1
|
Johnson-Schlitz D, Seidl AR, Olufs ZPG, Huang W, Wassarman DA, Perouansky M. Genetic Differences Modify Anesthetic Preconditioning of Traumatic Brain Injury in Drosophila. J Neurotrauma 2024. [PMID: 39558897 DOI: 10.1089/neu.2024.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Pre-clinical vertebrate models of traumatic brain injury (TBI) routinely use anesthetics for animal welfare; however, humans experience TBI without anesthetics. Therefore, translation of findings from vertebrate models to humans hinges on understanding how anesthetics influence cellular and molecular events that lead to secondary injuries following TBI. To investigate the effects of anesthetics on TBI outcomes, we used an invertebrate Drosophila melanogaster model to compare outcomes between animals exposed or not exposed to anesthetics prior to the same primary injury. Using a common laboratory fly line, w1118, we found that exposure to the volatile anesthetics isoflurane or sevoflurane, but not ether, prior to TBI produced a dose-dependent reduction in mortality within 24 h following TBI. Thus, isoflurane and sevoflurane precondition w1118 flies to deleterious effects of TBI. To examine the effects of genetic differences on anesthetic preconditioning of TBI, we repeated the experiment with the Drosophila Genetic Reference Panel (DGRP) collection of genetically diverse, inbred fly lines. Pre-exposure to either isoflurane or sevoflurane revealed a wide range of preconditioning levels among 171 and 144 DGRP lines, respectively, suggesting a genetic component for variation in anesthetic preconditioning of mortality following TBI. Finally, genome-wide association study analyses identified single-nucleotide polymorphisms in genes associated with isoflurane or sevoflurane preconditioning of TBI. Several of the genes, including the fly ortholog of mammalian Calcium Voltage-Gated Subunit Alpha1 D (CACNA1D), are highly expressed in neurons and are functionally linked to both anesthetics and TBI. These data indicate that anesthetic dose and genetic background should be considered when investigating effects of anesthetics in vertebrate TBI models, and they support use of the fly model for elucidating the mechanisms underlying anesthetic preconditioning of TBI.
Collapse
Affiliation(s)
- Dena Johnson-Schlitz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Amanda R Seidl
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Zachariah P G Olufs
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Misha Perouansky
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Leppert J, Küchler J, Wagner A, Hinselmann N, Ditz C. Prospective Observational Study of Volatile Sedation with Sevoflurane After Aneurysmal Subarachnoid Hemorrhage Using the Sedaconda Anesthetic Conserving Device. Neurocrit Care 2024; 41:498-510. [PMID: 38485879 DOI: 10.1007/s12028-024-01959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/09/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Volatile sedation is still used with caution in patients with acute brain injury because of safety concerns. We analyzed the effects of sevoflurane sedation on systemic and cerebral parameters measured by multimodal neuromonitoring in patients after aneurysmal subarachnoid hemorrhage (aSAH) with normal baseline intracranial pressure (ICP). METHODS In this prospective observational study, we analyzed a 12-h period before and after the switch from intravenous to volatile sedation with sevoflurane using the Sedaconda Anesthetic Conserving Device with a target Richmond Agitation Sedation Scale score of - 5 to - 4. ICP, cerebral perfusion pressure (CPP), brain tissue oxygenation (PBrO2), metabolic values of cerebral microdialysis, systemic cardiopulmonary parameters, and the administered drugs before and after the sedation switch were analyzed. RESULTS We included 19 patients with a median age of 61 years (range 46-78 years), 74% of whom presented with World Federation of Neurosurgical Societies grade 4 or 5 aSAH. We observed no significant changes in the mean ICP (9.3 ± 4.2 vs. 9.7 ± 4.2 mm Hg), PBrO2 (31.0 ± 13.2 vs. 32.2 ± 12.4 mm Hg), cerebral lactate (5.0 ± 2.2 vs. 5.0 ± 1.9 mmol/L), pyruvate (136.6 ± 55.9 vs. 134.1 ± 53.6 µmol/L), and lactate/pyruvate ratio (37.4 ± 8.7 vs. 39.8 ± 9.2) after the sedation switch to sevoflurane. We found a significant decrease in mean arterial pressure (MAP) (88.6 ± 7.6 vs. 86.3 ± 5.8 mm Hg) and CPP (78.8 ± 8.5 vs. 76.6 ± 6.6 mm Hg) after the initiation of sevoflurane, but the decrease was still within the physiological range requiring no additional hemodynamic support. CONCLUSIONS Sevoflurane appears to be a feasible alternative to intravenous sedation in patients with aSAH without intracranial hypertension, as our study did not show negative effects on ICP, cerebral oxygenation, or brain metabolism. Nevertheless, the risk of a decrease of MAP leading to a consecutive CPP decrease should be considered.
