1
|
Ciftel E, Mercantepe T, Ciftel S, Karakas SM, Aktepe R, Yilmaz A, Mercantepe F. Somatostatin and N-acetylcysteine on testicular damage triggered by ischemia reperfusion: cellular protection and antioxidant effects. Hormones (Athens) 2025:10.1007/s42000-025-00650-6. [PMID: 40220169 DOI: 10.1007/s42000-025-00650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Ischemia-reperfusion (I/R) injury is a significant cause of testicular damage, leading to infertility and other reproductive dysfunctions. Antioxidant therapies have emerged as a potential intervention to mitigate oxidative stress and cellular damage. This study investigates the effects of somatostatin (SST) and N-acetylcysteine (NAC) on testicular damage induced by I/R, focusing on their antioxidant and cellular protective effects. Twenty-four male rats were divided into four groups, as follows: sham operated, I/R injury, I/R + somatostatin treatment, and I/R + NAC treatment. A testicular I/R injury was induced surgically, followed by either SST or NAC administration. Testicular tissues were assessed histopathologically using hematoxylin and eosin staining and employing Johnson's biopsy scoring. Immunohistochemical analyses were performed for caspase- 3, 8-hydroxy- 2'-deoxyguanosine (8-OHdG), testis-specific histone 2B, and testosterone to evaluate apoptosis, oxidative DNA damage, cellular proliferation, and steroidogenesis, respectively. Serum levels of testosterone and follicle-stimulating hormone (FSH) were measured by biochemical analysis. The results showed that both SST and NAC treatments significantly ameliorated histopathological damage and reduced the levels of caspase- 3 and 8-OHdG, indicating reduced apoptosis and oxidative DNA damage. Furthermore, increased testis-specific histone 2B positivity suggested enhanced cellular proliferation. Notably, administration of SST decreased testosterone positivity in the testis, whereas NAC treatment increased it. However, no significant differences in serum testosterone levels were observed between the NAC and SST groups. In addition, serum FSH levels of the I/R + SST group were found to be significantly higher than those of the control group. SST and NAC exhibit protective effects against testicular damage induced by I/R, as evidenced by their antioxidant and anti-apoptotic properties. The differential impact on testosterone positivity in the testis tissue highlights distinct underlying mechanisms, warranting further investigation. Despite these promising findings, the lack of significant changes in serum hormone levels calls for additional studies to fully elucidate the therapeutic potential and mechanistic pathways of SST and NAC in the context of testicular I/R injury.
Collapse
Affiliation(s)
- Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Türkiye
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Education and Research Hospital, Erzurum, Türkiye
| | - Sibel Mataracı Karakas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Riza Aktepe
- Department of Anatomy and Morphology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine Recep, Tayyip Erdogan University, Rize, 53010, Türkiye.
| |
Collapse
|
2
|
Ryabov VV, Trusov AA, Kercheva MA, Gombozhapova AE, Ilyushenkova JN, Stepanov IV, Fadeev MV, Syrkina AG, Sazonova SI. Somatostatin Receptor Type 2 as a Potential Marker of Local Myocardial Inflammation in Myocardial Infarction: Morphologic Data on Distribution in Infarcted and Normal Human Myocardium. Biomedicines 2024; 12:2178. [PMID: 39457491 PMCID: PMC11504226 DOI: 10.3390/biomedicines12102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Nuclear imaging modalities can detect somatostatin receptor type 2 (SSTR2) in vivo as a potential marker of local post-MI inflammation. SSTR2+ macrophages are thought to be the main substrate for SSTR-targeted radioimaging. However, the distribution of SSTR2+ cells in the MI patients' myocardium is unknown. Using immunohistochemistry, we investigated the distribution of SSTR2+ cells in the myocardium of patients who died during the MI inflammatory phase (n = 7) compared to the control group of individuals with fatal trauma (n = 3). Inflammatory cellular landscapes evolve in a wave front-like pattern, so we divided the myocardium into histological zones: the infarct core (IC), the border zone (BZ), the remote zone (RZ), and the peri-scar zone (PSZ). The number of SSTR2+ neutrophils (NPs), SSTR2+ monocytes/macrophages (Mos/MPs), and SSTR2+ vessels were counted. In the myocardium of the control group, SSTR2+ NPs and SSTR2+ Mos/MPs were occasional, SSTR2+ vessels were absent. In the RZ, the picture was similar to the control group, but there was a lower number of SSTR2+ Mos/MPs in the RZ. In the PSZ, SSTR2+ vessel numbers were highest in the myocardium. In the IC, the median number of SSTR2+ NPs was 200 times higher compared to the RZ or control group myocardium, which may explain the selective uptake of SSTR-targeted radiotracers in the MI area during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Vyacheslav V. Ryabov
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Andrey A. Trusov
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Maria A. Kercheva
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Aleksandra E. Gombozhapova
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Julia N. Ilyushenkova
- Nuclear Medicine Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (J.N.I.); (S.I.S.)
