1
|
Clark AJ, Mullooly N, Safitri D, Harris M, de Vries T, MaassenVanDenBrink A, Poyner DR, Gianni D, Wigglesworth M, Ladds G. CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells. Commun Biol 2021; 4:776. [PMID: 34163006 PMCID: PMC8222276 DOI: 10.1038/s42003-021-02293-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Agonist bias occurs when different ligands produce distinct signalling outputs when acting at the same receptor. However, its physiological relevance is not always clear. Using primary human cells and gene editing techniques, we demonstrate endogenous agonist bias with physiological consequences for the calcitonin receptor-like receptor, CLR. By switching the receptor-activity modifying protein (RAMP) associated with CLR we can “re-route” the physiological pathways activated by endogenous agonists calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2). AM2 promotes calcium-mediated nitric oxide signalling whereas CGRP and AM show pro-proliferative effects in cardiovascular cells, thus providing a rationale for the expression of the three peptides. CLR-based agonist bias occurs naturally in human cells and has a fundamental purpose for its existence. We anticipate this will be a starting point for more studies into RAMP function in native environments and their importance in endogenous GPCR signalling. Clark et al. explore the ability of ligands to activate the calcitonin-like receptor (CLR) in primary endothelial cells, and the influence of co-expressed receptor-activity modifying proteins (RAMPs). Their study reveals that GPCR agonist bias occurs naturally in human cells and plays a fundamental role in providing unique functions to endogenous agonists.
Collapse
Affiliation(s)
- Ashley J Clark
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Niamh Mullooly
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tessa de Vries
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, Rotterdam, Netherlands
| | | | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Davide Gianni
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mark Wigglesworth
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Ji H, Shi X, Wang J, Cao S, Ling X, Zhang J, Shen R, Zhao C. Peptidomic analysis of blastocyst culture medium and the effect of peptide derived from blastocyst culture medium on blastocyst formation and viability. Mol Reprod Dev 2019; 87:191-201. [PMID: 31828871 DOI: 10.1002/mrd.23308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
Abstract
High-quality in vitro human embryo culture medium can improve the blastocyst formation rate and blastocyst quality and be beneficial for the clinical application of single blastocyst transfer. Mammalian embryos can secrete protein products into the surrounding medium. As a group of bioactive molecules and degraded proteins, peptides have been shown to participate in various biological processes. Using liquid chromatography-tandem mass spectrometry, we performed comparative peptidomic analysis of human culture medium in blastocyst formation and nonblastocyst-formation groups. A total of 201 differentially expressed peptides originating from 157 precursor proteins were identified. Among these, a peptide derived from HERC2 (peptide derived from blastocyst culture medium [PDBCM]) passed through the zona pellucida, was distributed on the perivitelline space, was absent in arrest embryos and highly expressed in high-quality blastocysts compared with low-quality blastocysts, and significantly promoted blastocyst formation in a concentration-dependent manner. These results indicate that PDBCM may be a novel biomarker for predicting blastocyst formation and viability. The mechanism remains unclear and needs to be explored in the future.
Collapse
Affiliation(s)
- Hui Ji
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodan Shi
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Wang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanren Cao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Zhao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Parikh RV, Fearon WF. Adrenomedullin and endothelin-1: Promising biomarkers of endothelial function, but not ready for prime time. Int J Cardiol 2019; 291:175-176. [DOI: 10.1016/j.ijcard.2019.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022]
|
4
|
Theuerle J, Farouque O, Vasanthakumar S, Patel SK, Burrell LM, Clark DJ, Al-Fiadh AH. Plasma endothelin-1 and adrenomedullin are associated with coronary artery function and cardiovascular outcomes in humans. Int J Cardiol 2019; 291:168-172. [PMID: 30987836 DOI: 10.1016/j.ijcard.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/10/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1) is a vasoconstrictor associated with cardiovascular disease, whereas adrenomedullin (ADM) is a vasorelaxant with cardioprotective properties. We sought to determine the relationship between plasma ET-1 and ADM with coronary circulatory function and long-term major adverse cardiovascular events (MACE). METHODS Thirty-two patients undergoing coronary angiography for chest pain were recruited. Baseline plasma ET-1 and ADM levels were measured. The index of microcirculatory resistance (IMR), coronary flow mediated dilatation (cFMD) and coronary flow reserve (CFR) were measured in a non-obstructed coronary artery. Patients were assessed for MACE over a median period of 8.8 years. RESULTS Plasma ET-1 levels correlated with IMR (r = 0.57; p < 0.01) and ADM levels correlated with CFR (r = 0.50; p = 0.04) and cFMD (r = 0.62; p = 0.01). After adjustment for age, gender and cardiovascular risk factors, the association between ADM and cFMD (β = 0.79; p < 0.01) and between ET-1 and IMR (β = 5.7; p = 0.01) remained significant. IMR was higher, although not statistically significant, in patients with long-term MACE (17.9 ± 5.3 vs. 13.1 ± 6.0 units; p = 0.14). In patients free of MACE, cFMD (9.3 ± 7.6 vs. 2.8 ± 5.0%; p = 0.01) and plasma ADM levels (7.6 ± 5.3 vs. 4.0 ± 1.9 pmol/L; p = 0.07) were higher. CONCLUSIONS Plasma ET-1 and ADM were associated with measures of coronary microvascular and coronary conduit vessel function, respectively. Increased cFMD and elevated plasma ADM were associated with a cardioprotective effect.
