1
|
Dumouchel JL, Kramlinger VM. Case Study 10: A Case to Investigate Acetyl Transferase Kinetics. Methods Mol Biol 2021; 2342:781-808. [PMID: 34272717 DOI: 10.1007/978-1-0716-1554-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Major routes of metabolism for marketed drugs are predominately driven by enzyme families such as cytochromes P450 and UDP-glucuronosyltransferases. Less studied conjugative enzymes, like N-acetyltransferases (NATs), are commonly associated with detoxification pathways. However, in the clinic, the high occurrence of NAT polymorphism that leads to slow and fast acetylator phenotypes in patient populations has been linked to toxicity for a multitude of drugs. A key example of this is the observed clinical toxicity in patients who exhibit the slow acetylator phenotype and were treated with isoniazid. Toxicity in patients has led to detailed characterization of the two NAT isoforms and their polymorphic genotypes. Investigation in recombinant enzymes, genotyped hepatocytes, and in vivo transgenic models coupled with acetylator status-driven clinical studies have helped understand the role of NATs in drug development, clinical study design and outcomes, and potential roles in human disease models. The selected case studies herein document NAT enzyme kinetics to explore substrate overlap from two human isoforms, preclinical species considerations, and clinical genotype population concerns.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Molecular Pharmacology and Physiology Graduate Training Program, Brown University, Providence, RI, USA.
| | - Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| |
Collapse
|
2
|
Selinski S. Highlight report: gene dose response in N-acetylation capacity. Arch Toxicol 2017; 91:4019-4020. [PMID: 29185025 DOI: 10.1007/s00204-017-2131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Silvia Selinski
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
3
|
Argikar UA, Dumouchel JL, Dunne CE, Bushee AJ. Ocular non-P450 oxidative, reductive, hydrolytic, and conjugative drug metabolizing enzymes. Drug Metab Rev 2017; 49:372-394. [PMID: 28438049 DOI: 10.1080/03602532.2017.1322609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolism in the eye for any species, laboratory animals or human, is gaining rapid interest as pharmaceutical scientists aim to treat a wide range of so-called incurable ocular diseases. Over a period of decades, reports of metabolic activity toward various drugs and biochemical markers have emerged in select ocular tissues of animals and humans. Ocular cytochrome P450 (P450) enzymes and transporters have been recently reviewed. However, there is a dearth of collated information on non-P450 drug metabolizing enzymes in eyes of various preclinical species and humans in health and disease. In an effort to complement ocular P450s and transporters, which have been well reviewed in the literature, this review is aimed at presenting collective information on non-P450 oxidative, hydrolytic, and conjugative ocular drug metabolizing enzymes. Herein, we also present a list of xenobiotics or drugs that have been reported to be metabolized in the eye.
Collapse
Affiliation(s)
- Upendra A Argikar
- a Analytical Sciences and Imaging , Novartis Institutes for Biomedical Research, Inc , Cambridge , MA , USA
| | - Jennifer L Dumouchel
- a Analytical Sciences and Imaging , Novartis Institutes for Biomedical Research, Inc , Cambridge , MA , USA
| | - Christine E Dunne
- b Department of Chemistry , Colorado State University , Fort Collins , CO , USA
| | | |
Collapse
|
4
|
Wu X, Lai W, Lin H, Liu Y. Association of OGG1 and MTHFR polymorphisms with age-related cataract: A systematic review and meta-analysis. PLoS One 2017; 12:e0172092. [PMID: 28253266 PMCID: PMC5333819 DOI: 10.1371/journal.pone.0172092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/15/2017] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To discern and confirm genetic biomarkers that help identify populations at high risk for age-related cataract (ARC). METHODS A literature search was performed in the PubMed, Web of Science and China National Knowledge Internet databases for genetic association studies published before June 26, 2016 regarding ARC susceptibility. All genetic polymorphisms reported were systematically reviewed, followed by extraction of candidate genes/loci with sufficient genotype data in ≥3 studies for the meta-analysis. A random/fixed-effects model was used to calculate the pooled odds ratios and 95% confidence intervals to evaluate the associations considering multiple genetic models. Sensitivity analysis was also performed. RESULTS A total of 144 polymorphisms in 36 genes were reported in the 61 previous genetic association studies. Thereby, three polymorphisms of two genes (8-oxoguanine DNA glycosylase-1 [OGG1]; methylenetetrahydrofolate reductase NADPH [MTHFR]) in eight studies were included in the meta-analysis. Regarding the OGG1-rs1052133, the GG (OR = 1.925; 95%CI, 1.181-3.136; p = 0.009) and CG (OR = 1.384; 95%CI, 1.171-1.636; p<0.001) genotypes indicated higher risk of ARC. For the MTHFR gene, the CC+TT genotype of rs1801133 might be protective (OR, 0.838; 95%CI, 0.710-0.989; p = 0.036), whereas the AA+CC genotype of rs1801131 indicated increased risk for the mixed subtype (OR = 1.517; 95%CI, 1.113-2.067; p = 0.008). CONCLUSIONS Polymorphisms of OGG1 and MTHFR genes are associated with ARC susceptibility and may help identify populations at high risk for ARC.
