1
|
Zheng X, Gao M, Wu L, Lu X, Lin Q, Zhong H, Lu Y, Zhang Y, Zhang X. Ceftazidime-assisted synthesis of ultrasmall chitosan nanoparticles for biofilm penetration and eradication of Pseudomonas aeruginosa. Sci Rep 2023; 13:13481. [PMID: 37596397 PMCID: PMC10439121 DOI: 10.1038/s41598-023-40653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infections present a grave threat to immunocompromised individuals, particularly those with cystic fibrosis due to the development of bacterial biofilms. In this study, we engineered self-assembling chitosan-ceftazidime nanoparticles (CSCE) capable of effectively penetrating biofilms and eradicating P. aeruginosa. The CSCE nanoparticles were synthesized through ionic cross-linking, combining negatively charged ceftazidime with positively charged chitosan, resulting in uniform nanoparticles measuring approximately 40 nm in diameter, exhibiting high dispersity and excellent biocompatibility. Remarkably, these nanoparticles exhibited significant inhibition of P. aeruginosa growth, reduced pyocyanin production, and diminished biofilm formation, achieving a maximum inhibition rate of 22.44%. Furthermore, in vivo investigations demonstrated enhanced survival in mice with abdominal P. aeruginosa infection following treatment with CSCE nanoparticles, accompanied by reduced levels of inflammatory cytokines Interleukin-6 (125.79 ± 18.63 pg/mL), Interleukin-17 (125.67 ± 5.94 pg/mL), and Tumor Necrosis Factor-α (135.4 ± 11.77 pg/mL). Critically, mice treated with CSCE nanoparticles showed no presence of bacteria in the bloodstream following intraperitoneal P. aeruginosa infection. Collectively, our findings highlight the potential of these synthesized nanoparticles as effective agents against P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaoran Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Hai Zhong
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211100, China.
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
2
|
Conhaim RL, Watson KE, Teodorescu M. Obstructive apnea causes microvascular perfusion maldistribution in the lungs of rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R21-R26. [PMID: 30403498 DOI: 10.1152/ajpregu.00243.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea (OSA) is associated with significant cardiovascular consequences, including pulmonary hypertension, yet little is known about its effects on pulmonary microvascular perfusion. To investigate effects of OSA on pulmonary microvascular perfusion, we clamped the tracheal cannulas of anesthetized, spontaneously breathing rats to simulate obstructive apnea. The clamp remained in place for 10 breaths before it was released to allow the animals to again breathe spontaneously. We repeated this protocol every 20 s until the rat experienced a total of five apneic episodes of 10 breaths each. We then infused into a femoral vein 108 fluorescent latex particles (4 µm diameter), which became trapped within the pulmonary microcirculation. We removed the lungs, allowed them to air-dry, and quantified the particle distributions in sections of the lungs using dispersion index (DI) analysis, a method we developed previously. The log of the DI (logDI) is a measure of perfusion maldistribution. Greater log(DI) values correspond to greater maldistribution. Apneic lungs had average logDI values of 1.28 (SD 0.24). Rats not subjected to apnea had average logDI values of 0.85 (SD 0.08) ( P ≤ 0.05). Rats that received latex particles 10 min or 24 h after apnea had average logDI values of 0.97 (SD 0.31) and 0.84 (SD 0.38), respectively (not significant). Our results demonstrate, for the first time, that a few apneic events produced significant, but temporary, perfusion maldistribution within the pulmonary microcirculation. Repeated nightly episodes of apnea over months and years may explain why human patients with OSA suffer from significantly greater cardiovascular disease than those without OSA.
