1
|
Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells. Pharmaceuticals (Basel) 2021; 14:ph14040317. [PMID: 33915981 PMCID: PMC8066102 DOI: 10.3390/ph14040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
New unsymmetrical bisacridines (UAs) demonstrated high activity not only against a set of tumor cell lines but also against human tumor xenografts in nude mice. Representative UA compounds, named C-2028, C-2045 and C-2053, were characterized in respect to their physicochemical properties and the following studies aimed to elucidate the role of metabolic transformations in UAs action. We demonstrated with phase I and phase II enzymes in vitro and in tumors cells that: (i) metabolic products generated by cytochrome P450 (P450), flavin monooxygenase (FMO) and UDP-glucuronosyltransferase (UGT) isoenzymes in noncellular systems retained the compound’s dimeric structures, (ii) the main transformation pathway is the nitro group reduction with P450 isoenzymes and the metabolism to N-oxide derivative with FMO1, (iii), the selected UGT1 isoenzymes participated in the glucuronidation of one compound, C-2045, the hydroxy derivative. Metabolism in tumor cells, HCT-116 and HT-29, of normal and higher UGT1A10 expression, respectively, also resulted in the glucuronidation of only C-2045 and the specific distribution of all compounds between the cell medium and cell extract was demonstrated. Moreover, P4503A4 activity was inhibited by C-2045 and C-2053, whereas C-2028 affected UGT1A and UGT2B action. The above conclusions indicate the optimal strategy for the balance among antitumor therapeutic efficacy and drug resistance in the future antitumor therapy.
Collapse
|
2
|
Antifungal Activity of Capridine β as a Consequence of Its Biotransformation into Metabolite Affecting Yeast Topoisomerase II Activity. Pathogens 2021; 10:pathogens10020189. [PMID: 33572407 PMCID: PMC7916213 DOI: 10.3390/pathogens10020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, increasing importance is attached to problems caused by fungal pathogens. Current methods of preventing fungal infections remain unsatisfactory. There are several antifungal compounds which are highly effective in some cases, however, they have limitations in usage: Nephrotoxicity and other adverse effects. In addition, the frequent use of available fungistatic drugs promotes drug resistance. Therefore, there is an urgent need for the development of a novel antifungal drug with a different mechanism of action, blocking of the fungal DNA topoisomerases activity appear to be a promising idea. According to previous studies on the m-AMSA moderate inhibitory effect on fungal topoisomerase II, we have decided to study Capridine β (also acridine derivative) antifungal activity, as well as its inhibitory potential on yeast topoisomerase II (yTOPOII). Results indicated that Capridine β antifungal activity depends on the kind of strains analyzed (MICs range 0.5–64 μg mL−1) and is related to its biotransformation in the cells. An investigation of metabolite formation, identified as Capridine β reduction product (IE1) by the fungus Candida albicans was performed. IE1 exhibited no activity against fungal cells due to an inability to enter the cells. Although no antifungal activity was observed, in contrast to Capridine β, biotransformation metabolite totally inhibited the yTOPOII-mediated relaxation at concentrations lower than detected for m-AMSA. The closely related Capridine β only slightly diminished the catalytic activity of yTOPOII.