Collapse
Affiliation(s)
- Jan Leppert
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Jan Küchler
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Andreas Wagner
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Niclas Hinselmann
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Claudia Ditz
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
3
|
Müller MB, Terpolilli NA, Schwarzmaier SM, Briegel J, Huge V. Balanced volatile sedation with isoflurane in critically ill patients with aneurysmal subarachnoid hemorrhage - a retrospective observational study. Front Neurol 2023; 14:1164860. [PMID: 37426433 PMCID: PMC10324570 DOI: 10.3389/fneur.2023.1164860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction In patients with severe aneurysmal subarachnoid hemorrhage (SAH) deep sedation is often used early in the course of the disease in order to control brain edema formation and thus intracranial hypertension. However, some patients do not reach an adequate sedation depth despite high doses of common intravenous sedatives. Balanced sedation protocols incorporating low-dose volatile isoflurane administration might improve insufficient sedation depth in these patients. Methods We retrospectively analyzed ICU patients with severe aneurysmal SAH who received isoflurane in addition to intravenous anesthetics in order to improve insufficient sedation depth. Routinely recorded data from neuromonitoring, laboratory and hemodynamic parameters were compared before and up to 6 days after initiation of isoflurane. Results Sedation depth measured using the bispectral index improved in thirty-six SAH patients (-15.16; p = 0.005) who received additional isoflurane for a mean period of 9.73 ± 7.56 days. Initiation of isoflurane sedation caused a decline in mean arterial pressure (-4.67 mmHg; p = 0.014) and cerebral perfusion pressure (-4.21 mmHg; p = 0.013) which had to be balanced by increased doses of vasopressors. Patients required increased minute ventilation in order to adjust for the increase in PaCO2 (+2.90 mmHg; p < 0.001). We did not detect significant increases in mean intracranial pressure. However, isoflurane therapy had to be terminated prematurely in 25% of the patients after a median of 30 h due to episodes of intracranial hypertension or refractory hypercapnia. Discussion A balanced sedation protocol including isoflurane is feasible for SAH patients experiencing inadequately shallow sedation. However, therapy should be restricted to patients without impaired lung function, hemodynamic instability and impending intracranial hypertension.
Collapse
Affiliation(s)
- Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Josef Briegel
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Volker Huge
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
- Department of Critical Care and Anaesthesiology, Schön Klinik Bad Aibling, Bad Aibling, Germany
| |
Collapse
|
4
|
Reeder EL, O'Connell CJ, Collins SM, Traubert OD, Norman SV, Cáceres RA, Sah R, Smith DW, Robson MJ. Increased Carbon Dioxide Respiration Prevents the Effects of Acceleration/Deceleration Elicited Mild Traumatic Brain Injury. Neuroscience 2023; 509:20-35. [PMID: 36332692 DOI: 10.1016/j.neuroscience.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). We hypothesized that experimental hypercapnia (i.e. increased inspired concentration of CO2) may act to prevent and mitigate the actions of acceleration/deceleration-induced TBI. To determine these effects C57Bl/6 mice underwent experimental hypercapnia whereby they were exposed to medical-grade atmospheric air or 5% CO2 immediately prior to an acceleration/deceleration-induced mTBI paradigm. mTBI results in significant increases in righting reflex time (RRT), reductions in core body temperature, and reductions in general locomotor activity-three hours post injury (hpi). Experimental hypercapnia immediately preceding mTBI was found to prevent mTBI-induced increases in RRT and reductions in core body temperature and general locomotor activity. Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.
Collapse
Affiliation(s)
- Evan L Reeder
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Christopher J O'Connell
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Sean M Collins
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Owen D Traubert
- University of Cincinnati College of Arts and Sciences, Department of Biological Sciences, Cincinnati, OH 45221, USA
| | - Sophia V Norman
- University of Cincinnati College of Arts and Sciences, Department of Biological Sciences, Cincinnati, OH 45221, USA
| | - Román A Cáceres
- University of Cincinnati College of Medicine, Department of Cancer and Cell Biology Cincinnati, OH 45267, USA
| | - Renu Sah
- University of Cincinnati College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH 45267, USA
| | | | - Matthew J Robson
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Transient changes in white matter microstructure during general anesthesia. PLoS One 2021; 16:e0247678. [PMID: 33770816 PMCID: PMC7997710 DOI: 10.1371/journal.pone.0247678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cognitive dysfunction after surgery under general anesthesia is a well-recognized clinical phenomenon in the elderly. Physiological effects of various anesthetic agents have been studied at length. Very little is known about potential effects of anesthesia on brain structure. In this study we used Diffusion Tensor Imaging to compare the white matter microstructure of healthy control subjects under sevoflurane anesthesia with their awake state. Fractional Anisotropy, a white mater integrity index, transiently decreases throughout the brain during sevoflurane anesthesia and then returns back to baseline. Other DTI metrics such as mean diffusivity, axial diffusivity and radial diffusivity were increased under sevoflurane anesthesia. Although DTI metrics are age dependent, the transient changes due to sevoflurane were independent of age and sex. Volumetric analysis shows various white matter volumes decreased whereas some gray matter volumes increased during sevoflurane anesthesia. These results suggest that sevoflurane anesthesia has a significant, but transient, effect on white matter microstructure. In spite of the transient effects of sevoflurane anesthesia there were no measurable effects on brain white matter as determined by the DTI metrics at 2 days and 7 days following anesthesia. The role of white matter in the loss of consciousness under anesthesia will need to be studied and MRI studies with subjects under anesthesia will need to take these results into account.
