1
|
Justice CN, Halperin HR, Vanden Hoek TL, Geocadin RG. Extracorporeal cardiopulmonary resuscitation (eCPR) and cerebral perfusion: A narrative review. Resuscitation 2023; 182:109671. [PMID: 36549433 PMCID: PMC9877198 DOI: 10.1016/j.resuscitation.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Extracorporeal cardiopulmonary resuscitation (eCPR) is emerging as an effective, lifesaving resuscitation strategy for select patients with prolonged or refractory cardiac arrest. Currently, a paucity of evidence-based recommendations is available to guide clinical management of eCPR patients. Despite promising results from initial clinical trials, neurological injury remains a significant cause of morbidity and mortality. Neuropathology associated with utilization of an extracorporeal circuit may interact significantly with the consequences of a prolonged low-flow state that typically precedes eCPR. In this narrative review, we explore current gaps in knowledge about cerebral perfusion over the course of cardiac arrest and resuscitation with a focus on patients treated with eCPR. We found no studies which investigated regional cerebral blood flow or cerebral autoregulation in human cohorts specific to eCPR. Studies which assessed cerebral perfusion in clinical eCPR were small and limited to near-infrared spectroscopy. Furthermore, no studies prospectively or retrospectively evaluated the relationship between epinephrine and neurological outcomes in eCPR patients. In summary, the field currently lacks a comprehensive understanding of how regional cerebral perfusion and cerebral autoregulation are temporally modified by factors such as pre-eCPR low-flow duration, vasopressors, and circuit flow rate. Elucidating these critical relationships may inform future strategies aimed at improving neurological outcomes in patients treated with lifesaving eCPR.
Collapse
Affiliation(s)
- Cody N Justice
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL USA
| | - Henry R Halperin
- Departments of Medicine, Radiology and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Terry L Vanden Hoek
- Center for Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL USA
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Abrahamowicz AA, Counts CR, Danielson KR, Bulger NE, Maynard C, Carlbom DJ, Swenson ER, Latimer AJ, Yang B, Sayre MR, Johnson NJ. The association between arterial-end-tidal carbon dioxide difference and outcomes after out-of-hospital cardiac arrest. Resuscitation 2022; 181:3-9. [PMID: 36183813 DOI: 10.1016/j.resuscitation.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
AIM We sought to determine if the difference between PaCO2 and ETCO2 is associated with hospital mortality and neurologic outcome following out-of-hospital cardiac arrest (OHCA). METHODS This was a retrospective cohort study of adult patients who achieved return of spontaneous circulation (ROSC) after OHCA over 3 years. The primary exposure was the PaCO2-ETCO2 difference on hospital arrival. The primary outcome was survival to hospital discharge. The secondary outcome was favorable neurologic status at discharge. We used receiver operating characteristic (ROC) curves to determine discrimination threshold and multivariate logistic regression to examine the association between the PaCO2-ETCO2 difference and outcome. RESULTS Of 698 OHCA patients transported to the hospitals, 381 had sustained ROSC and qualifying ETCO2 and PaCO2 values. Of these, 160 (42%) survived to hospital discharge. Mean ETCO2 was 39 mmHg among survivors and 43 mmHg among non-survivors. Mean PaCO2-ETCO2 was 6.8 mmHg and 9.0 mmHg (p < 0.05) for survivors and non-survivors. After adjustment for Utstein characteristics, a higher PaCO2-ETCO2 difference on hospital arrival was not associated with hospital mortality (OR 0.99, 95% CI: 0.97-1.0) or neurological outcome. Area under the ROC curve or PaCO2-ETCO2 difference was 0.56 (95% CI 0.51-0.62) compared with 0.58 (95% CI 0.52-0.64) for ETCO2. CONCLUSION Neither PaCO2-ETCO2 nor ETCO2 were strong predictors of survival or neurologic status at hospital discharge. While they may be useful to guide ventilation and resuscitation, these measures should not be used for prognostication after OHCA.