Collapse
|
3
|
Paluszkiewicz E, Horowska B, Borowa-Mazgaj B, Peszyńska-Sularz G, Paradziej-Łukowicz J, Augustin E, Konopa J, Mazerska Z. Design, synthesis and high antitumor potential of new unsymmetrical bisacridine derivatives towards human solid tumors, specifically pancreatic cancers and their unique ability to stabilize DNA G-quadruplexes. Eur J Med Chem 2020; 204:112599. [PMID: 32736230 DOI: 10.1016/j.ejmech.2020.112599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
New promising unsymmetrical bisacridine derivatives (UAs), have been developed. Three groups including 36 compounds were synthesized by the condensation of 4-nitro or 4-methylacridinone, imidazoacridinone and triazoloacridinone derivatives with 1-nitroacridine compounds linked with an aminoalkyl chain. Cytotoxicity screening revealed the high potency of these compounds against several tumor cell lines. Particularly, imidazoacridinone-1-nitroacridine dimers strongly inhibited pancreatic Panc-1, Mia-Pa-Ca-2, Capan-2 and prostate cancer DU-145 cell growth. The studied compounds showed very strong antitumor activity (T/C> 300%) against Walker 256 rat adenocarcinoma. The selected 26 UAs were tested against 12 human tumor xenografts in nude mice, including colon, breast, prostate and pancreatic cancers. The studies on the molecular mechanism of action demonstrated that these unsymmetrical dimers significantly responded to the presence of G-quadruplex not to dsDNA. Structure-activity relationships for UAs potency to G-quadruplex stabilization indicated that thermal stability of this drug-G-quadruplex complex depended not only on the structure of heterocyclic rings, but also on the properties of dialkylamino chains of the ring linkers. In conclusion, the presented studies identified the new group of effective antitumor agents against solid human tumors, particularly pancreatic Panc-1, BxPC-3 and Mia-Pa-Ca-2 and strongly indicated their distinctive interactions with DNA. In contrast to monomers, G-quadruplex not dsDNA is proposed to be the first molecular target for these compounds.
Collapse
Affiliation(s)
- Ewa Paluszkiewicz
- Chemical Faculty, Gdańsk University of Technology, Department of Pharmaceutical Technology and Biochemistry, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Barbara Horowska
- Chemical Faculty, Gdańsk University of Technology, Department of Pharmaceutical Technology and Biochemistry, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Barbara Borowa-Mazgaj
- FDA National Center for Toxicological Research, Biochemical Toxicology, Jefferson, United States
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory - Research and Service Centre, Medical University of Gdańsk, Dębinki 1 Str., 80-211, Gdańsk, Poland
| | - Jolanta Paradziej-Łukowicz
- Tri-City Central Animal Laboratory - Research and Service Centre, Medical University of Gdańsk, Dębinki 1 Str., 80-211, Gdańsk, Poland
| | - Ewa Augustin
- Chemical Faculty, Gdańsk University of Technology, Department of Pharmaceutical Technology and Biochemistry, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Jerzy Konopa
- Chemical Faculty, Gdańsk University of Technology, Department of Pharmaceutical Technology and Biochemistry, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Zofia Mazerska
- Chemical Faculty, Gdańsk University of Technology, Department of Pharmaceutical Technology and Biochemistry, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland.
| |
Collapse
|
4
|
Drug-drug interaction potential of antitumor acridine agent C-1748: The substrate of UDP-glucuronosyltransferases 2B7, 2B17 and the inhibitor of 1A9 and 2B7. Pharmacol Rep 2018; 70:972-980. [PMID: 30107347 DOI: 10.1016/j.pharep.2018.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND The compound 9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine (C-1748), the promising antitumor agent developed in our laboratory was determined to undergo phase I metabolic pathways. The present studies aimed to know its biotransformation with phase II enzymes - UDP-glucuronosyltransferases (UGTs) and its potential to be engaged in drug-drug interactions arising from the modulation of UGT activity. METHODS UGT-mediated transformations with rat liver (RLM), human liver (HLM), and human intestine (HIM) microsomes and with 10 recombinant human isoenzymes were investigated. Studies on the ability of C-1748 to inhibit UGT were performed with HLM, HT29 colorectal cancer cell homogenate and the selected recombinant UGT isoenzymes. The reactions were monitored using HPLC-UV/Vis method and the C-1748 metabolite structure was determined with ESI-TOF-MS/MS analysis. RESULTS Pseudo-molecular ion (m/z 474.1554) and the experiment with β-glucuronidase indicated that O-glucuronide of C-1748 was formed in the presence of microsomal fractions. This reaction was selectively catalyzed by UGT2B7 and 2B17. High inhibitory effect of C-1748 was shown towards isoenzyme UGT1A9 (IC50=39.7μM) and significant but low inhibitory potential was expressed in HT29 cell homogenate (IC50=84.5μM). The mixed-type inhibition mechanism (Ki=17.0μM;Ki'=81.0μM), induced by C-1748 was observed for recombinant UGT1A9 glucuronidation, whereas HT29 cell homogenate resulted in noncompetitive inhibition (Ki=94.6μM). CONCLUSIONS The observed UGT-mediated metabolism of C-1748 and its ability to inhibit UGT activity should be considered as the potency for drug resistance and drug-drug interactions in the prospective multidrug therapy.
