1
|
Abbas NF, Aoude MR, Kourie HR, Al-Shamsi HO. Uncovering the epidemiology of bladder cancer in the Arab world: A review of risk factors, molecular mechanisms, and clinical features. Asian J Urol 2024; 11:406-422. [PMID: 39139531 PMCID: PMC11318450 DOI: 10.1016/j.ajur.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/06/2023] [Indexed: 08/15/2024] Open
Abstract
Objective Bladder cancer (BC) is a significant public health concern in the Middle East and North Africa, but the epidemiology and clinicopathology of the disease and contributors to high mortality in this region remain poorly understood. The aim of this systematic review was to investigate the epidemiological features of BC in the Arab world and compare them to those in Western countries in order to improve the management of this disease. Methods An extensive electronic search of the PubMed/PMC and Cochrane Library databases was conducted to identify all articles published until May 2022, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. A total of 95 articles were included in the final analysis after title, abstract, and full-text screening, with additional data obtained from the GLOBOCAN and WHO 2020 databases. Results Most of the included articles were case-control studies examining the risk factors and molecular mechanisms of BC. These studies originated from 10 different countries, with Egypt being the most active contributor. While BC in the Arab world shares some common risk factors with Western countries, such as smoking and occupational exposure, it also exhibits unique features related to schistosomiasis. The high mortality rates in this region are alarming and can be attributed to various factors, including the prevalence of smoking, the impact of schistosomiasis, a combination of genetic and socioeconomic factors, treatment shortages, and limited access to care or inadequate assessment of the quality of care. Conclusion Despite the relatively low incidence of BC in Arab countries, the mortality rates are among the highest worldwide. BC tends to be more aggressive in the Arab world, making it essential to implement strategies to address this burden.
Collapse
Affiliation(s)
- Noura F. Abbas
- Department of Hematology-Oncology, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Marc R. Aoude
- Department of Hematology-Oncology, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Hampig R. Kourie
- Department of Hematology-Oncology, Hotel Dieu De France Hospital, Saint Joseph University of Beirut, Riad El Solh, Lebanon
| | - Humaid O. Al-Shamsi
- Department of Oncology, Burjeel Cancer Institute, Burjeel Medical City, Abu Dhabi, United Arab Emirates
- Innovation and Research Center, Burjeel Cancer Institute, Burjeel Medical City, Abu Dhabi, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Emirates Oncology Society, Dubai, United Arab Emirates
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
N-acetyltransferase 2 polymorphism is associated with bladder cancer risk: An updated meta-analysis based on 54 case-control studies. Gene 2020; 757:144924. [PMID: 32622992 DOI: 10.1016/j.gene.2020.144924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE N-acetyltransferase 2 (NAT2) polymorphism could participate in the metabolism of carcinogens through regulating the activity of a series of critical enzymes. However, the effects of NAT2 polymorphism on bladder cancer (BCa) risk were still inconclusive. In order to illustrate whether NAT2 polymorphism may influence the susceptibility to BCa, we conducted this updated meta-analysis. MATERIALS AND METHODS Databases including PubMed, Medline, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure(CNKI) were systematically retrieved and we applied MetaGenyo to perform final meta-analysis. Odds ratios (ORs) as well as 95% confidence intervals (CIs) were calculated and Bonferroni method was applied to correct the P-value for multiple comparisons. The registration of this study protocol is at PROSPERO and ID is CRD42019133957. RESULTS Ultimately, 54 case-control studies were identified for final meta-analysis (13343 BCa cases and 18,586 controls). Overall analysis indicated that the slow genotype in NAT2 polymorphism was obviously associated with BCa risk (PBonferroni < 0.001). Subgroup analyses demonstrated that significant risk with the slow genotype was observed in Caucasians, Asians, smokers, non-exposed individuals, high grade bladder cancer (HGBC) patients and muscle-invasive bladder cancer (MIBC) patients. In addition, the intermediate NAT2 genotype was revealed to increase the BCa risk of Asians and transitional cell carcinoma (TCC) patients. However, no correlation was identified in Africans with the NAT2 polymorphism. CONCLUSIONS The slow NAT2 genotype was identified to be the risk genotype for BCa. The intermediate genotype could serve as the candidate risk genotype. The gene-smoking interaction with NAT2 polymorphism might accelerate the tumor progression.
