to regular gelatin, except a significant hydrophilicity and a pH sensitivity. FGF-2 was mixed with either regular gelatin or TFA-denatured collagen, then incorporated to a collagen sponge. Autoradiography revealed a relatively homogenous distribution of radiolabeled FGF-2 within the sponge. In vitro release kinetic of radiolabeled FGF-2 was investigated as well as the bioactivity of FGF-2 towards endothelial cell growth. The mixture was also sorbed to hydrogels made of ethylene vinyl acetate co-polymer and poly(2-hydroxyethyl methacrylate), and to cell culture insert membranes as control. Release of FGF-2 from collagen was progressive in the presence of TFA-denatured collagen, and cell growth was stimulated (significant peak at 8 and 10 days) by TFA-denatured collagen and FGF-2 eluted particularly from collagen sponges. Whereas control hydrogels, and those with regular gelatin showed a early stimulation of cell growth (1-5 days). Thus, the combination of both FGF-2 and an acid-denatured collagen in collagen sponges allows to sustain in vitro endothelial cell activity.
Collapse
Affiliation(s)
- Marie-France Côté
- Oncology and Molecular Endocrinology Research Center, CHUL's Research Center, CHUQ, 2705 bou. Laurier Quebec, Québec, G1V 4G2 Canada
| | | | | | | | | |
Collapse
|
25
|
Currie LJ, Sharpe JR, Martin R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 2001; 108:1713-26. [PMID: 11711954 DOI: 10.1097/00006534-200111000-00045] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibrin glue has been widely used as an adhesive in plastic and reconstructive surgery. This article reviews the advantages and disadvantages of its use with skin grafts and tissue-engineered skin substitutes. Fibrin glue has been shown to improve the percentage of skin graft take, especially when associated with difficult grafting sites or sites associated with unavoidable movement. Evidence also suggests improved hemostasis and a protective effect resulting in reduced bacterial infection. Fibrin, associated with fibronectin, has been shown to support keratinocyte and fibroblast growth both in vitro and in vivo, and may enhance cellular motility in the wound. When used as a delivery system for cultured keratinocytes and fibroblasts, fibrin glue may provide similar advantages to those proven with conventional skin grafts. Fibrin glue has also been shown to be a suitable delivery vehicle for exogenous growth factors that may in the future be used to accelerate wound healing.
Collapse
Affiliation(s)
- L J Currie
- Blond McIndoe Centre for Medical Research, Queen Victoria Hospital, East Grinstead, West Sussex, United Kingdom.
| | | | | |
Collapse
|
26
|
O'Toole G, MacKenzie D, Buckley MF, Lindeman R, Poole M. A review of therapeutic angiogenesis and consideration of its potential applications to plastic and reconstructive surgery. BRITISH JOURNAL OF PLASTIC SURGERY 2001; 54:1-7. [PMID: 11121309 DOI: 10.1054/bjps.2000.3454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of exogenous agents to stimulate the growth of new blood vessels into ischaemic tissue is a potentially revolutionary therapy in a wide variety of clinical specialties. Therapeutic angiogenesis research has been mostly confined to ischaemia of the heart and the lower limb. There has been relatively little research into the potential applications of the technique to plastic, reconstructive and burns surgery. In this paper, relevant published work is reviewed and potential applications of therapeutic angiogenesis to our specialty are considered.
Collapse
Affiliation(s)
- G O'Toole
- Department of Plastic and Reconstructive Surgery, St George Hospital, Kogarah, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
27
|
Zinn KR, Kelpke S, Chaudhuri TR, Sugg T, Mountz JM, Thompson JA. Imaging Tc-99m-labeled FGF-1 targeting in rats. Nucl Med Biol 2000; 27:407-14. [PMID: 10938477 DOI: 10.1016/s0969-8051(00)00090-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recombinant human acidic fibroblast growth factor (FGF-1) was radiolabeled with (99m)Tc by the HYNIC method. The (99m)Tc-FGF-1 retained its representative molecular mass, heparin affinity, cellular binding to both low (Kd = 9.5 nM) and high (Kd = 125 pM) affinity sites, and mitogenic activity. Gamma camera imaging after intravenous dosing in rats confirmed high liver and kidney binding. Heparin significantly decreased (99m)Tc-FGF-1 liver uptake and increased urinary excretion. These studies illustrate a new method for imaging FGF-1 targeting under various conditions.
