1
|
Yan X, Kuster D, Mohanty P, Nijssen J, Pombo-García K, Garcia Morato J, Rizuan A, Franzmann TM, Sergeeva A, Ly AM, Liu F, Passos PM, George L, Wang SH, Shenoy J, Danielson HL, Ozguney B, Honigmann A, Ayala YM, Fawzi NL, Dickson DW, Rossoll W, Mittal J, Alberti S, Hyman AA. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates. Cell 2025:S0092-8674(25)00509-4. [PMID: 40412392 DOI: 10.1016/j.cell.2025.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2024] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
Cytosolic aggregation of the nuclear protein TAR DNA-binding protein 43 (TDP-43) is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43-enriched phase within stress granules, which subsequently transition into pathological aggregates. Intra-condensate demixing of TDP-43 is observed in iPS-motor neurons, a disease mouse model, and patient samples. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We suggest that up-concentration inside condensates followed by intra-condensate demixing could be a general pathway for protein aggregation.
Collapse
Affiliation(s)
- Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden 01307, Saxony, Germany
| | - David Kuster
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden 01307, Saxony, Germany
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden 01307, Saxony, Germany
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden 01307, Saxony, Germany
| | | | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Saxony, Germany
| | - Aleksandra Sergeeva
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden 01307, Saxony, Germany; Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Saxony, Germany
| | - Anh M Ly
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patricia M Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104, USA
| | - Leah George
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Helen L Danielson
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | - Busra Ozguney
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Saxony, Germany
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO 63104, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA.
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Saxony, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden 01307, Saxony, Germany.
| |
Collapse
|
2
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
3
|
Rezaei A, Kocsis-Jutka V, Gunes ZI, Zeng Q, Kislinger G, Bauernschmitt F, Isilgan HB, Parisi LR, Kaya T, Franzenburg S, Koppenbrink J, Knogler J, Arzberger T, Farny D, Nuscher B, Katona E, Dhingra A, Yang C, Gouna G, LaClair KD, Janjic A, Enard W, Zhou Q, Hagan N, Ofengeim D, Beltrán E, Gokce O, Simons M, Liebscher S, Edbauer D. Correction of dysregulated lipid metabolism normalizes gene expression in oligodendrocytes and prolongs lifespan in female poly-GA C9orf72 mice. Nat Commun 2025; 16:3442. [PMID: 40216746 PMCID: PMC11992041 DOI: 10.1038/s41467-025-58634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Clinical and genetic research links altered cholesterol metabolism with ALS development and progression, yet pinpointing specific pathomechanisms remain challenging. We investigated how cholesterol dysmetabolism interacts with protein aggregation, demyelination, and neuronal loss in ALS. Bulk RNAseq transcriptomics showed decreased cholesterol biosynthesis and increased cholesterol export in ALS mouse models (GA-Nes, GA-Camk2a GA-CFP, rNLS8) and patient samples (spinal cord), suggesting an adaptive response to cholesterol overload. Consequently, we assessed the efficacy of the cholesterol-binding drug 2-hydroxypropyl-β-cyclodextrin (CD) in a fast-progressing C9orf72 ALS mouse model with extensive poly-GA expression and myelination deficits. CD treatment normalized cholesteryl ester levels, lowered neurofilament light chain levels, and prolonged lifespan in female but not male GA-Nes mice, without impacting poly-GA aggregates. Single nucleus transcriptomics indicated that CD primarily affected oligodendrocytes, significantly restored myelin gene expression, increased density of myelinated axons, inhibited the disease-associated oligodendrocyte response, and downregulated the lipid-associated genes Plin4 and ApoD. These results suggest that reducing excess free cholesterol in the CNS could be a viable ALS treatment strategy.