| | - Ivan V. Stepanov
- Department of Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (I.V.S.); (M.V.F.)
| | - Mikhail V. Fadeev
- Department of Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (I.V.S.); (M.V.F.)
| | - Anna G. Syrkina
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (V.V.R.); (M.A.K.); (A.E.G.); (A.G.S.)
| | - Svetlana I. Sazonova
- Nuclear Medicine Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (J.N.I.); (S.I.S.)
| |
Collapse
|
3
|
Vörös I, Sághy É, Pohóczky K, Makkos A, Onódi Z, Brenner GB, Baranyai T, Ágg B, Váradi B, Kemény Á, Leszek P, Görbe A, Varga ZV, Giricz Z, Schulz R, Helyes Z, Ferdinandy P. Somatostatin and Its Receptors in Myocardial Ischemia/Reperfusion Injury and Cardioprotection. Front Pharmacol 2021; 12:663655. [PMID: 34803662 PMCID: PMC8602362 DOI: 10.3389/fphar.2021.663655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about the role of the neuropeptide somatostatin (SST) in myocardial ischemia/reperfusion injury and cardioprotection. Here, we investigated the direct cardiocytoprotective effect of SST on ischemia/reperfusion injury in cardiomyocyte cultures, as well as the expression of SST and its receptors in pig and human heart tissues. SST induced a bell-shaped, concentration-dependent cardiocytoprotection in both adult rat primary cardiomyocytes and H9C2 cells subjected to simulated ischemia/reperfusion injury. Furthermore, in a translational porcine closed-chest acute myocardial infarction model, ischemic preconditioning increased plasma SST-like immunoreactivity. Interestingly, SST expression was detectable at the protein, but not at the mRNA level in the pig left ventricles. SSTR1 and SSTR2, but not the other SST receptors, were detectable at the mRNA level by PCR and sequencing in the pig left ventricle. Moreover, remote ischemic conditioning upregulated SSTR1 mRNA. Similarly, SST expression was also detectable in healthy human interventricular septum samples at the protein level. Furthermore, SST-like immunoreactivity decreased in interventricular septum samples of patients with ischemic cardiomyopathy. SSTR1, SSTR2, and SSTR5 but not SST and the other SST receptors were detectable at the mRNA level by sequencing in healthy human left ventricles. In addition, in healthy human left ventricle samples, SSTR1 and SSTR2 mRNAs were expressed especially in vascular endothelial and some other cell types as detected by RNA Scope® in situ hybridization. This is the first demonstration that SST exerts a direct cardiocytoprotective effect against simulated ischemia/reperfusion injury. Moreover, SST is expressed in the heart tissue at the peptide level; however, it is likely to be of sensory neural origin since its mRNA is not detectable. SSTR1 and SSTR2 might be involved in the cardioprotective action of SST, but other mechanisms cannot be excluded.