Collapse
|
6
|
Wilkinson CM, Kung TF, Jickling GC, Colbourne F. A translational perspective on intracranial pressure responses following intracerebral hemorrhage in animal models. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Beck-Schimmer B, Restin T, Muroi C, Roth Z'Graggen B, Keller E, Schläpfer M. Sevoflurane sedation attenuates early cerebral oedema formation through stabilisation of the adherens junction protein beta catenin in a model of subarachnoid haemorrhage: A randomised animal study. Eur J Anaesthesiol 2020; 37:402-412. [PMID: 32068571 DOI: 10.1097/eja.0000000000001161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Severe neurological impairment is a problem after subarachnoid haemorrhage (SAH). Although volatile anaesthetics, such as sevoflurane, have demonstrated protective properties in many organs, their use in cerebral injury is controversial. Cerebral vasodilation may lead to increased intracranial pressure (ICP), but at the same time volatile anaesthetics are known to stabilise the SAH-injured endothelial barrier. OBJECTIVE To test the effect of sevoflurane on ICP and blood-brain barrier function. DESIGN Randomised study. PARTICIPANTS One hundred male Wistar rats included, 96 analysed. INTERVENTIONS SAH was induced by the endoluminal filament method under ketamine/xylazine anaesthesia. Fifteen minutes after sham surgery or induction of SAH, adult male Wistar rats were randomised to 4 h sedation with either propofol or sevoflurane. MAIN OUTCOME MEASURES Mean arterial pressure (MAP), ICP, extravasation of water (small), Evan's blue (intermediate) and IgG (large molecule) were measured. Zonula occludens-1 (ZO-1) and beta-catenin (β-catenin), as important representatives of tight and adherens junction proteins, were determined by western blot. RESULTS Propofol and sevoflurane sedation did not affect MAP or ICP in SAH animals. Extravasation of small molecules was higher in SAH-propofol compared with SAH-sevoflurane animals (79.1 ± 0.9 vs. 78.0 ± 0.7%, P = 0.04). For intermediate and large molecules, no difference was detected (P = 0.6 and P = 0.2). Both membrane and cytosolic fractions of ZO-1 as well as membrane β-catenin remained unaffected by the injury and type of sedation. Decreased cytosolic fraction of β-catenin in propofol-SAH animals (59 ± 15%) was found to reach values of sham animals (100%) in the presence of sevoflurane in SAH animals (89 ± 21%; P = 0.04). CONCLUSION This experiment demonstrates that low-dose short-term sevoflurane sedation after SAH in vivo did not affect ICP and MAP and at the same time may attenuate early brain oedema formation, potentially by preserving adherens junctions. TRIAL REGISTRATION No 115/2014 Veterinäramt Zürich.
Collapse
Affiliation(s)
- Beatrice Beck-Schimmer
- From the Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich (BBS, TR, BRZ, MS), Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland (BBS, TR, MS), Department of Anesthesiology, University of Illinois at Chicago, Chicago, USA (BBS) and Neurosurgical Intensive Care Unit, University Hospital Zurich, Zurich, Switzerland (CM, EK)
| | | | | | | | | | | |
Collapse
|
8
|
Eftekhari S, Westgate CSJ, Uldall MS, Jensen RH. Preclinical update on regulation of intracranial pressure in relation to idiopathic intracranial hypertension. Fluids Barriers CNS 2019; 16:35. [PMID: 31767019 PMCID: PMC6878629 DOI: 10.1186/s12987-019-0155-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Elevated intracranial pressure (ICP) is observed in association with a range of brain disorders. One of these challenging disorders is idiopathic intracranial hypertension (IIH), characterized by raised ICP of unknown cause with significant morbidity and limited therapeutic options. In this review, special focus is put on the preclinical research performed in order to understand the pathophysiology behind ICP regulation and IIH. This includes cerebrospinal fluid dynamics, molecular mechanisms underlying disturbances in brain fluids leading to elevated ICP, role of obesity in IIH, development of an IIH model and ICP measurements in rodents. The review also discusses existing and new drug targets for IIH that have been evaluated in vivo. CONCLUSIONS ICP monitoring in rodents is challenging and different methods have been applied. Some of these methods are invasive, depend on use of anesthesia and only allow short-term monitoring. Long-term ICP recordings are needed to study IIH but existing methods are hampered by several limitations. As obesity is one of the most common risk factors for IIH, a rodent obese model has been developed that mimics some key aspects of IIH. The most commonly used drugs for IIH have been evaluated in vivo for their efficacy at lowering ICP in the existing animal models. These studies suggest these drugs, including acetazolamide, might have limited or no reducing effect on ICP. Two drug targets that can impact ICP in healthy rodents are topiramate and a glucagon-like peptide-1 receptor (GLP-1R) agonist. However, it remains to evaluate their effect in an IIH model with more precise and valid ICP monitoring system. Therefore, continued evaluation in the preclinical research with refined tools is of great importance to further understand the pathophysiology behind disorders with raised ICP and to explore new drug targets.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Maria Schmidt Uldall
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Rigmor Hoejland Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600 Glostrup, Denmark
| |
Collapse
|
9
|