Collapse
Affiliation(s)
- Ali Rezaei
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | | | - Zeynep I Gunes
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Qing Zeng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Georg Kislinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Franz Bauernschmitt
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | | | - Laura R Parisi
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | - Tuğberk Kaya
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jonas Koppenbrink
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Julia Knogler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eszter Katona
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Chao Yang
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Garyfallia Gouna
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | | | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nellwyn Hagan
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | | | - Eduardo Beltrán
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Ozgun Gokce
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Sabine Liebscher
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany
- Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
- Institute of Neurobiochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| |
Collapse
|
4
|
Santiago J, Pocevičiūtė D, The Netherlands Brain Bank, Wennström M. Perivascular phosphorylated TDP-43 inclusions are associated with Alzheimer's disease pathology and loss of CD146 and Aquaporin-4. Brain Pathol 2025; 35:e13304. [PMID: 39251230 PMCID: PMC11835440 DOI: 10.1111/bpa.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The majority of patients with Alzheimer's disease (AD) exhibit aggregates of Trans-active response DNA binding protein 43 (TDP-43) in their hippocampus, which is associated with a more aggressive disease progression. The TDP-43 inclusions are commonly found in neurons, but also in astrocytes. The impact of the inclusions in astrocytes is less known. In the current study, we investigate the presence of phosphorylated TDP-43 (pTDP-43) inclusions in astrocytic endfeet and their potential association with blood-brain barrier (BBB) damage, glymphatic system dysfunction, and AD pathology. By staining postmortem hippocampal sections from AD patients and non-demented controls against TDP-43 and pTDP-43 together with the astrocytic markers glial fibrillary acidic protein (GFAP), astrocytic endfeet marker Aquaporin-4 (AQP4), and markers for BBB alterations (CD146) and leakiness (Immunoglobulin A), we demonstrate a close association between perivascular pTDP-43 or TDP-43 inclusions and GFAP or AQP4. These perivascular inclusions were more prominent in AD and correlated with the disease severity and loss of CD146 and AQP4. The findings indicate a relationship between pTDP-43 accumulation in astrocytic endfeet and BBB and glymphatic system dysfunction, which may contribute to the downstream pathological events seen in AD patients and the aggressive disease progression.
Collapse
Affiliation(s)
- Jessica Santiago
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | | | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
5
|
Lee H, Cheung S, Perneel J, Rademakers R, Hsiung GYR, Mackenzie IRA. White matter pathology in FTLD caused by GRN mutations. Acta Neuropathol 2025; 149:7. [PMID: 39812821 DOI: 10.1007/s00401-025-02847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Affiliation(s)
- Hyunwoo Lee
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Simon Cheung
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - G Y R Hsiung
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Ian R A Mackenzie
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
7
|
Zhu L, Bai D, Wang X, Ou K, Li B, Jia Q, Tan Z, Liang J, He D, Yan S, Wang L, Li S, Li X, Yin P. Pathologic TDP-43 downregulates myelin gene expression in the monkey brain. Brain Pathol 2024; 34:e13277. [PMID: 38779803 PMCID: PMC11483520 DOI: 10.1111/bpa.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Growing evidence indicates that non-neuronal oligodendrocyte plays an important role in Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In patient's brain, the impaired myelin structure is a pathological feature with the observation of TDP-43 in cytoplasm of oligodendrocyte. However, the mechanism underlying the gain of function by TDP-43 in oligodendrocytes, which are vital for the axonal integrity, remains unclear. Recently, we found that the primate-specific cleavage of truncated TDP-43 fragments occurred in cytoplasm of monkey neural cells. This finding opened up the avenue to investigate the myelin integrity affected by pathogenic TDP-43 in oligodendrocytes. In current study, we demonstrated that the truncated TDP-35 in oligodendrocytes specifically, could lead to the dysfunctional demyelination in corpus callosum of monkey. As a consequence of the interaction of myelin regulatory factor with the accumulated TDP-35 in cytoplasm, the downstream myelin-associated genes expression was downregulated at the transcriptional level. Our study aims to investigate the potential effect on myelin structure injury, affected by the truncated TDP-43 in oligodendrocyte, which provided the additional clues on the gain of function during the progressive pathogenesis and symptoms in TDP-43 related diseases.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Dazhang Bai
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongChina
| | - Xiang Wang
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Kaili Ou