Collapse
|
5
|
Borowa-Mazgaj B, Mróz A, Augustin E, Paluszkiewicz E, Mazerska Z. The overexpression of CPR and P450 3A4 in pancreatic cancer cells changes the metabolic profile and increases the cytotoxicity and pro-apoptotic activity of acridine antitumor agent, C-1748. Biochem Pharmacol 2017. [DOI: 10.1016/j.bcp.2017.06.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Augustin E, Niemira M, Hołownia A, Mazerska Z. CYP3A4-dependent cellular response does not relate to CYP3A4-catalysed metabolites of C-1748 and C-1305 acridine antitumor agents in HepG2 cells. Cell Biol Int 2014; 38:1291-303. [PMID: 24890801 DOI: 10.1002/cbin.10322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/06/2014] [Indexed: 01/10/2023]
Abstract
High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered.
Collapse
Affiliation(s)
- Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233, Gdańsk, Poland
| | | | | | | |
Collapse
|
7
|
Wiśniewska A, Niemira M, Jagiełło K, Potęga A, Swist M, Henderson C, Skwarska A, Augustin E, Konopa J, Mazerska Z. Diminished toxicity of C-1748, 4-methyl-9-hydroxyethylamino-1-nitroacridine, compared with its demethyl analog, C-857, corresponds to its resistance to metabolism in HepG2 cells. Biochem Pharmacol 2012; 84:30-42. [PMID: 22484277 DOI: 10.1016/j.bcp.2012.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
The narrow "therapeutic window" of anti-tumour therapy may be the result of drug metabolism leading to the activation or detoxification of antitumour agents. The aim of this work is to examine (i) whether the diminished toxicity of a potent antitumour drug, C-1748, 9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine, compared with its 4-demethyl analogue, C-857, results from the differences between the metabolic pathways for the two compounds and (ii) the impact of reducing and/or hypoxic conditions on studied metabolism. We investigated the metabolites of C-1748 and C-857 formed in rat and human liver microsomes, with human P450 reductase (POR) and in HepG2 cells under normoxia and hypoxia. The elimination rate of C-1748 from POR knockout mice (HRN) was also evaluated. Three products, 1-amino-9-hydroxyethylaminoacridine, 1-aminoacridinone and a compound with an additional 6-membered ring, were identified for C-1748 and C-857 in all studied metabolic systems. The new metabolite was found in HepG2 cells. We showed that metabolic rate and the reactivity of metabolites of C-1748 were considerably lower than those of C-857, in all investigated metabolic models. Compared with metabolism under normoxia, cellular metabolism under hypoxia led to higher levels of 1-aminoacridine and aza-acridine derivatives of both compounds and of the 6-membered ring metabolite of C-1748. In conclusion, the crucial role of hypoxic conditions and the direct involvement of POR in the metabolism of both compounds were demonstrated. Compared with C-857, the low reactivity of C-1748 and the stability of its metabolites are postulated to contribute significantly to the diminished toxicity of this compound observed in animals.