Collapse
|
4
|
Nasr R, Temraz S, Mukherji D, Shamseddine A, Akika R, Abbasi S, Khauli R, Bulbul M, Tamim H, Zgheib NK. Distribution and Role of N-acetyltransferase 2 Genetic Polymorphisms in Bladder Cancer Risk in a Lebanese Population. Asian Pac J Cancer Prev 2017; 18:2561-2568. [PMID: 28952301 PMCID: PMC5720667 DOI: 10.22034/apjcp.2017.18.9.2561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: In Lebanon, bladder cancer (BC) has an unusually high prevalence. Individuals who are exposed to aromatic amines from smoking or certain occupations and carrying the slow N-acetyl transferase 2 (NAT2) acetylator’ phenotype may be at a higher risk. Methods: Data and DNA from 115 Lebanese BC cases and 306 controls were examined. Ten NAT2 single nucleotide polymorphisms were genotyped, seven of which were then included in haplotype and phenotype analysis. Results: BC patients were more likely to be males (87.8% vs. 54.9%) and current smokers (60.9% vs. 26.5%) when compared to controls. In both groups, most participants had the slow NAT2 acetylator phenotype (66.1% of BC cases vs 62.7% of controls; P=0.302) with the NAT2*5B and *6A haplotypes being the most common. The odds ratio (95%CI) of having BC among slow NAT2 acetylators was 1.157 (0.738-1.815) and remained non-significant after adjustment [1.097 (0.666-1.806)]. Sensitivity analysis with a subgroup of 113 cases and 84 controls for which occupational history was available revealed a statistically significant association between slow NAT2 acetylators and BC in females only. The sample size was however very small and the CI quite wide. Conclusions: This is the first study to evaluate the distribution of NAT2 haplotypes and their potential role in BC in a Lebanese population. The absence of any significant association may be due to the relatively small sample size, the unavailability of matching by gender, and the lack of evaluation of genetic interactions with extent of active and passive smoking, exposure to environmental pollutants, diet, and other genes. The potential association limited to females needs further evaluation.
Collapse
Affiliation(s)
- Rami Nasr
- Division of Urology, Department of Surgery, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Al-Shaqha WM, Alkharfy KM, Al-Daghri NM, Mohammed AK. N-acetyltransferase 1 and 2 polymorphisms and risk of diabetes mellitus type 2 in a Saudi population. Ann Saudi Med 2015; 35:214-21. [PMID: 26409796 PMCID: PMC6074463 DOI: 10.5144/0256-4947.2015.214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There have been inconsistent reports on N-acetyltransferase (NAT) gene polymorphism in type 2 diabetes mellitus (T2DM), and data is particularly limited in the Arab population. Therefore, the main objective of this study was to identify whether the genetic polymorphisms of NAT1 and NAT2 play a role in susceptibility to T2DM in the Saudi population. DESIGN AND SETTINGS A population-based, prospective genetic association case-control study on a Saudi population. PATIENTS AND METHODS Whole blood, anthropometric measurements and biochemistry data were collected from 369 Saudi individuals (186 T2DM patients and 183 healthy controls). DNA was isolated from the blood. Polymorphism of NAT1 and NAT2 SNPs [NAT2*7B, rs1041983(C > T); NAT2*7, rs1799931(G > A); NAT2*6A, rs1799930(G > A); NAT2*5A, rs1799929(C > T); and NAT1*11A, rs4986988(C > T)] were evaluated by allelic discrimination using real-time PCR. RESULTS Subjects with T2DM had a significantly increased body mass index (BMI), waist circumference, sys.tolic and diastolic blood pressure, glucose, triglycerides, and LDL-cholesterol compared with healthy controls (P < .05). The rs1799931(G > A) genotype was detected in the control population but not in the T2DM population (P < .001). The wild type (G) allele frequency was higher in T2DM than controls (P=.038). The mutant allele (A) in rs1799931(G > A) had a protective effect for T2DM (OR 0.32, 95% CI 0.16-0.62; P=.001). Regression analysis showed that BMI, systolic BP and triglycerides are potential risk factors for T2DM. CONCLUSION The genotypes as well as the individual alleles of rs1799931(G > A) differed significantly be.tween the case and control populations. The variation in the data reported so far suggest that polymorphism of the NAT gene may vary among different geographical areas. Environmental or dietary factors may also contribute to disease manifestation.