Kolecka M, Farke D, Failling K, Kramer M, Schmidt MJ. Intraoperative measurement of intraventricular pressure in dogs with communicating internal hydrocephalus. PLoS One 2019; 14:e0222725. [PMID: 31560704 PMCID: PMC6764652 DOI: 10.1371/journal.pone.0222725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Collapse of the lateral cerebral ventricles after ventriculo-peritoneal drainage is a fatal complication in dogs with internal hydrocephalus. It occurs due to excessive outflow of cerebrospinal fluid into the peritoneal cavity (overshunting). In most shunt systems, one-way valves with different pressure settings regulate flow into the distal catheter to avoid overshunting. The rationale for the choice of an appropriate opening pressure is a setting at the upper limit of normal intracranial pressure in dogs. However, physiological intraventricular pressure in normal dogs vary between 5 and 12 mm Hg. Furthermore, we hypothesise that intraventricular pressure in hydrocephalic dogs might differ from pressure in normal dogs and we also consider that normotensive hydrocephalus exists in dogs, as in humans. In order to evaluate intraventricular pressure in hydrocephalic dogs, twenty-three client owned dogs with newly diagnosed communicating internal hydrocephalus were examined before implantation of a ventriculo-peritoneal shunt using a single use piezo-resistive strain-gauge sensor (MicroSensor ICP probe). Ventricular volume and brain volume were measured before surgery, based on magnetic resonance images. Total ventricular volume was calculated and expressed in relation to the total volume of the brain, including the cerebrum, cerebellum, and brainstem (ventricle-brain index). Multiple logistic regression analysis was performed to assess the influence of the covariates "age", "gender", "duration of clinical signs", "body weight", and "ventricle-brain index" on intraventricular pressure. The mean cerebrospinal fluid pressure in the hydrocephalic dogs was 8.8 mm Hg (standard deviation 4.22), ranging from 3-18 mm Hg. The covariates "age", (P = 0.782), "gender" (P = 0.162), "body weight", (P = 0.065), or ventricle-brain index (P = 0.27)" were not correlated with intraventricular pressure. The duration of clinical signs before surgery, however, was correlated with intraventricular pressure (P< 0.0001). Dogs with internal hydrocephalus do not necessarily have increased intraventricular pressure. Normotensive communicating hydrocephalus exists in dogs.
Collapse
Affiliation(s)
- Malgorzata Kolecka
- Department of Veterinary Clinical Sciences, Small Animal Clinic – Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University, Giessen, Germany
| | - Daniela Farke
- Department of Veterinary Clinical Sciences, Small Animal Clinic – Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University, Giessen, Germany
| | - Klaus Failling
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig-University-Giessen, Giessen, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic – Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University, Giessen, Germany
| | - Martin J. Schmidt
- Department of Veterinary Clinical Sciences, Small Animal Clinic – Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
10
|
Manatpon P, Kofke WA. Toxicity of inhaled agents after prolonged administration. J Clin Monit Comput 2018; 32:651-666. [PMID: 29098494 DOI: 10.1007/s10877-017-0077-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/28/2017] [Indexed: 11/24/2022]
Abstract
Inhaled anesthetics have been utilized mostly for general anesthesia in the operating room and oftentimes for sedation and for treatment of refractory status epilepticus and status asthmaticus in the intensive care unit. These contexts in the ICU setting are related to potential for prolonged administration wherein potential organ toxicity is a concern. Over the last decade, several clinical and animal studies of neurotoxicity attributable to inhaled anesthetics have been emerging, particularly in extremes of age. This review overviews potential for and potential mechanisms of neurotoxicity and systemic toxicity of prolonged inhaled anesthesia and clinical scenarios where inhaled anesthesia has been used in order to assess safety of possible prolonged use for sedation. High dose inhaled agents are associated with postoperative cognitive dysfunction (POCD) and other situations. However, thus far no strong indication of problematic neuro or organ toxicity has been demonstrated after prolonged use of low dose volatile anesthesia.
Collapse
Affiliation(s)
- Panumart Manatpon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Badeli H, Shahrokhi N, KhoshNazar M, Asadi-Shekaari M, Shabani M, Eftekhar Vaghefi H, Khaksari M, Basiri M. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats. CELL JOURNAL 2016; 18:416-24. [PMID: 27602324 PMCID: PMC5011330 DOI: 10.22074/cellj.2016.4570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022]
Abstract
Objective Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial
pressure (ICP), and nerve damage. The current study assessed the effects of aqueous
date fruit extract (ADFE) on the aforementioned parameters.
Materials and Methods In this experimental study, diffused traumatic brain injury (TBI)
was generated in adult male rats using Marmarou’s method. Experimental groups include
two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days), vehicle (distilled water, for 14
days) and sham groups. Brain edema and neuronal injury were measured 72 hours after
TBI. Veterinary coma scale (VCS) and ICP were determined at -1, 4, 24, 48 and 72 hours
after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test
was employed for the ANOVA post-hoc analysis. The criterion of statistical significance
was sign at P<0.05.
Results Brain water content in ADFE-treated groups was decreased in comparison
with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant
increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and
72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain
edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was
increased following on TBI.
Conclusion ADFE pre-treatment demonstrated an efficient method for preventing
traumatic brain deterioration and improving pathological parameters after TBI.