Collapse
Affiliation(s)
- Anita Wiśniewska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cholewiński G, Dzierzbicka K, Kołodziejczyk AM. Natural and synthetic acridines/acridones as antitumor agents: their biological activities and methods of synthesis. Pharmacol Rep 2011; 63:305-36. [PMID: 21602588 DOI: 10.1016/s1734-1140(11)70499-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/13/2010] [Indexed: 10/25/2022]
Abstract
Acridine derivatives constitute a class of compounds that are being intensively studied as potential anticancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is limited or even excluded because of side effects. Numerous synthetic methods are focused on the preparation of target acridine skeletons or modifications of naturally occurring compounds, such as acridone alkaloids, that exhibit promising anticancer activities. They have been examined in vitro and in vivo to test their importance for cancer treatment and to establish the mechanism of action at both the molecular and cellular level, which is necessary for the optimization of their properties so that they are suitable in chemotherapy. In this article, we review natural and synthetic acridine/acridone analogs, their application as anticancer drugs and methods for their preparation.
Collapse
Affiliation(s)
- Grzegorz Cholewiński
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza 11/12, PL 80-233 Gdańsk, Poland.
| | | | | |
Collapse
|
9
|
Antitumor 1-nitroacridine derivative C-1748, induces apoptosis, necrosis or senescence in human colon carcinoma HCT8 and HT29 cells. Biochem Pharmacol 2010; 79:1231-41. [DOI: 10.1016/j.bcp.2009.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 01/06/2023]
|
10
|
Tadi K, Ashok BT, Chen Y, Banerjee D, Wysocka-Skrzela B, Konopa J, Darzynkiewicz Z, Tiwari RK. Pre-clinical evaluation of 1-nitroacridine derived chemotherapeutic agent that has preferential cytotoxic activity towards prostate cancer. Cancer Biol Ther 2007; 6:1632-7. [PMID: 17921700 PMCID: PMC4134887 DOI: 10.4161/cbt.6.10.4790] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chemotherapy in prostate cancer (CaP) even as an adjunct has not been a success. In this communication, we report the pre-clinical efficacy of a nitroacridine derivative, C-1748 (9[2'-hydroxyethylamino]-4-methyl-1-nitroacridine) in CaP cell culture and human xenograft animal models. C-1748, a DNA intercalating agent has been derived from its precursor C-857 that was a potent anti-cancer drug, but failed clinical development due to "high" systemic toxicities. Chemical modifications such as the introduction of a "methyl" group imparted novel properties, the most interesting of which is the difference in the IC(50) values between LnCaP (22.5 nM), a CaP cell line and HL-60, a leukemia cell line (>100 nM). Using gammaH2AX as an intervention marker of DNA double strand breaks, we concluded that C-1748 is more efficacious in CaP cells than in HL-60 cells. In hormone dependent cells, the androgen receptor (AR) was identified as an additional target of C-1748. In xenograft studies, administration of C-1748 intra-peritoneally inhibited tumor growth by 80-90% with minimal toxicity. These studies identify C-1748 as a novel acridine drug that has a high therapeutic index and low cytotoxicity on myelocytic cells with potential for clinical development.
Collapse
Affiliation(s)
- Kiranmayi Tadi
- Department of Microbiology and Immunology; New York Medical College; Valhalla, New York USA
| | - Badithe T. Ashok
- Department of Microbiology and Immunology; New York Medical College; Valhalla, New York USA
| | - Yuangen Chen
- Department of Microbiology and Immunology; New York Medical College; Valhalla, New York USA
| | - Debabrata Banerjee
- Department of Medicine and Pharmacology; Cancer Institute of New Jersey; RWJMS; UMDNJ; New Brunswick, New Jersey USA
| | - Barbara Wysocka-Skrzela
- Department of Pharmaceutical Technology and Biochemistry; Gdansk University of Technology; Gdansk, Poland
| | - Jerzy Konopa
- Department of Pharmaceutical Technology and Biochemistry; Gdansk University of Technology; Gdansk, Poland
| | | | - Raj K. Tiwari
- Department of Microbiology and Immunology; New York Medical College; Valhalla, New York USA
| |
Collapse
|