Collapse
Affiliation(s)
| | - Catherine R Counts
- Seattle Fire Department, Seattle, WA, United States; Department of Emergency Medicine, University of Washington, Seattle, WA, United States
| | | | | | - Charles Maynard
- Seattle Fire Department, Seattle, WA, United States; University of Washington School of Public Health, Seattle, WA, United States
| | - David J Carlbom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Erik R Swenson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Andrew J Latimer
- Airlift Northwest, Seattle, WA, United States; Department of Emergency Medicine, University of Washington, Seattle, WA, United States
| | - Betty Yang
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
| | - Michael R Sayre
- Seattle Fire Department, Seattle, WA, United States; Department of Emergency Medicine, University of Washington, Seattle, WA, United States
| | - Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
3
|
Derangement of PaCO 2 requires physician attention in acute carbon monoxide poisoning. Hum Exp Toxicol 2020; 39:642-652. [DOI: 10.1177/0960327119898720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective was to describe the prevalence of derangement of the partial pressure of arterial carbon dioxide (PaCO2) and to determine the association between PaCO2 and adverse cardiovascular events (ACVEs) in carbon monoxide (CO)-poisoned patients. Additionally, we evaluated whether the derangement of PaCO2 was simply secondary to metabolic changes. This retrospective study included 194 self-breathing patients after CO poisoning with an indication for hyperbaric oxygen therapy and available arterial blood gas analysis at presentation and 6 h later. The incidence rate of hypocapnia at presentation after acute CO poisoning was 67.5%, and the mean PaCO2 during the first 6 h was 33 (31–36.7) mmHg. The most common acid–base imbalance in 131 patients with hypocapnia was primary respiratory alkalosis. The incidence rate of ACVEs during hospitalization was 50.5%. A significant linear trend in the incidence of ACVEs was observed across the total range of PaCO2 variables. In multivariate regression analysis, mean PaCO2 was independently associated with ACVEs (odds ratio 0.051; 95% confidence interval 0.004–0.632). PaCO2 derangements were common after acute CO poisoning and were not explainable as a mere secondary response to metabolic changes. The mean PaCO2 during the first 6 h was associated with ACVEs. Given the high incidence of ACVEs and PaCO2 derangement and the observed association between the mean PaCO2 and ACVEs, this study suggests that (1) PaCO2 should be monitored in the acute stage to predict and/or prevent ACVEs and (2) further investigation is needed to validate this result and explore the early manipulation of PaCO2 as a treatment strategy.
Collapse
|
4
|
|
5
|
Chang WT, Li CQ, Hsu CW, Lee C, Huang HH, Yuan CS, Chen WJ, Vanden Hoek TL, Shao ZH, Li J. Baicalein Cardioprotection via Oxidant Scavenging and Akt-Nitric Oxide Signaling: Identification of Early Reperfusion Phase as the Critical Therapeutic Window. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1043-1056. [PMID: 31311299 DOI: 10.1142/s0192415x19500538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Baicalein is a natural flavonoid with anti-oxidant activities protecting against ischemia/reperfusion (I/R) injury. Previous studies suggest that oxidative burst early after reperfusion accelerates cell death. We therefore investigated the critical therapeutic window of baicalein by examining the timing of baicalein treatment in relation to its oxidant modulating and cytoprotective effects. Using an established chick cardiomyocyte model of I/R, we administered baicalein at various time points after reperfusion and assessed cell viability and the profiles of reactive oxygen species (ROS), nitric oxide (NO), and Akt phosphorylation. Baicalein administered at the onset of reperfusion resulted in a concentration-dependent reduction of cell death (25 μM 48.2±1.9%, 50μM 43.8±1.5%, 100μM 36.6±2.1%, vs. I/R control 57.3±1.4%, all p<0.05). Baicalein (100μM) timely and effectively scavenged ROS burst and enhanced NO production in the early reperfusion phase. Cotreatment with NO synthase (NOS) inhibitor l-NAME (200μM) partially abrogated the cytoprotective effect. Baicalein (100μM) given after reperfusion lost protective effect in a time-dependent manner with cytoprotection completely lost if >60min. Even with only 15-min delay after reperfusion, the ROS scavenging effect was abolished and the NO enhancing effect markedly reduced. The phosphorylation of Akt, an upstream regulator of eNOS, also diminished as the delay lengthened. In conclusion, baicalein treatment after reperfusion confers cardioprotection in a concentration- and time-dependent manner. The critical therapeutic window lies in the early reperfusion phase, during which ROS scavenging and Akt-eNOS mediated NO signaling are most effective.