Collapse
Affiliation(s)
- James Theuerle
- Department of Cardiology, Austin Health, Melbourne, Australia
| | - Omar Farouque
- Department of Cardiology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia.
| | | | - Sheila K Patel
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Louise M Burrell
- Department of Cardiology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - David J Clark
- Department of Cardiology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Ali H Al-Fiadh
- Department of Cardiology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Winter J, Laing C, Johannes B, Mulder E, Brix B, Roessler A, Reichmuth J, Rittweger J, Goswami N. Galanin and Adrenomedullin Plasma Responses During Artificial Gravity on a Human Short-Arm Centrifuge. Front Physiol 2019; 9:1956. [PMID: 30774604 PMCID: PMC6367687 DOI: 10.3389/fphys.2018.01956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/22/2018] [Indexed: 12/21/2022] Open
Abstract
Galanin and adrenomedullin plasma responses to head-up tilt and lower body negative pressure have been studied previously. However, to what extent short-arm human centrifugation (SAHC) affects these responses is not known. In this study, we assessed how the application of variable gradients of accelerations (ΔGz ) via shifting of the rotation axis during centrifugation affects selected hormonal responses. Specifically, we tested the hypothesis, that cardiovascular modulating hormones such as galanin and adrenomedullin will be higher in non-finishers (participants in whom at least one of the pre-defined criteria for presyncope was fulfilled) when compared to finishers (participants who completed the entire protocol in both sessions) during SAHC exposure. Twenty healthy subjects (10 women and 10 men) were exposed to two g-levels [1 Gz and 2.4 Gz at the feet (Gz_Feet)] in two positions (axis of rotation placed above the head and axis of rotation placed at the heart level). Elevated baseline levels of galanin appeared to predict orthostatic tolerance (p = 0.054) and seemed to support good orthostatic tolerance during 1 Gz_Feet SAHC (p = 0.034). In finishers, 2.4 Gz_Feet SAHC was associated with increased galanin levels after centrifugation (p = 0.007). For adrenomedullin, the hypothesized increases were observed after centrifugation at 1 Gz_Feet (p = 0.031), but not at 2.4 Gz_Feet, suggesting that other central mechanisms than local distribution of adrenomedullin predominate when coping with central hypovolemia induced by SAHC (p > 0.14). In conclusion, baseline galanin levels could potentially be used to predict development of presyncope in subjects. Furthermore, galanin levels increase during elevated levels of central hypovolemia and galanin responses appear to be important for coping with such challenges. Adrenomedullin release depends on degree of central hypovolemia induced fluid shifts and a subject's ability to cope with such challenges. Our results suggest that the gradient of acceleration (ΔGz ) is an innovative approach to quantify the grade of central hypovolemia and to assess neurohormonal responses in those that can tolerate (finishers) or not tolerate (non-finishers) artificial gravity (AG). As AG is being considered as a preventing tool for spaceflight induced deconditioning in future missions, understanding effects of AG on hormonal responses in subjects who develop presyncope is important.