Collapse
Affiliation(s)
- Hamze Badeli
- Department of Anatomical Sciences, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieosadat KhoshNazar
- Department of Anatomical Sciences, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Eftekhar Vaghefi
- Physiology Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Parikh U, Williams M, Jacobs A, Pineda JA, Brody DL, Friess SH. Delayed Hypoxemia Following Traumatic Brain Injury Exacerbates White Matter Injury. J Neuropathol Exp Neurol 2016; 75:731-747. [PMID: 27288907 PMCID: PMC7299434 DOI: 10.1093/jnen/nlw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/04/2022] Open
Abstract
Hypoxemia immediately following traumatic brain injury (TBI) has been observed to exacerbate injury. However, it remains unclear whether delayed hypoxemia beyond the immediate postinjury period influences white matter injury. In a retrospective clinical cohort of children aged 4-16 years admitted with severe TBI, 28/74 (35%) patients were found to experience delayed normocarbic hypoxemia within 7 days of admission. Based on these clinical findings, we developed a clinically relevant mouse model of TBI with delayed hypoxemia by exposing 5-week old (adolescent) mice to hypoxic conditions for 30 minutes starting 24 hours after moderate controlled cortical impact (CCI). Injured mice with hypoxemia had increased axonal injury using both β-amyloid precursor protein and NF200 immunostaining in peri-contusional white matter compared with CCI alone. Furthermore, we detected increased peri-contusional white matter tissue hypoxia with pimonidazole and augmented astrogliosis with anti-glial fibrillary acidic protein staining in CCI + delayed hypoxemia compared with CCI alone or sham surgery + delayed hypoxemia. Microglial activation as evidenced by Iba1 staining was not significantly altered by delayed hypoxemia. These clinical and experimental data indicate the prevention or amelioration of delayed hypoxemia effects following TBI may provide a unique opportunity for the development of therapeutic interventions to reduce axonal injury and improve clinical outcomes.
Collapse
Affiliation(s)
- Umang Parikh
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Melissa Williams
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Addison Jacobs
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Jose A Pineda
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - David L Brody
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB)
| | - Stuart H Friess
- From the Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri (UP, MW, AJ, JAP, SHF)Department of Neurology, Washington University School of Medicine, St. Louis, Missouri (DLB).
| |
Collapse
|
13
|
Friess SH, Lapidus JB, Brody DL. Decompressive craniectomy reduces white matter injury after controlled cortical impact in mice. J Neurotrauma 2015; 32:791-800. [PMID: 25557588 DOI: 10.1089/neu.2014.3564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reduction and avoidance of increases in intracranial pressure (ICP) after severe traumatic brain injury (TBI) continue to be the mainstays of treatment. Traumatic axonal injury is a major contributor to morbidity after TBI, but it remains unclear whether elevations in ICP influence axonal injury. Here we tested the hypothesis that reduction in elevations in ICP after experimental TBI would result in decreased axonal injury and white matter atrophy in mice. Six-week-old male mice (C57BL/6J) underwent either moderate controlled cortical impact (CCI) (n=48) or Sham surgery (Sham, n=12). Immediately after CCI, injured animals were randomized to a loose fitting plastic cap (Open) or replacement of the previously removed bone flap (Closed). Elevated ICP was observed in Closed animals compared with Open and Sham at 15 min (21.4±4.2 vs. 12.3±2.9 and 8.8±1.8 mm Hg, p<0.0001) and 1 day (17.8±3.7 vs. 10.6±2.0 and 8.9±1.9 mm Hg, p<0.0001) after injury. Beta amyloid precursor protein staining in the corpus callosum and ipsilateral external capsule revealed reduced axonal swellings and bulbs in Open compared with Closed animals (32% decrease, p<0.01 and 40% decrease, p<0.001 at 1 and 7 days post-injury, respectively). Open animals were also found to have decreased neurofilament-200 stained axonal swellings at 7 days post-injury compared with Open animals (32% decrease, p<0.001). At 4 weeks post-injury, Open animals had an 18% reduction in white matter volume compared with 34% in Closed animals (p<0.01). Thus, our results indicate that CCI with decompressive craniectomy was associated with reductions in ICP and reduced pericontusional axonal injury and white matter atrophy. If similar in humans, therapeutic interventions that ameliorate intracranial hypertension may positively influence white matter injury severity.