Collapse
Affiliation(s)
- Imre Vörös
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Éva Sághy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - András Makkos
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zsófia Onódi
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Gábor B. Brenner
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Baranyai
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Barnabás Váradi
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Ágnes Kemény
- Szentágothai János Research Center, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Medical Biology, University of Pécs, Pécs, Hungary
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński National Institute of Cardiology, Warszawa, Poland
| | - Anikó Görbe
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V. Varga
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Zsuzsanna Helyes
- Szentágothai János Research Center, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
4
|
Gomaa RS, Mahmoud NM, Mohammed NA. Octreotide (somatostatin analog) attenuates cardiac ischemia/reperfusion injury via activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway in rat model of hyperthyroidism. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00127-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Hyperthyroidism is known to increase the risk of ischemic heart diseases. Octreotide has been reported to attenuate ischemia/reperfusion (I/R) injury. Whether it is useful when ischemic heart disease is accompanied with co-morbidities like hyperthyroidism needs more clarifying. So, this study aimed to explore the effect of octreotide on cardiac I/R injury in hyperthyroid rats and to clarify if Nrf2 activation is involved in this effect. Forty adult female Wistar rats were subdivided into control (euthyroid) (n = 10) and hyperthyroid (n = 30) groups. Rats in hyperthyroid group received l-thyroxine (12 mg/L) in drinking water for 35 days, then were randomly divided into three equal subgroups (n = 10): hyperthyroid control positive group, hyperthyroid octreotide treated group, and hyperthyroid octreotide + Nrf2 inhibitor (brusatol) treated group. Isolated hearts were submitted to I/R and evaluated for cardiac hemodynamics and infarct size. Serum T3 and T4, coronary efflux lactate dehydrogenase (LDH) and creatine kinase-myoglobin binding (CK-MB) and cardiac tissue malondialdehyde (MDA) were estimated. Nrf2- regulated gene expressions of HO-1, SOD, GPx, and catalase were assessed.
Results
Octreotide administration to hyperthyroid rats improved baseline and post-ischemic recovery of cardiac hemodynamics, decreased the high coronary efflux LDH and CK-MB and tissue MDA, reduced infarction size, and upregulated the decreased antioxidative enzymes HO-1, SOD, GPx, and catalase mRNA expressions in the hyperthyroid I/R rat hearts. The Nrf2 inhibitor brusatol reversed the cardioprotective effect of octreotide in hyperthyroid I/R rat hearts.
Conclusion
Octreotide can reduce oxidative stress to effectively alleviate I/R injury in the hyperthyroid rat hearts through upregulation of Nrf2-dependent antioxidative signaling pathways.
Collapse
|
5
|
Gorky J, Schwaber J. Conceptualization of a Parasympathetic Endocrine System. Front Neurosci 2019; 13:1008. [PMID: 31607849 PMCID: PMC6767939 DOI: 10.3389/fnins.2019.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
We here propose a parasympathetic endocrine system (PES) comprised of circulating peptides released from secretory cells in the gut, significantly modulated by vagal projections from the dorsal motor nucleus of the vagus (DMV). While most of these gut peptides mediate well-described satiety and digestive effects that increase parasympathetic control of digestion (Lee et al., 1994; Gutzwiller et al., 1999; Klok et al., 2007), they also have actions that are far-reaching and increase parasympathetic signaling broadly throughout the body. The actions beyond satiety that peptides like somatostatin, cholecystokinin, glucagon-like peptide 1, and vasoactive intestinal peptide have been well-examined, but not in a systematic way. Consideration has been given to the idea that these and other gut-derived peptides are part of an endocrine system has been partially considered (Rehfeld, 2012; Drucker, 2016), but that it is coordinated through parasympathetic control and may act to increase the actions of parasympathetic projections has not been formalized before. Here only gut-derived hormones are included although there are potentially other parasympathetically mediated factors released from other sites like lung and liver (Drucker, 2016). The case for the existence of the PES with the DMV as its integrative controller will be made through examination of an anatomical substrate and evidence of physiological control mechanisms as well as direct examples of PES antagonism of sympathetic signaling in mammals, including humans. The implications for this conceptual understanding of a PES reframe diseases like metabolic syndrome and may help underscore the role of the autonomic nervous system in the associated symptoms.