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Bang Li
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Qingqing Jia
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Zhiqiang Tan
- Department of Medical Imaging, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Jiahui Liang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dajian He
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Sen Yan
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Lu Wang
- Department of Medical Imaging, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Shihua Li
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Jiang Li
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Peng Yin
- Guangdong Key Laboratory of Non‐human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| |
Collapse
|
8
|
Denning AE, Ittyerah R, Levorse LM, Sadeghpour N, Athalye C, Chung E, Ravikumar S, Dong M, Duong MT, Li Y, Ilesanmi A, Sreepada LP, Sabatini P, Lowe M, Bahena A, Zablah J, Spencer BE, Watanabe R, Kim B, Sørensen MH, Khandelwal P, Brown C, Hrybouski S, Xie SX, de Flores R, Robinson JL, Schuck T, Ohm DT, Arezoumandan S, Porta S, Detre JA, Insausti R, Wisse LEM, Das SR, Irwin DJ, Lee EB, Wolk DA, Yushkevich PA. Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum. Acta Neuropathol 2024; 148:37. [PMID: 39227502 PMCID: PMC11371872 DOI: 10.1007/s00401-024-02789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
The medial temporal lobe (MTL) is a hotspot for neuropathology, and measurements of MTL atrophy are often used as a biomarker for cognitive decline associated with neurodegenerative disease. Due to the aggregation of multiple proteinopathies in this region, the specific relationship of MTL atrophy to distinct neuropathologies is not well understood. Here, we develop two quantitative algorithms using deep learning to measure phosphorylated tau (p-tau) and TDP-43 (pTDP-43) pathology, which are both known to accumulate in the MTL and are associated with MTL neurodegeneration. We focus on these pathologies in the context of Alzheimer's disease (AD) and limbic predominant age-related TDP-43 encephalopathy (LATE) and apply our deep learning algorithms to distinct histology sections, on which MTL subregions were digitally annotated. We demonstrate that both quantitative pathology measures show high agreement with expert visual ratings of pathology and discriminate well between pathology stages. In 140 cases with antemortem MR imaging, we compare the association of semi-quantitative and quantitative postmortem measures of these pathologies in the hippocampus with in vivo structural measures of the MTL and its subregions. We find widespread associations of p-tau pathology with MTL subregional structural measures, whereas pTDP-43 pathology had more limited associations with the hippocampus and entorhinal cortex. Quantitative measurements of p-tau pathology resulted in a significantly better model of antemortem structural measures than semi-quantitative ratings and showed strong associations with cortical thickness and volume. By providing a more granular measure of pathology, the quantitative p-tau measures also showed a significant negative association with structure in a severe AD subgroup where semi-quantitative ratings displayed a ceiling effect. Our findings demonstrate the advantages of using quantitative neuropathology to understand the relationship of pathology to structure, particularly for p-tau, and motivate the use of quantitative pathology measurements in future studies.
Collapse
Affiliation(s)
- Amanda E Denning
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Levorse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chinmayee Athalye
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunice Chung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mengjin Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Tran Duong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ademola Ilesanmi
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lasya P Sreepada
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Sabatini
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - MaKayla Lowe
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandra Bahena
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamila Zablah
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Spencer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryohei Watanabe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Boram Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Maja Højvang Sørensen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Pulkit Khandelwal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin de Flores
- UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, INSERM, Caen-Normandie University, GIP Cyceron, Caen, France
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa Schuck
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel T Ohm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanaz Arezoumandan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Insausti
- Human Neuroanatomy Lab, University of Castilla La Mancha, Albacete, Spain
| | - Laura E M Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Yan X, Kuster D, Mohanty P, Nijssen J, Pombo-García K, Rizuan A, Franzmann TM, Sergeeva A, Passos PM, George L, Wang SH, Shenoy J, Danielson HL, Honigmann A, Ayala YM, Fawzi NL, Mittal J, Alberti S, Hyman AA. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576837. [PMID: 38328053 PMCID: PMC10849624 DOI: 10.1101/2024.01.23.576837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.