Collapse
Affiliation(s)
- Stuart H Friess
- 1Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Jodi B Lapidus
- 1Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - David L Brody
- 2Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Purrucker JC, Renzland J, Uhlmann L, Bruckner T, Hacke W, Steiner T, Bösel J. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. Br J Anaesth 2015; 114:934-43. [PMID: 25823541 DOI: 10.1093/bja/aev070] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The anaesthetic conserving device, AnaConDa(®), allows use of inhaled anaesthetics for sedation in the intensive care unit. We prospectively measured cerebral and cardiopulmonary parameters in patients with acute stroke or subarachnoid haemorrhage during a switch from i.v. to inhalative sedation. METHODS 25 patients were switched from i.v. to an indefinite period of inhaled sedation with sevoflurane. Mean arterial (MAP), intracranial (ICP), and cerebral perfusion pressure (CPP), middle cerebral artery mean flow velocity (MFV) and fractional tissue oxygen extraction (FTOE), systemic cardiopulmonary parameters, and administered drugs were assessed before and after the change (-6 to +12 h). RESULTS In 8 patients, critically reduced MAP or ICP crisis led to premature termination of sevoflurane sedation. In the other 17 patients, after the first hour, mean ICP increased [2.4 (4.5) mm Hg; P=0.046], MAP decreased [7.8 (14.1) mm Hg; P=0.036] and thus CPP decreased also [-10.2 (15.1) mm Hg; P=0.014]. MFV and FTOE did not change. Over a 12 hour post switch observational period, [Formula: see text] increased slightly [0.3 (0.8) kPa; P=0.104], ICP did not change [0.2 (3.9) mm Hg; P=0.865], but MAP [-6 (6.9) mm Hg; P=0.002] and thus CPP decreased [-6 (8.5) mm Hg; P=0.010]. CONCLUSION Sevoflurane led to sufficient sedation, but decreased MAP and CPP in a selected cerebrovascular neurocritical care population. In about a third of these patients, severe adverse reactions, including intolerable ICP increases, were observed.
Collapse
Affiliation(s)
- J C Purrucker
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - J Renzland
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - L Uhlmann
- Department of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - T Bruckner
- Department of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - W Hacke
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - T Steiner
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany Department of Neurology, Frankfurt Hoechst Hospital, Frankfurt am Main, Germany
| | - J Bösel
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Uldall M, Juhler M, Skjolding AD, Kruuse C, Jansen-Olesen I, Jensen R. A novel method for long-term monitoring of intracranial pressure in rats. J Neurosci Methods 2014; 227:1-9. [PMID: 24521617 DOI: 10.1016/j.jneumeth.2014.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND In preclinical neurological studies, monitoring intracranial pressure (ICP) in animal models especially in rodents is challenging. Further, the lack of methods for long-term ICP monitoring has limited the possibilities to conduct prolonged studies on ICP fluctuations in parallel to disease progression or therapeutic interventions. For these reasons we aimed to set up a simple and valid method for long-term ICP recordings in rats. NEW METHOD A novel ICP method employing epidural probes was developed and validated by simultaneously ICP recordings in the lateral ventricle and in the epidural space. The two pressures were recorded twice a week for 59 days and the correlation was studied. RESULTS The two pressure recordings correlated exceptionally well and the R(2) values on each recording day ranged between 0.99 and 1.00. However, the ventricular probes caused a number of complications including loss of patency and tissue damage probably due to cerebral infection, whereas the epidural probes were safe and reliable throughout the entire study. COMPARISON WITH EXISTING METHODS Epidural probes are much easier to implant than ventricular probes. In addition, these new probes are far less invasive and induce no apparent mechanical tissue damage and highly decrease the infection risk associated with ICP recordings. CONCLUSION Epidural ICP recorded with this new method is identical to the ventricular ICP for at least 59 days but is far less complicated and safer for the animals. The long-term method described is reliable, valid, inexpensive, and may be used in multiple disease models to study ICP.
Collapse
Affiliation(s)
- Maria Uldall
- Danish Headache Center, Building 24, Department of Neurology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark; Research Institute, Danish Headache Center, Glostrup, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, The National Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Anders Daehli Skjolding
- Department of Neurosurgery, The National Hospital, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Christina Kruuse
- Research Institute, Danish Headache Center, Glostrup, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark; Department of Neurology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Building 24, Department of Neurology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark; Research Institute, Danish Headache Center, Glostrup, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Rigmor Jensen
- Danish Headache Center, Building 24, Department of Neurology, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark.
| |
Collapse
|
16
|
Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY) 2014; 42:286-91. [PMID: 23877609 DOI: 10.1038/laban.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/25/2013] [Indexed: 01/06/2023]
Abstract
Valid modeling of traumatic brain injury (TBI) requires accurate replication of both the mechanical forces that cause the primary injury and the conditions that lead to secondary injuries observed in human patients. The use of animals in TBI research is justified by the lack of in vitro or computer models that can sufficiently replicate the complex pathological processes involved. Measures to reduce nociception and distress must be implemented, but the administration of anesthetics and analgesics can influence TBI outcomes, threatening the validity of the research. In this review, the authors present evidence for the interference of anesthetics and analgesics in the natural course of brain injury in animal models of TBI. They suggest that drugs should be selected for or excluded from experimental TBI protocols on the basis of IACUC-approved experimental objectives in order to protect animal welfare and preserve the validity of TBI models.