Collapse
Affiliation(s)
| | - Khalid M Alkharfy
- Dr. Khalid M. Alkharfy, Department of Clinical Pharmacy,, College of Pharmacy,, King Saud University,, PO Box 2457, Riyadh 11451,, Saudi Arabia, T: +966 1-467-7494, F: +966 1-467-7480,
| | | | | |
Collapse
|
6
|
Zgheib NK, Shamseddine AA, Geryess E, Tfayli A, Bazarbachi A, Salem Z, Shamseddine A, Taher A, El-Saghir NS. Genetic polymorphisms of CYP2E1, GST, and NAT2 enzymes are not associated with risk of breast cancer in a sample of Lebanese women. Mutat Res 2013; 747-748:40-7. [PMID: 23628324 DOI: 10.1016/j.mrfmmm.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/25/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022]
Abstract
Changes in the activity of drug metabolizing enzymes (DMEs) are potentially associated with cancer risk. This relationship is attributed to their involvement in the bioactivation of multiple procarcinogens or the metabolism of multiple substrates including an array of xenobiotics and environmental carcinogens. 326 Lebanese women of whom 99 were cancer free (controls) and 227 were diagnosed with breast cancer (cases) were included. Blood for DNA was collected and medical charts were reviewed. Three genotyping methods were employed including: (1) restriction fragment length polymorphism (RFLP) for CYP2E1*5B, CYP2E1*6, NAT2*5 and NAT2*6; (2) gel electrophoresis for GSTM1 and GSTT1; and (3) real-time PCR for GSTP1 Ile/Val polymorphism. We analyzed the relationship between genetic susceptibilities in selected xenobiotic metabolizing genes and breast cancer risk. Allele frequencies were fairly similar to previously reported values from neighboring populations with relevant migration routes. There were no statistically significant differences in the distribution of variant carcinogen metabolizing genes between cases and controls even after adjusting for age at diagnosis, menopausal status, smoking, and alcohol intake. Despite its limitations, this is the first study that assesses the role of genetic polymorphisms in DMEs with breast cancer in a sample of Lebanese women. Further studies are needed to determine the genetic predisposition and gene-environment interactions of breast cancer in this population.