Collapse
Affiliation(s)
- K R Zinn
- Division of Nuclear Medicine, Department of Radiology, University of Alabama, Birmingham, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Pandit AS, Wilson DJ, Feldman DS. Fibrin scaffold as an effective vehicle for the delivery of acidic fibroblast growth factor (FGF-1). J Biomater Appl 2000; 14:229-42. [PMID: 10656542 DOI: 10.1177/088532820001400303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of wound healing by fibrin and acidic fibroblast growth factor (FGF-1) in an in vivo model was evaluated in this study. Four full-thickness wounds were made on the dorsum of each rabbit (n = 5). Each of these wounds had different treatment groups: control, topical FGF-1 (100 microg/9 cm2), fibrin (2.0 mL at 60 mg/mL fibrinogen), and FGF-1 (100 microg/9 cm2)/fibrin. The animals were sacrificed at the end of 2 weeks. Histomorphometric analysis and mechanical testing were conducted to assess the healing response. FGF-1/fibrin treatment improved the mechanical properties of the healed tissue. Fibrin scaffold exhibited the desired tissue response, as demonstrated by the lack of inflammation, and was deemed an effective carrier for FGF-1.
Collapse
Affiliation(s)
- A S Pandit
- Department of Biomedical Engineering, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
29
|
Xia YP, Zhao Y, Marcus J, Jimenez PA, Ruben SM, Moore PA, Khan F, Mustoe TA. Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol 1999; 188:431-8. [PMID: 10440755 DOI: 10.1002/(sici)1096-9896(199908)188:4<431::aid-path362>3.0.co;2-b] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Keratinocyte growth factor-2 (KGF-2), also described as fibroblast growth factor-10 (FGF-10), is a member of the fibroblast growth factor family. KGF-2 shares 57 per cent sequence homology to previously reported KGF-1 (FGF-7). In skin, both growth factors are expressed in the dermal compartment. KGF-1 and KGF-2 bind to the same receptor with high affinity, the KGFR isoform of FGFR2, which is exclusively expressed by epithelial cells. This study examines the in vivo function of topically applied KGF-2 on wound healing using an ischaemia-impaired rabbit dermal ulcer model, in young and aged animals. Histological analysis of the wounds showed that KGF-2 significantly promoted re-epithelialization in both young and old animals. Similar results have been observed with KGF-1 in this model. In addition, KGF-2 enhanced granulation tissue formation in both young and old rabbits, a biological effect not found with KGF-1, suggesting a possible indirect mechanism which enhances neo-granulation tissue formation. Immunohistological staining of day 7 wounds with proliferating cell nuclear antigen (PCNA) antibody demonstrated a significant increase of dermal cell proliferation in KGF-2-treated wounds compared with placebo wounds. These results suggest a mesenchymal-epithelial interaction that is mediated by a paracrine feedback loop of KGF-2. Because of the wound healing impairment observed with ageing, the wound healing response to KGF-2 was also studied in ischaemic wounds of aged animals. Administration of KGF-2 led to significant stimulation of epithelial growth and granulation tissue formation. The effects seen in the old animals were delayed compared with the young animals. Lastly, the effect of KGF-2 was examined in a rabbit model of scar formation. Quantification of scar elevation index showed no significant differences in scar formation when KGF-2 was compared with buffer placebo. Compared with other growth factors, including KGF-1 and TGF-beta which have previously been examined in these models, KGF-2 is the most effective and causes no obvious scarring.
Collapse
Affiliation(s)
- Y P Xia
- Department of Surgery, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The second in a two-part article reviewing the current and potential role of growth factors.
Collapse
Affiliation(s)
- A Graham
- Stoke Mandeville Hospital NHS Trust, Aylesbury, UK
| |
Collapse
|