Collapse
Affiliation(s)
- Wei-Tien Chang
- *Department of Emergency Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C.,†Cardiology Section, Department of Internal Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Chang-Qing Li
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Chin-Wan Hsu
- §Department of Emergency Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Chunpei Lee
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Hsien-Hao Huang
- ¶Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chun-Su Yuan
- ∥Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wen-Jone Chen
- *Department of Emergency Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C.,†Cardiology Section, Department of Internal Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Terry L Vanden Hoek
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Zuo-Hui Shao
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Jing Li
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator Management and Respiratory Care After Cardiac Arrest: Oxygenation, Ventilation, Infection, and Injury. Chest 2017; 153:1466-1477. [PMID: 29175085 DOI: 10.1016/j.chest.2017.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 01/14/2023] Open
Abstract
Return of spontaneous circulation after cardiac arrest results in a systemic inflammatory state called the post-cardiac arrest syndrome, which is characterized by oxidative stress, coagulopathy, neuronal injury, and organ dysfunction. Perturbations in oxygenation and ventilation may exacerbate secondary injury after cardiac arrest and have been shown to be associated with poor outcome. Further, patients who experience cardiac arrest are at risk for a number of other pulmonary complications. Up to 70% of patients experience early infection after cardiac arrest, and the respiratory tract is the most common source. Vigilance for early-onset pneumonia, as well as aggressive diagnosis and early antimicrobial agent administration are important components of critical care in this population. Patients who experience cardiac arrest are at risk for the development of ARDS. Risk factors include aspiration, pulmonary contusions (from chest compressions), systemic inflammation, and reperfusion injury. Early evidence suggests that they may benefit from ventilation with low tidal volumes. Meticulous attention to mechanical ventilation, early assessment and optimization of respiratory gas exchange, and therapies targeted at potential pulmonary complications may improve outcomes after cardiac arrest.
Collapse
Affiliation(s)
- Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA.
| | - David J Carlbom
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | - David F Gaieski
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
7
|
Tolins ML, Henning DJ, Gaieski DF, Grossestreuer AV, Jaworski A, Johnson NJ. Initial arterial carbon dioxide tension is associated with neurological outcome after resuscitation from cardiac arrest. Resuscitation 2017; 114:53-58. [PMID: 28268187 DOI: 10.1016/j.resuscitation.2017.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
STUDY OBJECTIVES To determine the relationships between partial pressure of arterial carbon dioxide (PaCO2), prescribed minute ventilation (MV), and neurologic outcome in patients resuscitated from cardiac arrest. METHODS This was a retrospective cohort study utilizing a multicenter database of adult patients with return of spontaneous circulation (ROSC) after cardiac arrest. The primary outcome was neurologic status at hospital discharge, defined by Cerebral Performance Category (CPC) score: CPC 1-2 was favorable, CPC 3-5 was poor. We compared rates of initial normocarbia (PaCO2 31-49mmHg) and mean sequential PaCO2 measurements obtained over the first 24h. We also assessed the influence of MV on the PaCO2 at initial, 6, 12, 18, and 24h after cardiac arrest using univariate linear regression. RESULTS One hundred and fourteen patients from 3 institutions met inclusion criteria. Overall, 46/114 (40.4%, 95% CI: 31.4-49.4%) patients survived to hospital discharge, and 33/114 (28.9%, 20.6-37.2%) had CPC 1-2 at the time of discharge. A total of 38.9% (95% CI: 29.9-47.9%) of patients had initial normocarbia; 43.2% (28.6-57.8%) of these patients were discharged with CPC 1-2, compared with 20.3% (10.8-29.8%) of dyscarbic patients. By 6h, neurologic outcomes were not significantly associated with PaCO2. Prescribed MV was not associated with PaCO2 at any time point with the exception of a weak correlation at hour 18. CONCLUSION Initial normocarbia was associated with favorable neurological outcome in patients resuscitated from cardiac arrest. This relationship was not seen at subsequent time points. There was no significant association between prescribed MV and PaCO2 or neurologic outcome.