Collapse
Affiliation(s)
- Nathalie K Zgheib
- Department of Pharmacology & Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Semiz S, Dujic T, Ostanek B, Velija-Asimi Z, Prnjavorac B, Bego T, Malenica M, Mlinar B, Heljic B, Marc J, Causevic A. Association of NAT2 polymorphisms with type 2 diabetes in a population from Bosnia and Herzegovina. Arch Med Res 2011; 42:311-7. [PMID: 21820610 DOI: 10.1016/j.arcmed.2011.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/09/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS N-acetyltransferase 2 (NAT2) is a drug-metabolizing enzyme, which is genetically variable in human populations. Polymorphisms in the NAT2 gene have been associated with drug efficacy and toxicity as well as disease susceptibility. Recently, an association of NAT2 gene variation with risk of type 2 diabetes mellitus (T2DM) has been suggested. This is the first study performed in a population from Bosnia and Herzegovina (BH) in which the frequency of two common NAT2 polymorphisms, 341T>C (NAT2*5) and 590G>A (NAT2*6) was determined in diabetic patients. METHODS The frequency of the NAT2*5 (341T>C) and NAT2*6 (590G>A) polymorphisms was analyzed by employing TaqMan SNP Genotyping Assays (Applied Biosystems) in a group of 63 patients with T2DM and 79 nondiabetic subjects. RESULTS Our data demonstrated that the frequencies of NAT2*5 (341T>C) and NAT2*6 (590G>A) polymorphisms in BH population were in line with the Caucasians genotype data. The NAT2*5 and NAT2*6 alleles were in high linkage disequilibrium (D' = 0.969). Strinkingly, there was a significant difference in genotype frequencies for NAT2*5 (p <0.05) and NAT2*6 (p <0.001) polymorphisms between diabetic and nondiabetic subjects. NAT2*5 polymorphism was associated with 2.4-fold increased risk for developing T2DM (adjusted OR = 2.40, 95% CI = 1.10-5.25, p = 0.028). On the contrary, NAT2*6 variant significantly decreased by 5-fold susceptibility to the disease (adjusted OR = 0.20, 95% CI = 0.09-0.43, p <0.001). CONCLUSIONS Our data demonstrated that NAT2 genetic variation appeared to be an important risk factor in development of T2DM.
Collapse
Affiliation(s)
- Sabina Semiz
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Bosnia and Herzegovina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gastrointestinal neoplasia associated with bowel parasitosis: real or imaginary? J Trop Med 2011; 2011:234254. [PMID: 22174720 PMCID: PMC3235815 DOI: 10.1155/2011/234254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/01/2023] Open
Abstract
Several parasitic species are well known to have carcinogenic properties, namely; Schistosoma hematobium (squamous cell carcinoma of the bladder) and the liver flukes Opisthorchis and Chlonorchis (cholangiocarcinoma). A large number of parasites are known to colonize the gastrointestinal tract. We sought to review the evidence that implicates these parasites in gastrointestinal neoplasia. Schistosoma japonicum, which is endemic primarily in east Asia, has been shown in multiple studies to convey a mildly increased risk of colorectal adenocarcinoma. The data supporting a causative role for Schistosoma mansoni in colorectal or other neoplastic processes are less convincing, limited primarily to small case-control studies and case series. Reports of possible associations between other gastrointestinal parasites (e.g., E. histolytica and A. lumbricoides) and neoplasia may be found in the literature but are limited to individual cases. We conclude that, other than S. japonicum and to a lesser extent S. mansoni, there is little evidence of an association between gastrointestinal parasites and neoplasia.
Collapse
|
9
|
Banjoko SO, Akinlade KS. Acetylation pharmacogenetics and renal function in diabetes mellitus patients. Indian J Clin Biochem 2011; 25:289-94. [PMID: 21731200 DOI: 10.1007/s12291-010-0055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Activities of human hepatic drug metabolizing enzymes N-acetyl transferase (NATS) had earlier been recognized as a cause of inter-individual variation in the metabolism of drugs. Therefore acetylation of many drugs in human exhibit genetic polymorphism. The aim of the study was to investigate if acetylator status predispose diabetic mellitus patients more to the complications of renal disease, One hundred and twenty (120) diabetics consisting of (50) Type 1 (T(1)) and 70 Type 2 (T(2)) diabetes mellitus patients and 100 healthy individuals as controls were classified as slow or rapid acetylator using sulphamethazine (SMZ) as an in vivo probe. The percentage acetylation, recovery of SMZ, creatinine clearance and presence of urinary albumin were determined. A significant difference (P < 0.05) was observed in the percentage of SMZ acetylated between slow and rapid acetylators in control, T(1) and T(2) subjects. The ratios of slow to rapid acetylators for T(1), T(2) and control subjects were 1:4, 3:2 and 2:3 respectively. No significant differences were observed in the percentage of SMZ recovered in the urine of slow and rapid acetylators that are diabetics. The difference in creatinine clearance of slow and rapid acetylators in T(1) and T(2) were significant (P < 0.05). 29% out of 120 (24.2%) diabetics (T(1) and T(2)) exhibited albuminuria out of which 25 (86.2%) had slow acetylator status. These findings suggest that slow acetylator status in diabetes mellitus could be a predisposing factor in the development of renal complications. This underscores the need for a rapid pharmacogenetic testing and therapeutic drug monitoring in such patients. However this inference could be further validated with a larger sample size.