Collapse
Affiliation(s)
- Julia Winter
- Department of Aerospace Physiology, Institute for Aerospace Medicine, German Aerospace Center e.V. (DLR), Cologne, Germany
| | - Charles Laing
- Department of Aerospace Physiology, Institute for Aerospace Medicine, German Aerospace Center e.V. (DLR), Cologne, Germany
- Centre for Human and Aerospace Physiological Sciences, King’s College London, London, United Kingdom
| | - Bernd Johannes
- Department of Aerospace Physiology, Institute for Aerospace Medicine, German Aerospace Center e.V. (DLR), Cologne, Germany
| | - Edwin Mulder
- Department of Aerospace Physiology, Institute for Aerospace Medicine, German Aerospace Center e.V. (DLR), Cologne, Germany
| | - Bianca Brix
- Gravitational Physiology and Medical Research Unit, Physiology Division, Otto Loewi Center for Research in Vascular Biology, Immunity, and Inflammation, Medical University of Graz, Graz, Austria
| | - Andreas Roessler
- Gravitational Physiology and Medical Research Unit, Physiology Division, Otto Loewi Center for Research in Vascular Biology, Immunity, and Inflammation, Medical University of Graz, Graz, Austria
| | - Johannes Reichmuth
- Gravitational Physiology and Medical Research Unit, Physiology Division, Otto Loewi Center for Research in Vascular Biology, Immunity, and Inflammation, Medical University of Graz, Graz, Austria
| | - Joern Rittweger
- Department of Aerospace Physiology, Institute for Aerospace Medicine, German Aerospace Center e.V. (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Nandu Goswami
- Gravitational Physiology and Medical Research Unit, Physiology Division, Otto Loewi Center for Research in Vascular Biology, Immunity, and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Fischer JP, Els-Heindl S, Schönauer R, Bierer D, Köbberling J, Riedl B, Beck-Sickinger AG. The Impact of Adrenomedullin Thr22 on Selectivity within the Calcitonin Receptor-like Receptor/Receptor Activity-Modifying Protein System. ChemMedChem 2018; 13:1797-1805. [DOI: 10.1002/cmdc.201800329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jan-Patrick Fischer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Ria Schönauer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Donald Bierer
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Johannes Köbberling
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Bernd Riedl
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | | |
Collapse
|
7
|
Stenberg TA, Kildal AB, How OJ, Myrmel T. Adrenomedullin-epinephrine cotreatment enhances cardiac output and left ventricular function by energetically neutral mechanisms. Am J Physiol Heart Circ Physiol 2012; 302:H1584-90. [PMID: 22307666 DOI: 10.1152/ajpheart.00887.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM) used therapeutically reduces mortality in the acute phase of experimental myocardial infarction. However, AM is potentially deleterious in acute heart failure as it is vasodilative and inotropically neutral. AM and epinephrine (EPI) are cosecreted from chromaffin cells, indicating a physiological interaction. We assessed the hemodynamic and energetic profile of AM-EPI cotreatment, exploring whether drug interaction improves cardiac function. Left ventricular (LV) mechanoenergetics were evaluated in 14 open-chest pigs using pressure-volume analysis and the pressure-volume area-myocardial O(2) consumption (PVA-MVo(2)) framework. AM (15 ng·kg(-1)·min(-1), n = 8) or saline (controls, n = 6) was infused for 120 min. Subsequently, a concurrent infusion of EPI (50 ng·kg(-1)·min(-1)) was added in both groups (AM-EPI vs. EPI). AM increased cardiac output (CO) and coronary blood flow by 20 ± 10% and 39 ± 14% (means ± SD, P < 0.05 vs. baseline), whereas controls were unaffected. AM-EPI increased CO and coronary blood flow by 55 ± 17% and 75 ± 16% (P < 0.05, AM-EPI interaction) compared with 13 ± 12% (P < 0.05 vs. baseline) and 18 ± 31% (P = not significant) with EPI. LV systolic capacitance decreased by -37 ± 22% and peak positive derivative of LV pressure (dP/dt(max)) increased by 32 ± 7% with AM-EPI (P < 0.05, AM-EPI interaction), whereas no significant effects were observed with EPI. Mean arterial pressure was maintained by AM-EPI and tended to decrease with EPI (+2 ± 13% vs. -11 ± 10%, P = not significant). PVA-MVo(2) relationships were unaffected by all treatments. In conclusion, AM-EPI cotreatment has an inodilator profile with CO and LV function augmented beyond individual drug effects and is not associated with relative increases in energetic cost. This can possibly take the inodilator treatment strategy beyond hemodynamic goals and exploit the cardioprotective effects of AM in acute heart failure.
Collapse
Affiliation(s)
- Thor Allan Stenberg
- Surgical Research Laboratory, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | | | | | |
Collapse
|
8
|
Hurtado O, Serrano J, Sobrado M, Fernández AP, Lizasoain I, Martínez-Murillo R, Moro MA, Martínez A. Lack of adrenomedullin, but not complement factor H, results in larger infarct size and more extensive brain damage in a focal ischemia model. Neuroscience 2010; 171:885-92. [PMID: 20854881 DOI: 10.1016/j.neuroscience.2010.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM) and its binding protein, complement factor H (FH), are expressed throughout the brain. In this study we used a brain-specific conditional knockout for AM and a complete knockout for FH to investigate the effect of these molecules on the pathophysiology of stroke. Following 48 h of middle cerebral artery permanent occlusion, there was a statistically significant infarct size increase in animals lacking AM when compared to their wild type littermates. In contrast, lack of FH did not affect infarct volume. To investigate some of the mechanisms by which lack of AM may augment brain damage, markers of nitrosative stress, apoptosis, and autophagy were studied at the mRNA and protein levels. There was a significant increase of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP9), fractin, and Beclin-1 in the peri-infarct area of AM-deficient mice when compared to their wild type counterparts and to contralateral and sham-operated controls. These data suggest that AM exerts a neuroprotective action in the brain and that this protection may be mediated by regulation of iNOS, matrix metalloproteases, and inflammatory mediators. In the future, substances that increase AM actions in the central nervous system may be used as potential neuroprotective agents in stroke.
Collapse
Affiliation(s)
- O Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|