Collapse
Affiliation(s)
- Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Weiyi Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (HL); (YL)
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (HL); (YL)
| |
Collapse
|
5
|
Selinski S, Blaszkewicz M, Getzmann S, Golka K. N-Acetyltransferase 2: ultra-slow acetylators enter the stage. Arch Toxicol 2016; 89:2445-7. [PMID: 26608182 DOI: 10.1007/s00204-015-1650-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S Selinski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| | - M Blaszkewicz
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| | - S Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| | - K Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| |
Collapse
|
6
|
Selinski S, Getzmann S, Gajewski PD, Blaszkewicz M, Hengstler JG, Falkenstein M, Golka K. The ultra-slow NAT2*6A haplotype is associated with reduced higher cognitive functions in an elderly study group. Arch Toxicol 2015; 89:2291-303. [PMID: 26615528 DOI: 10.1007/s00204-015-1635-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
N-Acetyltransferase 2 (NAT2) genotype is associated with age-related declines in basic sensory hearing functions. However, the possible modulatory role of NAT2 for higher cognitive functions has not yet been studied. We tested auditory goal-directed behavior and attentional control in 120 NAT2 genotyped subjects (63-88 years), using an auditory distraction paradigm in which participants responded to the duration of long and short tone stimuli. We studied involuntary shifts in attention to task-irrelevant deviant stimuli and applied event-related potentials (ERPs) to examine which cognitive subprocesses are affected by NAT2 status on a neurophysiological level. Relative to the standard stimuli, deviant stimuli decreased performance in the recently described ultra-slow acetylators (NAT2*6A and *7B): The increase in error-corrected reaction times (a combined measure of response speed and accuracy) in ultra-slow acetylators (254 ms increase) was more than twice as high as in the rapid acetylator reference group (111 ms increase; p < 0.01). The increase was still higher than in the other slow acetylators (149 ms increase, p < 0.05). In addition, clear differences were found in the ERP results: Ultra-slow acetylators showed deficits specifically in the automatic detection of changes in the acoustic environment as evidenced by reduced mismatch negativity (MMN, p < 0.005 compared to rapid acetylators). Refocussing of attention after a distracting event was also impaired in the ultra-slow acetylators as evidenced by a reduced re-orienting negativity (RON, p < 0.01 compared to rapid acetylators). In conclusion, the ultra-slow acetylation status was associated with reduced higher cognitive functions.