Collapse
Affiliation(s)
- Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
7
|
Wang TL. Statin (Mevalotin) preconditioning decreases infarct size in senile rat myocardial infarction model. J Acute Med 2014. [DOI: 10.1016/j.jacme.2014.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sun Z, Biela LM, Hamilton KL, Reardon KF. Concentration-dependent effects of the soy phytoestrogen genistein on the proteome of cultured cardiomyocytes. J Proteomics 2012; 75:3592-604. [PMID: 22521270 DOI: 10.1016/j.jprot.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/23/2022]
Abstract
The soy-derived phytoestrogen genistein (GEN) has received attention for its potential benefits on the cardiovascular system by providing direct protection to cardiomyocytes against pathophysiological stresses. Here, we employed a proteomic approach to study the concentration-dependent effects of GEN treatments on cardiomyocytes. Cultured HL-1 cardiomyocytes were treated with low (1μM) and high (50μM) concentrations of GEN. Proteins were pre-fractionated by sequential hydrophilic/hydrophobic extraction and both protein fractions from each treatment group were separated by 2D gel electrophoresis (2DE). Overall, approximately 2,700 spots were visualized on the 2D gels. Thirty-nine and 99 spots changed in volume relative to controls (p<0.05) following the low- and high-concentration GEN treatments, respectively. From these spots, 25 and 62 protein species were identified by ESI-MS/MS and Mascot database searching, respectively. Identified proteins were further categorized according to their functions and possible links to cardioprotection were discussed. MetaCore gene ontology analysis suggested that 1μM GEN significantly impacted the anti-apoptosis process, and that both the low and high concentrations of GEN influenced the glucose catabolic process and regulation of ATPase activity. This proteomics study provides the first global insight into the molecular events triggered by GEN treatment in cardiomyocytes.
Collapse
Affiliation(s)
- Zeyu Sun
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | | | | | | |
Collapse
|
9
|
Wang TL, Yang YH. Effect of mechanical stretch on rat neonatal cardiomyocyte somatostatin receptor subtype 1 expression. J Acute Med 2011. [DOI: 10.1016/j.jacme.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Role of Janus-associated kinases in somatostatin analog preconditioning of human umbilical-vein endothelial cells. J Acute Med 2011. [DOI: 10.1016/j.jacme.2011.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Pretreatment with Octreotide Modulates iNOS Gene Expression, Mimics Surgical Delay, and Improves Flap Survival. Ann Plast Surg 2010; 65:245-9. [DOI: 10.1097/sap.0b013e3181c1fe8f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
There are numerous sedatives and analgesics used in critical care medicine today; these medications are used on critically ill patients, many of whom have heart disease, including coronary artery disease or congestive heart failure. The purpose of this review is to recognize the effects of these medications on the heart. Studies that evaluated the effects of sedatives and analgesics on normal individuals or on those with heart disease were reviewed. Current choices for sustained sedation in the critically ill include the benzodiazepines, morphine, propofol, and etomidate. Each of these medications has their particular advantages and disadvantages. Benzodiazepines provide the greatest amnesia and cardiovascular safety but they can cause significant hypotension in the hemodynamically unstable patient. Morphine provides analgesia and cardioprotective activity after ischemia, although the large observational study CRUSADE showed increased mortality rate in those patients with non-ST segment elevation myocardial infarction who received morphine. Propofol is the most easily titratable drug with cardioprotective features, but its use must be accompanied with great attention to possible development of propofol infusion syndrome, which is a deadly disease, especially in patients with head injury and those with septic shock receiving vasopressors. Etomidate has a rapid onset effect and short period of action with great hemodynamic stability even in patients with shock and hypovolemia, but the incidence of adrenal insufficiency during infusion, not bolus doses, may cause deterioration in the circulatory stability. In conclusion, the sedatives and analgesics mentioned here have characteristics that give them a cardiovascular safety profile useful in critically ill patients. However, use of these drugs on an individual basis is dependent on each agent's safety and efficacy.
Collapse
|
13
|
Gross ER, Gross GJ. Ischemic Preconditioning And Myocardial Infarction: An Update and Perspective. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2007; 4:165-174. [PMID: 18701939 PMCID: PMC2515553 DOI: 10.1016/j.ddmec.2007.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the leading cause of mortality in Western societies with annual expenditures of $431.8 billion spent on coronary artery disease in man. Therapeutics to combat infarction from myocardial injury, based on studies of ischemic preconditioning (IPC), are currently in progress. Hence, this review provides an update on IPC, including general and molecular mechanisms responsible for IPC and the effects of IPC in models of aging or disease. A summary of therapeutics shown to possess efficacy in preclinical and clinical trials and future directions of studies regarding cardiac IPC are also discussed.
Collapse
Affiliation(s)
- Eric R. Gross
- Medical College of Wisconsin, Department of Pharmacology and Toxicology, Milwaukee, WI 53226
- St Joseph’s Medical Center, Transitional Year Residency Program, Milwaukee, WI 53210
| | - Garrett J. Gross
- Medical College of Wisconsin, Department of Pharmacology and Toxicology, Milwaukee, WI 53226
| |
Collapse
|