Collapse
|
10
|
Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res 2011; 17:879-86. [PMID: 21647780 DOI: 10.1007/s12253-011-9398-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking and genetic polymorphisms on the occurrence of bladder cancer. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). DNA repair is essential to an individual's ability to respond to damage caused by tobacco carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to this environmental exposure. Polymorphisms in NAT2, GST and DNA repair genes alter the ability of these enzymes to metabolize carcinogens or to repair alterations caused by this process. We have conducted a case-control study to assess the role of smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and XPC, XPD, XPG nucleotide excision-repair (NER) genotypes in bladder cancer development in North Tunisia. Taken alone, each gene unless NAT2 did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotypes, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk to develop bladder cancer (OR = 7.14; 95% CI: 1.30-51.41). However, in tobacco consumers, we have shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC (CC) and XPG (CC) are genetic risk factors for the disease. When combined together in susceptible individuals compared to protected individuals these risk factors give an elevated OR (OR = 61). So, we have shown a strong cumulative effect of tobacco and different combinations of studied genetic risk factors which lead to a great susceptibility to bladder cancer.
Collapse
|
11
|
Hein DW. N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol 2010; 5:353-66. [PMID: 19379125 DOI: 10.1517/17425250902877698] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arylamine N-acetyltransferase 1 and 2 exhibit single nucleotide polymorphisms in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location and functional effects of these single nucleotide polymorphisms and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine.
Collapse
Affiliation(s)
- David W Hein
- University of Louisville School of Medicine, James Graham Brown Cancer Center, Center for Environmental Genomics and Integrative Biology, Department of Pharmacology & Toxicology, Louisville, KY 40292, USA.
| |
Collapse
|
12
|
Bendaly J, Doll MA, Millner LM, Metry KJ, Smith NB, Pierce WM, Hein DW. Differences between human slow N-acetyltransferase 2 alleles in levels of 4-aminobiphenyl-induced DNA adducts and mutations. Mutat Res 2009; 671:13-9. [PMID: 19682468 DOI: 10.1016/j.mrfmmm.2009.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/28/2009] [Accepted: 08/04/2009] [Indexed: 12/25/2022]
Abstract
Aromatic amines such as 4-aminobiphenyl (ABP) require biotransformation to exert their carcinogenic effects. Genetic polymorphisms in biotransformation enzymes such as N-acetyltransferase 2 (NAT2) may modify cancer risk following exposure. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator), NAT2*5B (common Caucasian slow acetylator), or NAT2*7B (common Asian slow acetylator) alleles (haplotypes) were treated with ABP to test the effect of NAT2 polymorphisms on DNA adduct formation and mutagenesis. ABP N-acetyltransferase catalytic activities were detectable only in cell lines transfected with NAT2 and were highest in cells transfected with NAT2*4, lower in cells transfected with NAT2*7B, and lowest in cells transfected with NAT2*5B. Following ABP treatment, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) was the primary adduct formed. Cells transfected with both CYP1A1 and NAT2*4 showed the highest concentration-dependent cytotoxicity, hypoxanthine phosphoribosyl transferase (hprt) mutants, and dG-C8-ABP adducts. Cells transfected with CYP1A1 and NAT2*7B showed lower levels of cytotoxicity, hprt mutagenesis, and dG-C8-ABP adducts. Cells transfected with CYP1A1 only or cells transfected with both CYP1A1 and NAT2*5B did not induce cytotoxicity, hprt mutagenesis or dG-C8-ABP adducts. ABP-DNA adduct levels correlated very highly (r>0.96) with ABP-induced hprt mutant levels following each treatment. The results of the present study suggest that investigations of NAT2 genotype or phenotype associations with disease or toxicity could be more precise and reproducible if heterogeneity within the "slow" NAT2 acetylator phenotype is considered and incorporated into the study design.