Collapse
Affiliation(s)
- Robert L Conhaim
- William S. Middleton Memorial Veterans Hospital , Madison, Wisconsin.,Department of Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Kal E Watson
- William S. Middleton Memorial Veterans Hospital , Madison, Wisconsin
| | - Mihaela Teodorescu
- William S. Middleton Memorial Veterans Hospital , Madison, Wisconsin.,Department of Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
3
|
Conhaim RL, Segal GS, Watson KE. Arterio-venous anastomoses in isolated, perfused rat lungs. Physiol Rep 2016; 4:4/21/e13023. [PMID: 27821718 PMCID: PMC5112501 DOI: 10.14814/phy2.13023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 11/24/2022] Open
Abstract
Several studies have suggested that large-diameter (>25 μm) arterio-venous shunt pathways exist in the lungs of rats, dogs, and humans. We investigated the nature of these pathways by infusing specific-diameter fluorescent latex particles (4, 7, 15, 30, or 50 μm) into isolated, ventilated rat lungs perfused at constant pressure. All lungs received the same mass of latex (5 mg), which resulted in infused particle numbers that ranged from 1.7 × 107 4 μm particles to 7.5 × 104 50 μm particles. Particles were infused over 2 min. We used a flow cytometer to count particle appearances in venous effluent samples collected every 0.5 min for 12 min from the start of particle infusion. Cumulative percentages of infused particles that appeared in the samples averaged 3.17 ± 2.46% for 4 μm diameter particles, but ranged from 0.01% to 0.17% for larger particles. Appearances of 4 μm particles followed a rapid upslope beginning at 30 sec followed by a more gradual downslope that lasted for up to 12 min. All other particle diameters also began to appear at 30 sec, but followed highly irregular time courses. Infusion of 7 and 15 μm particles caused transient but significant perfusate flow reductions, while infusion of all other diameters caused insignificant reductions in flow. We conclude that small numbers of bypass vessels exist that can accommodate particle diameters of 7-to-50 μm. We further conclude that our 4 μm particle data are consistent with a well-developed network of serial and parallel perfusion pathways at the acinar level.
Collapse
Affiliation(s)
- Robert L Conhaim
- The William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin .,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Gilad S Segal
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kal E Watson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
4
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
5
|
Becker DL, Phillips AR, Duft BJ, Kim Y, Green CR. Translating connexin biology into therapeutics. Semin Cell Dev Biol 2015; 50:49-58. [PMID: 26688335 DOI: 10.1016/j.semcdb.2015.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022]
Abstract
It is 45 years since gap junctions were first described. Universities face increasing commercial pressures and declining federal funding, with governments and funding foundations showing greater interest in gaining return on their investments. This review outlines approaches taken to translate gap junction research to clinical application and the challenges faced. The need for commercialisation is discussed and key concepts behind research patenting briefly described. Connexin channel roles in disease and injury are also discussed, as is identification of the connexin hemichannel as a therapeutic target which appears to play a role in both the start and perpetuation of the inflammasome pathway. Furthermore connexin hemichannel opening results in vascular dieback in acute injury and chronic disease. Translation to human indications is illustrated from the perspective of one connexin biotechnology company, CoDa Therapeutics, Inc.
Collapse
Affiliation(s)
- David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Yeri Kim
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
6
|
Johansen ME, Jensen JU, Bestle MH, Ostrowski SR, Thormar K, Christensen H, Pedersen HP, Poulsen L, Mohr T, Kjær J, Cozzi-Lepri A, Møller K, Tønnesen E, Lundgren JD, Johansson PI. Mild induced hypothermia: effects on sepsis-related coagulopathy--results from a randomized controlled trial. Thromb Res 2014; 135:175-82. [PMID: 25466837 DOI: 10.1016/j.thromres.2014.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/27/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Coagulopathy associates with poor outcome in sepsis. Mild induced hypothermia has been proposed as treatment in sepsis but it is not known whether this intervention worsens functional coagulopathy. MATERIALS AND METHODS Interim analysis data from an ongoing randomized controlled trial; The Cooling And Surviving Septic shock (CASS) study. Patients suffering severe sepsis/septic shock are allocated to either mild induced hypothermia (cooling to 32-34°C for 24hours) or control (uncontrolled temperature). TRIAL REGISTRATION NCT01455116. Thrombelastography (TEG) is performed three times during the first day after study enrollment in all patients. Reaction time (R), maximum amplitude (MA) and patients' characteristics are here reported. RESULTS One hundred patients (control n=50 and intervention n=50; male n=59; median age 68years) with complete TEG during follow-up were included. At enrollment, 3%, 38%, and 59% had a hypocoagulable, normocoagulable, and hypercoagulable TEG clot strength (MA), respectively. In the hypothermia group, functional coagulopathy improved during the hypothermia phase, measured by R and MA, in patients with hypercoagulation as well as in patients with hypocoagulation (correlation between ΔR and initial R: rho=-0.60, p<0.0001 and correlation between ΔMA and initial MA: rho=-0.50, p=0.0002). Similar results were not observed in the control group neither for R (rho=-0.03, p=0.8247) nor MA (rho=-0.15, p=0.3115). CONCLUSION Mild induced hypothermia did seem to improve functional coagulopathy in septic patients. This improvement of functional coagulopathy parameters during the hypothermia intervention persisted after rewarming. Randomized trials are warranted to determine whether the positive effect on sepsis-related coagulopathy can be transformed to improved survival.