Collapse
Affiliation(s)
- Molly L Tolins
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle WA, United States.
| | - Daniel J Henning
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle WA, United States
| | - David F Gaieski
- Department of Emergency Medicine, Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anne V Grossestreuer
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Alison Jaworski
- Department of Emergency Medicine, Boston Medical Center, Boston, MA, United States
| | - Nicholas J Johnson
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle WA, United States; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Waypa GB, Osborne SW, Marks JD, Berkelhamer SK, Kondapalli J, Schumacker PT. Sirtuin 3 deficiency does not augment hypoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 49:885-91. [PMID: 24047466 DOI: 10.1165/rcmb.2013-0191oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy. In PASMCs from Sirt3 knockout (Sirt3(-/-)) mice in the C57BL/6 background, we observed that acute hypoxia (1.5% O2; 30 min)-induced changes in ROS signaling, detected using targeted redox-sensitive, ratiometric fluorescent protein sensors (roGFP) in the mitochondrial matrix, intermembrane space, and the cytosol, were indistinguishable from Sirt3(+/+) cells. Acute hypoxia-induced cytosolic calcium signaling in Sirt3(-/-) PASMCs was also indistinguishable from Sirt3(+/+) cells. During sustained hypoxia (1.5% O2; 16 h), Sirt3 deletion augmented mitochondrial matrix oxidant stress, but this did not correspond to an augmentation of intermembrane space or cytosolic oxidant signaling. Sirt3 deletion did not affect HIF-1α stabilization under normoxia, nor did it augment HIF-1α stabilization during sustained hypoxia (1.5% O2; 4 h). Sirt3(-/-) mice housed in chronic hypoxia (10% O2; 30 d) developed PH, PA wall remodeling, and right ventricular hypertrophy that was indistinguishable from Sirt3(+/+) littermates. Thus, Sirt3 deletion does not augment hypoxia-induced ROS signaling or its consequences in the cytosol of PASMCs, or the development of PH. These findings suggest that Sirt3 responses may be cell type specific, or restricted to certain genetic backgrounds.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology 1 , Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | |
Collapse
|
9
|
Queliconi BB, Marazzi TBM, Vaz SM, Brookes PS, Nehrke K, Augusto O, Kowaltowski AJ. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion. Free Radic Biol Med 2013; 55:46-53. [PMID: 23195687 PMCID: PMC3995138 DOI: 10.1016/j.freeradbiomed.2012.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 11/25/2022]
Abstract
The carbon dioxide/bicarbonate (CO(2)/HCO(3)(-)) pair is the main biological pH buffer. However, its influence on biological processes, and in particular redox processes, is still poorly explored. Here we study the effect of CO(2)/HCO(3)(-) on ischemic injury in three distinct models (cardiac HL-1 cells, perfused rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO(2)/HCO(3)(-) do not affect function under basal conditions, ischemia-reperfusion or similar insults in the presence of higher CO(2)/HCO(3)(-) resulted in greater functional loss associated with higher oxidative damage in all models. Because the effect of CO(2)/HCO(3)(-) was observed in all models tested, we believe this buffer is an important determinant of oxidative damage after ischemia-reperfusion.