Collapse
Affiliation(s)
- Silvia Selinski
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Stephan Getzmann
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Patrick D Gajewski
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Meinolf Blaszkewicz
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Jan G Hengstler
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Michael Falkenstein
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Klaus Golka
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
7
|
Matejcic M, Vogelsang M, Wang Y, Iqbal Parker M, Parker IM. NAT1 and NAT2 genetic polymorphisms and environmental exposure as risk factors for oesophageal squamous cell carcinoma: a case-control study. BMC Cancer 2015; 15:150. [PMID: 25886288 PMCID: PMC4379954 DOI: 10.1186/s12885-015-1105-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background Tobacco smoking and red meat consumption are some of the known risk factors associated with the development of oesophageal cancer. N-acetytransferases (NAT1 and NAT2) play a key role in metabolism of carcinogenic arylamines present in tobacco smoke and overcooked red meat. We hypothesized that NAT1 and NAT2 genetic polymorphisms may influence the risk of oesophageal cancer upon exposure to environmental carcinogens. Methods Single nucleotide polymorphisms (SNPs) in the NAT1 and NAT2 genes were investigated by genotyping 732 cases and 768 healthy individuals from two South African populations to deduce the acetylator phenotype (slow, intermediate or rapid) from the combination of the genotyped SNPs. Results The 341 CC genotype (rs1801280) was significantly associated with a reduced risk for oesophageal cancer in the Mixed Ancestry population (OR = 0.31; 95% CI 0.11-0.87). The NAT2 slow/intermediate acetylator status significantly increased the risk among cigarette smokers in the Black population (OR = 2.76; 95% CI 1.69-4.52), as well as among alcohol drinkers in the Mixed Ancestry population (OR = 2.77; 95% CI 1.38-5.58). Similarly, the NAT1 slow/intermediate acetylator status was a risk factor for tobacco smokers in the Black population (OR = 3.41; 95% CI 1.95-5.96) and for alcohol drinkers in the Mixed Ancestry population (OR = 3.41; 95% CI 1.70-6.81). In a case-only analysis, frequent red meat consumption was associated with a significantly increased cancer risk for NAT2 slow/intermediate acetylators in the Mixed Ancestry population (OR = 3.55; 95% CI 1.29-9.82; P = 0.019), whereas daily white meat intake was associated with an increased risk among NAT1 slow/intermediate acetylators in the Black population (OR = 1.82; 95% CI 1.09-3.04; P = 0.023). Conclusions Our findings indicate that N-acetylation polymorphisms may modify the association between environmental risk factors and oesophageal cancer risk and that N-acetyltransferases may play a key role in detoxification of carcinogens. Prevention strategies in lifestyle and dietary habits may reduce the incidence of oesophageal cancer in high-risk populations. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1105-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Matejcic
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - Matjaz Vogelsang
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - Yabing Wang
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | - M Iqbal Parker
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Observatory, UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa. .,Division of Medical Biochemistry and IDM, UCT Faculty of Health Sciences, Cape Town, South Africa.
| | | |
Collapse
|
8
|
Khan N, Pande V, Das A. NAT2 sequence polymorphisms and acetylation profiles in Indians. Pharmacogenomics 2013; 14:289-303. [PMID: 23394391 DOI: 10.2217/pgs.13.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND NAT2, a broad-spectrum drug-metabolizing gene, is of high pharmacogenetic interest. Based on seven different mutations in the NAT2 gene, an individual can either be categorized as a slow or fast acetylator. MATERIALS & METHODS In order to characterize acetylation profiles of Indians, where data are poorly available, we sequenced the 873 bp NAT2 coding region in 250 Indians, covering the whole of India including three tribes. RESULTS Altogether, 35 NAT2 alleles forming two acetylator phenotypes (distributed almost in equal proportion in India) were found; while the alleles determining slow acetylators were highly differentiated, the fast acetylator alleles were less in number but highly frequent. CONCLUSION Interestingly, distribution of two different acetylation phenotypes correlated well with historical dietary pattern in India. The neighbor-joining phylogenetic tree based on NAT2 gene polymorphisms in worldwide humans revealed genetic affinities among populations with similar acetylation phenotypes, which also placed Indians and Africans together in a single cluster.
Collapse
Affiliation(s)
- Naazneen Khan
- Evolutionary Genomics & Bioinformatics Laboratory, Division of Genomics & Bioinformatics, National Institute of Malaria Research, New Delhi, India
| | | | | |
Collapse
|
9
|
Wakefield L, Long H, Lack N, Sim E. Ocular defects associated with a null mutation in the mouse arylamine N-acetyltransferase 2 gene. Mamm Genome 2007; 18:270-6. [PMID: 17487534 DOI: 10.1007/s00335-007-9010-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 03/05/2007] [Indexed: 11/24/2022]
Abstract
The xenobiotic metabolizing enzyme, mouse arylamine N-acetyltransferase type 2 (Nat2), is expressed during embryogenesis from the blastocyst stage and in the developing neural tube and eye. Mouse Nat2 is widely believed to have an endogenous role distinct from xenobiotic metabolism, and polymorphisms in the human ortholog have been implicated in susceptibility to spina bifida and orofacial clefting. The developmental role of Nat2 was investigated using transgenic Nat2 knockout/lacZ knockin (Nat2 (tm1Esim)) mice. The transgene was bred onto an A/J background and offspring were scored for developmental defects at weaning. After backcross generation eight, an ocular defect, ranging from cataract to microphthalmia and anophthalmia, was recorded among offspring of backcross and intercross pairs. Histologic analysis of cataract cases revealed a failure of the lens to separate from the cornea and plaques within the lens tissue. While Nat2 ( -/- ) mice have been described as overtly aphenotypic, the presence of a Nat2 null allele in one or both parents can result in ocular defects. These ocular phenotypes and their association with Nat2 genotype indicate that the Nat2 locus may be responsible for the previously described microphthalmic Cat4 phenotype and implicate the orthologous human NAT as a phenotypic modifier of microphthalmia and anophthalmia.