Collapse
Affiliation(s)
- Maria E Johansen
- Centre for Health and Infectious Diseases Research (CHIP), Department of Infectious Diseases and Reumathology, Rigshospitalet,University of Copenhagen, Copenhagen, Denmark.
| | - Jens-Ulrik Jensen
- Centre for Health and Infectious Diseases Research (CHIP), Department of Infectious Diseases and Reumathology, Rigshospitalet,University of Copenhagen, Copenhagen, Denmark
| | - Morten H Bestle
- Department of Anesthesia and Intensive Care, Nordsjaellands hospital, Denmark
| | - Sisse R Ostrowski
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Denmark
| | - Katrin Thormar
- Department of Anesthesia and Intensive Care, Bispebjerg Hospital, Denmark
| | - Henrik Christensen
- Department of Anesthesia and Intensive Care, University Hospital Herlev, Denmark
| | | | - Lone Poulsen
- Department of Anesthesia and Intensive Care, University Hospital Køge, Denmark
| | - Thomas Mohr
- Department of Anesthesia and Intensive Care, University Hospital Gentofte, Denmark
| | - Jesper Kjær
- Centre for Health and Infectious Diseases Research (CHIP), Department of Infectious Diseases and Reumathology, Rigshospitalet,University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Cozzi-Lepri
- Centre for Health and Infectious Diseases Research (CHIP), Department of Infectious Diseases and Reumathology, Rigshospitalet,University of Copenhagen, Copenhagen, Denmark; Department of Virology, Royal Free and University College Medical School London, United Kingdom
| | - Kirsten Møller
- Neurointensive Care Unit 2093, Department of Neuroanaesthesiology, University Hospital Rigshospitalet, Denmark
| | - Else Tønnesen
- Department of Anaesthesia and Intensive Care Medicine, Aarhus University Hospital, Denmark
| | - Jens D Lundgren
- Centre for Health and Infectious Diseases Research (CHIP), Department of Infectious Diseases and Reumathology, Rigshospitalet,University of Copenhagen, Copenhagen, Denmark
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Denmark; Department of Surgery, University of Texas Medical School at Houston, TX, USA
| |
Collapse
|
7
|
Zhang J, O'Carroll SJ, Henare K, Ching LM, Ormonde S, Nicholson LFB, Danesh-Meyer HV, Green CR. Connexin hemichannel induced vascular leak suggests a new paradigm for cancer therapy. FEBS Lett 2014; 588:1365-71. [PMID: 24548560 DOI: 10.1016/j.febslet.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/15/2022]
Abstract
It is 40 years since cancer growth was correlated with neovascularisation. Anti-angiogenic drugs remain at the forefront of cancer investigations but progress has been disappointing and unexpected toxicities are emerging. Gap junction channels are implicated in lesion spread following injury, with channel blockers shown to improve healing; in particular preventing vascular disruption and/or restoring vascular integrity. Here we briefly review connexin roles in vascular leak and endothelial cell death that occurs following acute wounds and during chronic disease, and how connexin channel regulation has been used to ameliorate vascular disruption. We then review chronic inflammatory disorders and trauma in the eye, concluding that vascular disruption under these conditions mimics that seen in tumours, and can be prevented with connexin hemichannel modulation. We apply this knowledge to tumour vessel biology, proposing that contrary to current opinion, these data suggest a need to protect, maintain and/or restore cancer vasculature. This may lead to reduced tumour hypoxia, promote the survival of normal cells, and enable improved therapeutic delivery or more effective radiation therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kimiora Henare
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Susan Ormonde
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
8
|
A method for quantifying blood flow distribution among the alveoli of the lung. Methods Mol Biol 2014; 1075:297-304. [PMID: 24052359 DOI: 10.1007/978-1-60761-847-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This article describes a method for quantifying blood flow distribution among lung alveoli. Our method is based on analysis of trapping patterns of small diameter (4 μm) fluorescent latex particles infused into lung capillaries. Trapping patterns are imaged using confocal microscopy, and the images are analyzed statistically using SAS subroutines. The resulting plots provide a quantifiable way of assessing interalveolar perfusion distribution in a way that has not previously been possible. Methods for using this technique are described, and the SAS routines are included. This technique can be an important tool for learning how this critical vascular bed performs in health and disease.