Collapse
Affiliation(s)
- Bruno B. Queliconi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thire B. M. Marazzi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sandra M. Vaz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Keith Nehrke
- University of Rochester Medical Center, Rochester, NY, USA
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 2013; 187:424-32. [PMID: 23328522 DOI: 10.1164/rccm.201207-1294oc] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE The role of reactive oxygen species (ROS) signaling in the O(2) sensing mechanism underlying acute hypoxic pulmonary vasoconstriction (HPV) has been controversial. Although mitochondria are important sources of ROS, studies using chemical inhibitors have yielded conflicting results, whereas cellular models using genetic suppression have precluded in vivo confirmation. Hence, genetic animal models are required to test mechanistic hypotheses. OBJECTIVES We tested whether mitochondrial Complex III is required for the ROS signaling and vasoconstriction responses to acute hypoxia in pulmonary arteries (PA). METHODS A mouse permitting Cre-mediated conditional deletion of the Rieske iron-sulfur protein (RISP) of Complex III was generated. Adenoviral Cre recombinase was used to delete RISP from isolated PA vessels or smooth muscle cells (PASMC). MEASUREMENTS AND MAIN RESULTS In PASMC, RISP depletion abolished hypoxia-induced increases in ROS signaling in the mitochondrial intermembrane space and cytosol, and it abrogated hypoxia-induced increases in [Ca(2+)](i). In isolated PA vessels, RISP depletion abolished hypoxia-induced ROS signaling in the cytosol. Breeding the RISP mice with transgenic mice expressing tamoxifen-activated Cre in smooth muscle permitted the depletion of RISP in PASMC in vivo. Precision-cut lung slices from those mice revealed that RISP depletion abolished hypoxia-induced increases in [Ca(2+)](i) of the PA. In vivo RISP depletion in smooth muscle attenuated the acute hypoxia-induced increase in right ventricular systolic pressure in anesthetized mice. CONCLUSIONS Acute hypoxia induces superoxide release from Complex III of smooth muscle cells. These oxidant signals diffuse into the cytosol and trigger increases in [Ca(2+)](i) that cause acute hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mochizuki T, Yu S, Katoh T, Aoki K, Sato S. Cardioprotective effect of therapeutic hypothermia at 34°C against ischaemia/reperfusion injury mediated by PI3K and nitric oxide in a rat isolated heart model. Resuscitation 2012; 83:238-42. [DOI: 10.1016/j.resuscitation.2011.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/15/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
|
12
|
Waypa GB, Schumacker PT. Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol 2010; 174:201-11. [PMID: 20713189 DOI: 10.1016/j.resp.2010.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 01/06/2023]
Abstract
Pulmonary arteries (PA) constrict in response to alveolar hypoxia, whereas systemic arteries (SA) undergo dilation. These physiological responses reflect the need to improve gas exchange in the lung, and to enhance the delivery of blood to hypoxic systemic tissues. An important unresolved question relates to the underlying mechanism by which the vascular cells detect a decrease in oxygen tension and translate that into a signal that triggers the functional response. A growing body of work implicates the mitochondria, which appear to function as O2 sensors by initiating a redox-signaling pathway that leads to the activation of downstream effectors that regulate vascular tone. However, the direction of this redox signal has been the subject of controversy. Part of the problem has been the lack of appropriate tools to assess redox signaling in live cells. Recent advancements in the development of redox sensors have led to studies that help to clarify the nature of the hypoxia-induced redox signaling by reactive oxygen species (ROS). Moreover, these studies provide valuable insight regarding the basis for discrepancies in earlier studies of the hypoxia-induced mechanism of redox signaling. Based on recent work, it appears that the O2 sensing mechanism in both the PA and SA are identical, that mitochondria function as the site of O2 sensing, and that increased ROS release from these organelles leads to the activation of cell-specific, downstream vascular responses.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University, Morton Building 4-685, 310 East Superior St, Chicago, IL 60611, USA.