Collapse
Affiliation(s)
- Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
| | - David Kuster
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- These authors contributed equally
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
| | - Titus M. Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Aleksandra Sergeeva
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Patricia M. Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Leah George
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Helen L. Danielson
- Center for Biomedical Engineering, Brown University; Providence, RI 02912; USA
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Yuna M. Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- Department of Chemistry, Texas A&M University; College Station, TX 77843; USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University; College Station, TX 77843; USA
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Lead contact
| |
Collapse
|
10
|
Sung W, Noh MY, Nahm M, Kim YS, Ki CS, Kim YE, Kim HJ, Kim SH. Progranulin haploinsufficiency mediates cytoplasmic TDP-43 aggregation with lysosomal abnormalities in human microglia. J Neuroinflammation 2024; 21:47. [PMID: 38347588 PMCID: PMC10863104 DOI: 10.1186/s12974-024-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Sung Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
11
|
Marks JD, Ayuso VE, Carlomagno Y, Yue M, Todd TW, Hao Y, Li Z, McEachin ZT, Shantaraman A, Duong DM, Daughrity LM, Jansen-West K, Shao W, Calliari A, Bejarano JG, DeTure M, Rawlinson B, Casey MC, Lilley MT, Donahue MH, Jawahar VM, Boeve BF, Petersen RC, Knopman DS, Oskarsson B, Graff-Radford NR, Wszolek ZK, Dickson DW, Josephs KA, Qi YA, Seyfried NT, Ward ME, Zhang YJ, Prudencio M, Petrucelli L, Cook CN. TMEM106B core deposition associates with TDP-43 pathology and is increased in risk SNP carriers for frontotemporal dementia. Sci Transl Med 2024; 16:eadf9735. [PMID: 38232138 PMCID: PMC10841341 DOI: 10.1126/scitranslmed.adf9735] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.
Collapse
Affiliation(s)
- Jordan D. Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Virginia Estades Ayuso
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Hao
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zachary T. McEachin
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
- Department for Human Genetics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Duc M. Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | | | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Calliari
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bailey Rawlinson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Meredith T. Lilley
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Megan H. Donahue
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Dennis W. Dickson
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong-Jie Zhang
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N. Cook
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
12
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Pfeiffer P, Coates JR, Esqueda YM, Kennedy A, Getchell K, McLenon M, Kosa E, Agbas A. Exosomal TAR DNA binding protein 43 profile in canine model of amyotrophic lateral sclerosis: a preliminary study in developing blood-based biomarker for neurodegenerative diseases. Ann Med 2023; 55:34-41. [PMID: 36495266 PMCID: PMC9746620 DOI: 10.1080/07853890.2022.2153162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Blood-based biomarkers provide a crucial information in the progress of neurodegenerative diseases with a minimally invasive sampling method. Validated blood-based biomarker application in people with amyotrophic lateral sclerosis would derive numerous benefits. Canine degenerative myelopathy is a naturally occurring animal disease model to study the biology of human amyotrophic lateral sclerosis. Serum derived exosomes are potential carriers for cell-specific cargoes making them ideal venue to study biomarkers for a variety of diseases and biological processes. This study assessed the exosomal proteins that may be assigned as surrogate biomarker that may reflect biochemical changes in the central nervous system. METHODS Exosomes were isolated from canine serum using commercial exosome isolation reagents. Exosomes target proteins contents were analyzed by the Western blotting method. RESULTS The profiles of potential biomarker candidates in spinal cord homogenate and that of serum-derived exosomes were found elevated in dogs with degenerative myelopathy as compared to control subjects. CONCLUSIONS Serum-derived exosomal biomolecules can serve as surrogate biomarkers in neurodegenerative diseases.KEY MESSAGESA canine with degenerative myelopathy can serve as a model animal to study human amyotrophic lateral sclerosis.Serum-derived exosomes contain Transactive Response DNA Binding Protein 43 (TDP-43), a potential biomarker candidate.The levels of spinal cord TDP-43 proteins and that of serum-derived exosomes exhibited similar profiling. Therefore, serum derived exosomes may be used as a venue for establishing blood-based biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edina Kosa