Collapse
|
9
|
Yang SC, Liao KM, Chen CW, Lin WC. Positive blood culture is not associated with increased mortality in patients with sepsis-induced acute respiratory distress syndrome. Respirology 2013; 18:1210-6. [DOI: 10.1111/resp.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/19/2012] [Accepted: 04/03/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Szu-Chun Yang
- Department of Internal Medicine; National Cheng Kung University Hospital Dou-Liou Branch; Yunlin Taiwan
| | - Kuang-Ming Liao
- Department of Internal Medicine; Chi Mei Hospital Chia-Li Branch; Tainan Taiwan
| | - Chang-Wen Chen
- Medical Intensive Care Unit; Department of Internal Medicine; National Cheng Kung University Medical College and Hospital; Tainan Taiwan
| | - Wei-Chieh Lin
- Medical Intensive Care Unit; Department of Internal Medicine; National Cheng Kung University Medical College and Hospital; Tainan Taiwan
| |
Collapse
|
10
|
Conhaim RL, Dovi WF, Watson KE, Spiegel CA, Harms BA. Bacteremia does not affect cellular uptake of ultrafine particles in the lungs of rats. Anat Rec (Hoboken) 2011; 294:550-7. [PMID: 21337717 DOI: 10.1002/ar.21326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/08/2010] [Accepted: 09/06/2010] [Indexed: 11/09/2022]
Abstract
To assess the effects of intra-abdominal bacteremia on lung cellular function in vivo, we used electron microscopy to quantify the uptake of 6 nm diameter, albumin-coated colloidal gold particles (overall diam. 20.8 nm) by cells in the lungs of rats made septic by the introduction of live bacteria (E.coli and B. fragilis) into their abdomens. Gold particles were instilled into the trachea 24 hr after bacteremia induction, and lungs were harvested and prepared for electron microscopy 24 hr later. Because bacteremia produces an increase in metabolism, we hypothesized that this might be associated with increased cellular uptake of these particles and also with increased permeability of the alveolar epithelial barrier to them, as bacteremia is also associated with lung injury. We quantified particle uptake by counting particle densities (particles/μm²) within type I and type II epithelial cells, capillary endothelial cells, erythrocytes and neutrophils in the lungs of five septic rats and five sham-sepsis controls. We also counted particle densities within organelles of these cells (nuclei, mitochondria, type II cell lamellar bodies) and within the alveolar interstitium. We found particles to be present within all of these compartments, although we found no differences in particle densities between bacteremic rats and sham-sepsis controls. Our results suggest that these 6 nm particles were able to freely cross cell and organelle membranes, and further suggest that this ability was not altered by bacteremia.
Collapse
Affiliation(s)
- Robert L Conhaim
- Department of Surgery, The William S. Middleton Memorial Veterans Hospital, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
11
|
Maldistribution of interalveolar perfusion--one early step in the pathogenesis of lung injury? Crit Care Med 2008; 36:639-40. [PMID: 18216625 DOI: 10.1097/01.ccm.0000299845.50079.a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|