| | | |
Collapse
|
13
|
Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest. Crit Care Med 2010; 36:S447-53. [PMID: 20449909 DOI: 10.1097/ccm.0b013e31818a8a51] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Mitochondrial biology appears central to many conditions that progress to death but remains poorly characterized after cardiac arrest. Mitochondrial dysfunction in electron transfer and reactive oxygen species leakage during ischemia may lead to downstream events including mitochondrial protein oxidation, tyrosine nitrosylation, cytochrome c loss, and eventual death. We sought to better define early fixed alterations in these mitochondrial functions after whole animal cardiac arrest. METHODS We used a murine model of 8 mins of untreated KCl-induced cardiac arrest followed by resuscitation and return of spontaneous circulation to study mitochondrial functions in four groups of animals: 1) after 8 min cardiac arrest (CA8) but no resuscitation, 2) 30 min postreturn of spontaneous circulation (R30), 3) 60 min postreturn of spontaneous circulation (R60), and in 4) shams. Heart mitochondria were immediately harvested, isolated, and stored at -80 degrees C for later spectrophotometric measurements of electron transfer activities and reactive oxygen species leakage using appropriate substrates and inhibitors. Mitochondrial cytochrome c content and tyrosine nitration were analyzed by Western blot and densitometry. RESULTS A significant reactive oxygen species leakage from complex I was evident after just 8 min of cardiac arrest (CA8 group, p < .05), which was followed by a progressive reduction in complex I electron transfer activity (CA8 > R30 > R60). In contrast, complex II and II-III activities appeared more resistant to ischemia at the time points evaluated. Early changes in a approximately 50 kDa and approximately 25 kDa protein were observed in tyrosine nitration along with a loss of cytochrome c. CONCLUSIONS A relatively "orderly" process of mitochondrial dysfunction progresses during ischemia and reperfusion. Changes in mitochondrial reactive oxygen species generation and electron transfer from complex I occur along with tyrosine nitrosylation and loss of cytochrome c; these may represent important new targets for future human therapies.
Collapse
|
14
|
Shao ZH, Sharp WW, Wojcik KR, Li CQ, Han M, Chang WT, Ramachandran S, Li J, Hamann KJ, Vanden Hoek TL. Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am J Physiol Heart Circ Physiol 2010; 298:H2164-73. [PMID: 20382860 DOI: 10.1152/ajpheart.00994.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic hypothermia (TH) is a promising cardioprotective treatment for cardiac arrest and acute myocardial infarction, but its cytoprotective mechanisms remain unknown. In this study, we developed a murine cardiomyocyte model of ischemia-reperfusion injury to better determine the mechanisms of TH cardioprotection. We hypothesized that TH manipulates Akt, a survival kinase that mediates mitochondrial protection by modulating reactive oxygen species (ROS) and nitric oxide (NO) generation. Cardiomyocytes, isolated from 1- to 2-day-old C57BL6/J mice, were exposed to 90 min simulated ischemia and 3 h reperfusion. For TH, cells were cooled to 32 degrees C during the last 20 min of ischemia and the first hour of reperfusion. Cell viability was evaluated by propidium iodide and lactate dehydrogenase release. ROS production was measured by 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate and mitochondrial membrane potential (DeltaPsim) by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazoly-carbocyanine iodide (JC-1). Phospho (p)-Akt (Thr308), p-Akt (Ser473), and phosphorylated heat shock protein 27 (p-HSP27) (Ser82) were analyzed by Western blot analysis. TH attenuated reperfusion ROS generation, increased NO, maintained DeltaPsim, and decreased cell death [19.3 + or - 3.3% (n = 11) vs. 44.7 + or - 2.7% (n = 10), P < 0.001]. TH also increased p-Akt during ischemia before reperfusion. TH protection and attenuation of ROS were blocked by the inhibition of Akt and NO synthase but not by a cGMP inhibitor. HSP27, a regulator of Akt, also exhibited increased phosphorylation (Ser82) during ischemia with TH. We conclude that TH cardioprotection is mediated by enhanced Akt/HSP27 phosphorylation and enhanced NO generation, resulting in the attenuation of ROS generation and the maintenance of DeltaPsim following ischemia-reperfusion.