Collapse
|
17
|
Dehghan F, Khaksari Hadad M, Asadikram G, Najafipour H, Shahrokhi N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: role of oxidative stresses. Arch Med Res 2013; 44:251-8. [PMID: 23608674 DOI: 10.1016/j.arcmed.2013.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/15/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Traumatic brain injury (TBI) is one of the main causes of brain edema and increased intracranial pressure (ICP). In the clinic it is essential to limit the development of ICP after TBI. In the present study, the effects of melatonin on these parameters at different time points and alterations of oxidant factors as one of the probable involved mechanisms have been evaluated. METHODS Albino N-Mary rats were divided into five groups of sham, TBI, TBI + vehicle, TBI + Mel5 and TBI + Mel20. Brain injury was induced by Marmarou method. Melatonin was injected i.p. at 1, 24, 48 and 72 h after brain trauma. Brain water and Evans blue dye contents as well as oxidant/antioxidant factors were measured 72 h after TBI. ICP and neurological scores were determined at -1, 1, 24, 48 and 72 h post-TBI. RESULTS Brain water and Evans blue dye contents in melatonin-treated groups decreased as compared to the TBI + vehicle group (p <0.001). Veterinary coma scale (VCS) at 24, 48 and 72 h after TBI showed a significant increase in melatonin groups (TBI + Mel5: p <0.01 and TBI + Mel20: p <0.001) in comparison to the TBI + vehicle group. ICP at 24, 48 and 72 h after TBI decreased in melatonin groups as compared to the TBI + vehicle group (p <0.001). Superoxide dismutase and glutathione peroxidase activities showed a significant increase, whereas malondialdehyde level in these groups was significantly lower in melatonin groups in comparison to the TBI + vehicle group (p <0.001). CONCLUSION Melatonin decreases brain edema, BBB permeability and ICP, but increases VCS after TBI. These effects are probably due to inhibition of oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | |
Collapse
|
18
|
Lasarzik I, Noppens RR, Wolf T, Bauer H, Luh C, Werner C, Engelhard K, Thal SC. Dose-dependent influence of sevoflurane anesthesia on neuronal survival and cognitive outcome after transient forebrain ischemia in Sprague-Dawley rats. Neurocrit Care 2012; 15:577-84. [PMID: 21618067 DOI: 10.1007/s12028-011-9562-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Volatile anesthetics reduce postischemic neurohistopathological injury and improve neurological outcome in various animal models. However, the isoflurane concentrations above 1 minimum alveolar concentration (MAC) have been associated with reduced neuronal survival and impaired functional outcome. The aim of this study was to evaluate if 1.8 MAC sevoflurane alters postischemic neuronal survival and neurologic outcome compared with 0.45 MAC sevoflurane. METHODS In this study, 20 fasted male Sprague-Dawley rats were randomly assigned to treatment groups with 1 or 4 vol.% sevoflurane end-tidal concentration. Cerebral ischemia was induced by bilateral carotid artery occlusion and hemorrhagic hypotension (BCAO). The cognitive outcome was assessed after 7 days using the object recognition test. Animals were then re-anesthetized and brains were removed for neurohistopathological analysis of the hippocampus (CA1) and cortex using hematoxylin-eosin staining. RESULTS Physiologic parameters were not different between both the treatment groups. The number of viable neurons (median [Q1, Q3]) in the CA1 region on postischemic day 7 was increased after high-dose sevoflurane compared with low-dose sevoflurane (1645 [453, 1825] vs. 3222 [2920, 3993] neurons/ROI, P < 0.05). Results of the object recognition test were not different between both the treatment groups. CONCLUSIONS Postischemic neuronal survival was increased with 1.8 MAC compared with 0.45 MAC sevoflurane. Therefore, experimental models of cerebral ischemia should account for neuroprotective effects of sevoflurane with increasing concentrations. To ensure minimal interference of sevoflurane on neuronal survival, a low inspired concentration should be used and fluctuations in the depth of anesthesia should be limited.
Collapse
Affiliation(s)
- Irina Lasarzik
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gabrielian L, Willshire LW, Helps SC, van den Heuvel C, Mathias J, Vink R. Intracranial Pressure Changes following Traumatic Brain Injury in Rats: Lack of Significant Change in the Absence of Mass Lesions or Hypoxia. J Neurotrauma 2011; 28:2103-11. [DOI: 10.1089/neu.2011.1785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Levon Gabrielian
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Luke W. Willshire
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | - Stephen C. Helps
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | | | - Jane Mathias
- School of Psychology, Adelaide Centre for Neurological Diseases, University of Adelaide, Adelaide SA, Australia
| | - Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| |
Collapse
|
20
|
Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS One 2011; 6:e19948. [PMID: 21625505 PMCID: PMC3098268 DOI: 10.1371/journal.pone.0019948] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo), isoflurane (iso) or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb) prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter). Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score), cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS) and microglia (via immunohistochemical staining for Iba1) were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm3; iso = 20.5±3.7 mm3; comb = 19.5±4.6 mm3). Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm3; iso = 31.5±4.0 mm3; comb = 44.2±6.2 mm3). Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.). The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm3; iso = 150±36/mm3; comb = 113±40/mm3). A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.