- Kansas City University, Kansas City, MO, USA
| | - Abdulbaki Agbas
- Kansas City University, Kansas City, MO, USA.,Heartland Center for Mitochondrial Medicine, Kansas City, KS, USA
| |
Collapse
|
14
|
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, Di Lorenzo F, Koch G. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int J Mol Sci 2023; 24:11732. [PMID: 37511491 PMCID: PMC10380352 DOI: 10.3390/ijms241411732] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease of growing interest, since it accounts for up to 10% of middle-age-onset dementias and entails a social, economic, and emotional burden for the patients and caregivers. It is characterised by a (at least initially) selective degeneration of the frontal and/or temporal lobe, generally leading to behavioural alterations, speech disorders, and psychiatric symptoms. Despite the recent advances, given its extreme heterogeneity, an overview that can bring together all the data currently available is still lacking. Here, we aim to provide a state of the art on the pathogenesis of this disease, starting with established findings and integrating them with more recent ones. In particular, advances in the genetics field will be examined, assessing them in relation to both the clinical manifestations and histopathological findings, as well as considering the link with other diseases, such as amyotrophic lateral sclerosis (ALS). Furthermore, the current diagnostic criteria will be explored, including neuroimaging methods, nuclear medicine investigations, and biomarkers on biological fluids. Of note, the promising information provided by neurophysiological investigations, i.e., electroencephalography and non-invasive brain stimulation techniques, concerning the alterations in brain networks and neurotransmitter systems will be reviewed. Finally, current and experimental therapies will be considered.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonia Pia Pace
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Martina Assogna
- Centro Demenze, Policlinico Tor Vergata, University of Rome 'Tor Vergata', 00133 Rome, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Daniela Gragnaniello
- Nuerology Unit, Neurosciences and Rehabilitation Department, Ferrara University Hospital, 44124 Ferrara, Italy
| | - Enrico Granieri
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section of Human Physiology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Jahanbazi Jahan-Abad A, Salapa HE, Libner CD, Thibault PA, Levin MC. hnRNP A1 dysfunction in oligodendrocytes contributes to the pathogenesis of multiple sclerosis. Glia 2023; 71:633-647. [PMID: 36382566 DOI: 10.1002/glia.24300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Oligodendrocyte (OL) damage and death are prominent features of multiple sclerosis (MS) pathology, yet mechanisms contributing to OL loss are incompletely understood. Dysfunctional RNA binding proteins (RBPs), hallmarked by nucleocytoplasmic mislocalization and altered expression, have been shown to result in cell loss in neurologic diseases, including in MS. Since we previously observed that the RBP heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was dysfunctional in neurons in MS, we hypothesized that it might also contribute to OL pathology in MS and relevant models. We discovered that hnRNP A1 dysfunction is characteristic of OLs in MS brains. These findings were recapitulated in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, where hnRNP A1 dysfunction was characteristic of OLs, including oligodendrocyte precursor cells and mature OLs in which hnRNP A1 dysfunction correlated with demyelination. We also found that hnRNP A1 dysfunction was induced by IFNγ, indicating that inflammation influences hnRNP A1 function. To fully understand the effects of hnRNP A1 dysfunction on OLs, we performed siRNA knockdown of hnRNP A1, followed by RNA sequencing. RNA sequencing detected over 4000 differentially expressed transcripts revealing alterations to RNA metabolism, cell morphology, and programmed cell death pathways. We confirmed that hnRNP A1 knockdown was detrimental to OLs and induced apoptosis and necroptosis. Together, these data demonstrate a critical role for hnRNP A1 in proper OL functioning and survival and suggest a potential mechanism of OL damage and death in MS that involves hnRNP A1 dysfunction.