Collapse
Affiliation(s)
- Zuo-Hui Shao
- Section of Emergency Medicine, Department of Medicine, Emergency Resuscitation Center, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 2009; 106:526-35. [PMID: 20019331 DOI: 10.1161/circresaha.109.206334] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Recent studies have implicated mitochondrial reactive oxygen species (ROS) in regulating hypoxic pulmonary vasoconstriction (HPV), but controversy exists regarding whether hypoxia increases or decreases ROS generation. OBJECTIVE This study tested the hypothesis that hypoxia induces redox changes that differ among subcellular compartments in pulmonary (PASMCs) and systemic (SASMCs) smooth muscle cells. METHODS AND RESULTS We used a novel, redox-sensitive, ratiometric fluorescent protein sensor (RoGFP) to assess the effects of hypoxia on redox signaling in cultured PASMCs and SASMCs. Using genetic targeting sequences, RoGFP was expressed in the cytosol (Cyto-RoGFP), the mitochondrial matrix (Mito-RoGFP), or the mitochondrial intermembrane space (IMS-RoGFP), allowing assessment of oxidant signaling in distinct intracellular compartments. Superfusion of PASMCs or SASMCs with hypoxic media increased oxidation of both Cyto-RoGFP and IMS-RoGFP. However, hypoxia decreased oxidation of Mito-RoGFP in both cell types. The hypoxia-induced oxidation of Cyto-RoGFP was attenuated through the overexpression of cytosolic catalase in PASMCs. CONCLUSIONS These results indicate that hypoxia causes a decrease in nonspecific ROS generation in the matrix compartment, whereas it increases regulated ROS production in the IMS, which diffuses to the cytosol of both PASMCs and SASMCs.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Manca T, Welch LC, Sznajder JI. The Cardiopulmonary Effects of Hypercapnia. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Dossumbekova A, Berdyshev EV, Gorshkova I, Shao Z, Li C, Long P, Joshi A, Natarajan V, Vanden Hoek TL. Akt activates NOS3 and separately restores barrier integrity in H2O2-stressed human cardiac microvascular endothelium. Am J Physiol Heart Circ Physiol 2008; 295:H2417-26. [PMID: 18931031 DOI: 10.1152/ajpheart.00501.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integrity of microvascular endothelium is an important regulator of myocardial contractility. Microvascular barrier integrity could be altered by increased reactive oxygen species (ROS) stress seen within minutes after cardiac arrest resuscitation. Akt and its downstream target nitric oxide (NO) synthase (NOS)3 can protect barrier integrity during ROS stress, but little work has studied these oxidant stress responses in human cardiac microvascular endothelial cells (HCMVEC). We, therefore, studied how ROS affects barrier function and NO generation via Akt and its downstream target NOS3 in HCMVEC. HCMVEC exposed to 500 microM H2O2 had increased Akt phosphorylation within 10 min at both Ser-473 and Thr-308 sites, an effect blocked by the phosphatidylinositol 3-kinase inhibitor LY-294002. H2O2 also induced NO generation that was associated with NOS3 Ser-1177 site phosphorylation and Thr-495 dephosphorylation, with Ser-1177 effects attenuated by LY-294002 and an Akt inhibitor, Akt/PKB signaling inhibitor-2 (API-2). H2O2 induced significant barrier disruption in HCMVEC within minutes, but recovery started within 30 min and normalized over hours. The NOS inhibitor Nomega-nitro-L-arginine methyl ester (200 microM) blocked NO generation but had no effect on H2O2-induced barrier permeability or the recovery of barrier integrity. By contrast, the Akt inhibitor API-2 abrogated HCMVEC barrier restoration. These results suggest that oxidant stress in HCMVEC activates NOS3 via Akt. NOS3/NO are not involved in the regulation of H2O2-affected barrier function in HCMVEC. Independent of NOS3 regulation, Akt proves to be critical for the restoration of barrier integrity in HCMVEC.
Collapse
Affiliation(s)
- Anar Dossumbekova
- Department of Medicine, MC5068, Section of Emergency Medicine, Emergency Resuscitation Ctr., The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gazmuri RJ, Bhuriya R, Ayoub IM. CO2: friend or foe? Crit Care Med 2007; 35:1788-9. [PMID: 17581369 DOI: 10.1097/01.ccm.0000262389.84884.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|