Collapse
Affiliation(s)
- Jean Bendaly
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Rouissi K, Ouerhani S, Marrakchi R, Ben Slama MR, Sfaxi M, Ayed M, Chebil M, El Gaaied AB. Combined effect of smoking and inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 on bladder cancer in a Tunisian population. ACTA ACUST UNITED AC 2009; 190:101-7. [DOI: 10.1016/j.cancergencyto.2009.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/09/2009] [Indexed: 11/15/2022]
|
14
|
Liu HE, Hsiao PY, Lee CC, Lee JA, Chen HY. NAT2*7 Allele Is a Potential Risk Factor for Adult Brain Tumors in Taiwanese Population. Cancer Epidemiol Biomarkers Prev 2008; 17:661-5. [DOI: 10.1158/1055-9965.epi-07-2647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Mayer DA, Fried B. The role of helminth infections in carcinogenesis. ADVANCES IN PARASITOLOGY 2008; 65:239-96. [PMID: 18063098 DOI: 10.1016/s0065-308x(07)65004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review examines the significant literature on the role of helminth infections in carcinogenesis. Both parasitic infections and cancer have complex natural histories and long latent periods during which numerous exogenous and endogenous factors interact to obfuscate causality. Although only two helminths, Schistosoma haematobium and Opisthorchis viverrini, have been proven to be definitely carcinogenic to humans, others have been implicated in facilitating malignant transformation. The known mechanisms of helminth-induced cancer include chronic inflammation, modulation of the host immune system, inhibition of intracellular communication, disruption of proliferation-antiproliferation pathways, induction of genomic instability and stimulation of malignant stem cell progeny. Approximately 16% of all cancer cases worldwide are attributable to pathogenic agents, including schistosomes and liver flukes. This equates to 1,375,000 preventable cancer deaths per year. Means to reduce the incidence of helminth-associated malignancies are discussed.
Collapse
Affiliation(s)
- David A Mayer
- Department of Surgery, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
16
|
Hein DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 2006; 25:1649-58. [PMID: 16550165 PMCID: PMC1434721 DOI: 10.1038/sj.onc.1209374] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A role for the N-acetyltransferase 2 (NAT2) genetic polymorphism in cancer risk has been the subject of numerous studies. Although comprehensive reviews of the NAT2 acetylation polymorphism have been published elsewhere, the objective of this paper is to briefly highlight some important features of the NAT2 acetylation polymorphism that are not universally accepted to better understand the role of NAT2 polymorphism in carcinogenic risk assessment. NAT2 slow acetylator phenotype(s) infer a consistent and robust increase in urinary bladder cancer risk following exposures to aromatic amine carcinogens. However, identification of specific carcinogens is important as the effect of NAT2 polymorphism on urinary bladder cancer differs dramatically between monoarylamines and diarylamines. Misclassifications of carcinogen exposure and NAT2 genotype/phenotype confound evidence for a real biological effect. Functional understanding of the effects of NAT2 genetic polymorphisms on metabolism and genotoxicity, tissue-specific expression and the elucidation of the molecular mechanisms responsible are critical for the interpretation of previous and future human molecular epidemiology investigations into the role of NAT2 polymorphism on cancer risk. Although associations have been reported for various cancers, this paper focuses on urinary bladder cancer, a cancer in which a role for NAT2 polymorphism was first proposed and for which evidence is accumulating that the effect is biologically significant with important public health implications.
Collapse
Affiliation(s)
- D W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|