Collapse
|
21
|
Nishimori C, Paula D, Moraes P, Conceição E, Carareto R, Nunes N, Freitas P. Alterações hemodinâmicas e intracranianas em cães com hemorragia aguda, anestesiados com isofluorano. ARQ BRAS MED VET ZOO 2006. [DOI: 10.1590/s0102-09352006000600012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Estudaram-se possíveis alterações hemodinâmicas e intracranianas em cães submetidos à hemorragia aguda e anestesiados pelo isofluorano. Verificou-se também a influência do anestésico no mecanismo de auto-regulação cerebral. Utilizaram-se 20 cães adultos que foram induzidos à anestesia geral com isofluorano por máscara naso-oral a 3,5V% (volume %). Após a intubação orotraqueal, reajustou-se o vaporizador para 2,1V%. Induziu-se a hipovolemia retirando-se volume total de 35ml/kg de sangue. Avaliaram-se pressão intracraniana (PIC), temperaturas intracraniana (TIC) e corpórea (T), pressão de perfusão cerebral (PPC), pressões arteriais sistólica (PAS), diastólica (PAD) e média (PAM), freqüências cardíaca (FC) e respiratória (FR), índices cardíaco (IC) e sistólico (IS), pressão venosa central (PVC), pressão da artéria pulmonar (PAP), concentração de dióxido de carbono ao final da expiração (ETCO2) e saturação de oxihemoglobina (SpO2). Imediatamente após a hipovolemia, houve redução significativa da PIC, PPC, PAS, PAD, PAM, IC, IS e PAP. Após 10 minutos, houve aumento gradativo das médias, permanecendo neste patamar até o final do período experimental. Concluiu-se que a hemorragia aguda promoveu redução das variáveis hemodinâmicas, sendo possível verificar a ativação de mecanismos compensatórios. Além disso, houve redução da perfusão sangüínea e ativação do mecanismo de auto-regulação cerebral, conseqüentes à hipovolemia associada à anestesia com isofluorano.
Collapse
|
22
|
Statler KD, Janesko KL, Melick JA, Clark RSB, Jenkins LW, Kochanek PM. Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats. Brain Res 2003; 994:37-43. [PMID: 14642446 DOI: 10.1016/j.brainres.2003.09.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite common use of narcotics in the clinical management of severe traumatic brain injury (TBI), in experimental models rats treated with fentanyl have exhibited worse functional outcome and more CA1 hippocampal death than rats treated with standard isoflurane anesthesia. We hypothesized that greater post-traumatic excitotoxicity, reflected by cerebral glucose utilization (CMRglu), may account for detrimental effects of fentanyl vs. isoflurane. Rats were anesthetized with either isoflurane (1% by inhalation) or fentanyl (10 mcg/kg iv bolus then 50 mcg/kg/h infusion). 14C-deoxyglucose autoradiography was performed 45 min after controlled cortical impact (CCI) to left parietal cortex (n=4 per anesthetic group) or in uninjured rats after 45 min of anesthesia (n=3 per anesthetic group). Uninjured rats treated with fentanyl vs. isoflurane showed 35-45% higher CMRglu in all brain structures (p<0.05) except CA3. After TBI in rats treated with isoflurane, CMRglu increased significantly only in ipsilateral CA1 and ipsilateral parietal cortex (p<0.05 vs. isoflurane uninjured). Conversely, after TBI in rats treated with fentanyl, CMRglu increased markedly and bilaterally in CA1 and CA3 (p<0.05 vs. fentanyl uninjured), but not ipsilateral parietal cortex. In contralateral CA1, CMRglu was nearly two times greater after TBI in fentanyl vs. isoflurane treated rats (p<0.05). Hyperglycolysis was exacerbated in CA1 and CA3 hippocampus after TBI in rats treated with fentanyl vs. isoflurane anesthesia. This post-traumatic hyperglycolysis suggests greater excitotoxicity and concurs with reports of worse functional outcome and more CA1 hippocampal death after TBI with fentanyl vs. isoflurane anesthesia.
Collapse
Affiliation(s)
- Kimberly D Statler
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
23
|
Brosnan RJ, Steffey EP, LeCouteur RA, Farver TB, Imai A. Effects of duration of isoflurane anesthesia and mode of ventilation on intracranial and cerebral perfusion pressures in horses. Am J Vet Res 2003; 64:1444-8. [PMID: 14620783 DOI: 10.2460/ajvr.2003.64.1444] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypothesis that isoflurane-anesthetized horses during controlled ventilation and spontaneous ventilation exhibit temporal changes in cerebral hemodynamics, as measured by intracranial pressure and cerebral perfusion pressure, that reflect temporal changes in systemic arterial pressure. ANIMALS 6 healthy adult horses. PROCEDURE Horses were anesthetized in left lateral recumbency with 1.57% isoflurane in O2 for 5 hours in 2 experiments by use of either controlled ventilation (with normocapnia) or spontaneous ventilation (with hypercapnia) in a randomized crossover design. Intracranial pressure was measured with a subarachnoid strain-gauge transducer. Carotid artery pressure, central venous pressure, airway pressures, blood gases, and minute ventilation also were measured. RESULTS Intracranial pressure during controlled ventilation significantly increased during constant dose isoflurane anesthesia and thus contributed to decreasing cerebral perfusion pressure. Intracranial pressure was initially higher during spontaneous ventilation than during controlled ventilation, but this difference disappeared over time; no significant differences in cerebral perfusion pressures were observed between horses that had spontaneous or controlled ventilation. CONCLUSIONS AND CLINICAL RELEVANCE Cerebral hemodynamics and their association with ventilation mode are altered over time in isoflurane-anesthetized horses and could contribute to decreased cerebral perfusion during prolonged anesthesia.
Collapse
Affiliation(s)
- Robert J Brosnan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|