Collapse
Affiliation(s)
- Larissa Wakefield
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | |
Collapse
|
10
|
Tamer L, Yilmaz A, Yildirim H, Ayaz L, Ates NA, Karakas S, Oz O, Yildirim O, Atik U. N-acetyltransferase 2 phenotype may be associated with susceptibility to age-related cataract. Curr Eye Res 2006; 30:835-9. [PMID: 16251120 DOI: 10.1080/02713680591003799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Free radicals and oxidative damage play roles in aging and age-related ocular diseases such as cataracts, so defensive mechanisms become important factors for protection. Because N-acetylation is involved in a wide variety of detoxification processes, this study was conducted to examine the relationship between the acetylator phenotypes and genotypes in a group of patients with age-related cataract. Sixty-one cases of age-related cataract and 104 controls were included in this study. Blood was collected in EDTA-containing tubes, and genomic DNA was extracted from the white blood cells by high pure PCR template preparation kit. Genotyping of NAT2 polymorphisms were detected by using a LightCycler-NAT2 mutation detection kit in real-time PCR. There was a significant difference in the distribution of the NAT2*6A acetylator phenotype between cases and the controls. The odds ratio of cataract for the NAT2*6A slow phenotype was 3.8 (95% CI = 1.08 to 13.11, p = 0.032) compared with the fast type. Our results suggest that slow acetylators are at higher risk of developing age-related cataracts than fast acetylators. As NAT2 is an important xenobiotic-metabolizing enzyme and theoretically xenobiotics such as ultraviolet B radiation, smoking, and alcohol use may induce cataract formation, NAT2 gene polymorphisms may be associated with genetic susceptibility of cataract.
Collapse
Affiliation(s)
- Lülüfer Tamer
- Department of Biochemistry, Mersin University, Medical Faculty, Mersin, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dairou J, Malecaze F, Dupret JM, Rodrigues-Lima F. The xenobiotic-metabolizing enzymes arylamine N-acetyltransferases in human lens epithelial cells: inactivation by cellular oxidants and UVB-induced oxidative stress. Mol Pharmacol 2005; 67:1299-306. [PMID: 15644493 DOI: 10.1124/mol.104.009738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human arylamine N-acetyltransferases NAT1 and NAT2 are important xenobiotic-metabolizing enzymes involved in the detoxification and metabolic activation of numerous drugs and chemicals. NAT activity depends on genetic polymorphisms and on environmental factors. It has been shown that low NAT-acetylation activity could increase the risk of age-dependent cataract, suggesting that NAT detoxification function may be important for lens cells homeostasis. We report here that the NAT acetylation pathway may occur in human lens epithelial (HLE) cells. Functional NAT1 enzyme was readily detected in HLE cells by reverse transcription-polymerase chain reaction, Western blotting, and enzyme activity assays. NAT2 mRNA and enzymic activity were also detected. We investigated whether oxidants, known to be produced in HLE cells during oxidative stresses and involved in age-dependent cataract formation, decreased endogenous NAT1 and NAT2 activity. The exposure of HLE cells to peroxynitrite led to the dose-dependent irreversible inactivation of both NAT isoforms. Exposing HLE cells to continuously generated H(2)O(2) gave a dose-dependent inactivation of NAT1 and NAT2, reversible on addition of high concentrations of reducing agents. UVB irradiation also induced the reversible dose-dependent inactivation of endogenous NAT1 and NAT2, reversible on addition of reducing agents. Thus, our data suggest that functional NAT1 and NAT2 are present in HLE cells and may be impaired by oxidants produced during oxidative and photooxidative stresses. Oxidative-dependent inhibition of NATs in these cells may increase exposure of lens to the harmful effects of toxic chemicals that could contribute to cataractogenesis over time.
Collapse
Affiliation(s)
- Julien Dairou
- Centre National de la Recherche Scientifique-Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|