Collapse
Affiliation(s)
- Ali Jahanbazi Jahan-Abad
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole D Libner
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Ohene-Nyako M, Nass SR, Richard HT, Lukande R, Nicol MR, McRae M, Knapp PE, Hauser KF. Casein Kinase 2 Mediates HIV- and Opioid-Induced Pathologic Phosphorylation of TAR DNA Binding Protein 43 in the Basal Ganglia. ASN Neuro 2023; 15:17590914231158218. [PMID: 36890725 PMCID: PMC9998424 DOI: 10.1177/17590914231158218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
SUMMARY STATEMENT HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Hope T Richard
- Pathology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Robert Lukande
- Pathology, College of Health Sciences, 58589Makerere University, Kampala, Uganda
| | - Melanie R Nicol
- Experimental and Clinical Pharmacology, College of Pharmacy, 15515University of Minnesota, Minneapolis, MN, USA
| | - MaryPeace McRae
- Pharmacotherapy and Outcomes Science, School of Pharmacy, 15535Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela E Knapp
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Pharmacology and Toxicology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Anatomy and Neurobiology, School of Medicine, 6886Virginia Commonwealth University, Richmond, VA, USA.,Institute for Drug and Alcohol Studies, 6886Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Lin BC, Higgins NR, Phung TH, Monteiro MJ. UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. FEBS J 2022; 289:6132-6153. [PMID: 34273246 PMCID: PMC8761781 DOI: 10.1111/febs.16129] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023]
Abstract
Ubiquilin (UBQLN) proteins are a dynamic and versatile family of proteins found in all eukaryotes that function in the regulation of proteostasis. Besides their canonical function as shuttle factors in delivering misfolded proteins to the proteasome and autophagy systems for degradation, there is emerging evidence that UBQLN proteins play broader roles in proteostasis. New information suggests the proteins function as chaperones in protein folding, protecting proteins prior to membrane insertion, and as guardians for mitochondrial protein import. In this review, we describe the evidence for these different roles, highlighting how different domains of the proteins impart these functions. We also describe how changes in the structure and phase separation properties of UBQLNs may regulate their activity and function. Finally, we discuss the pathogenic mechanisms by which mutations in UBQLN2 cause amyotrophic lateral sclerosis and frontotemporal dementia. We describe the animal model systems made for different UBQLN2 mutations and how lessons learnt from these systems provide fundamental insight into the molecular mechanisms by which UBQLN2 mutations drive disease pathogenesis through disturbances in proteostasis.
Collapse
Affiliation(s)
- Brian C. Lin
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicole R. Higgins
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trong H. Phung
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mervyn J. Monteiro
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Carlos AF, Josephs KA. Frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43): its journey of more than 100 years. J Neurol 2022; 269:4030-4054. [PMID: 35320398 PMCID: PMC10184567 DOI: 10.1007/s00415-022-11073-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) with TDP-43-immunoreactive inclusions (FTLD-TDP) is a neurodegenerative disease associated with clinical, genetic, and neuropathological heterogeneity. An association between TDP-43, FTLD and amyotrophic lateral sclerosis (ALS) was first described in 2006. However, a century before immunohistochemistry existed, atypical dementias displaying behavioral, language and/or pyramidal symptoms and showing non-specific FTLD with superficial cortical neuronal loss, gliosis and spongiosis were often confused with Alzheimer's or Pick's disease. Initially this pathology was termed dementia lacking distinctive histopathology (DLDH), but this was later renamed when ubiquitinated inclusions originally found in ALS were also discovered in (DLDH), thus warranting a recategorization as FTLD-U (ubiquitin). Finally, the ubiquitinated protein was identified as TDP-43, which aggregates in cortical, subcortical, limbic and brainstem neurons and glial cells. The topography and morphology of TDP-43 inclusions associate with specific clinical syndromes and genetic mutations which implies different pathomechanisms that are yet to be discovered; hence, the TDP-43 journey has actually just begun. In this review, we describe how FTLD-TDP was established and defined clinically and neuropathologically throughout the past century.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, 200 1st St S.W, Rochester, MN, 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St S.W, Rochester, MN, 55905, USA.
| |
Collapse
|
20
|
Pottier C, Mateiu L, Baker MC, DeJesus-Hernandez M, Teixeira Vicente C, Finch NA, Tian S, van Blitterswijk M, Murray ME, Ren Y, Petrucelli L, Oskarsson B, Biernacka JM, Graff-Radford NR, Boeve BF, Petersen RC, Josephs KA, Asmann YW, Dickson DW, Rademakers R. Shared brain transcriptomic signature in TDP-43 type A FTLD patients with or without GRN mutations. Brain 2022; 145:2472-2485. [PMID: 34918030 PMCID: PMC9337811 DOI: 10.1093/brain/awab437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/24/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.
Collapse
Affiliation(s)
- Cyril Pottier
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Cristina Teixeira Vicente
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
21
|
Sirisi S, Querol-Vilaseca M, Dols-Icardo O, Pegueroles J, Montal V, Muñoz L, Torres S, Ferrer-Raventós P, Iulita MF, Sánchez-Aced É, Blesa R, Illán-Gala I, Molina-Porcel L, Borrego-Ecija S, Sánchez-Valle R, Clarimon J, Belbin O, Fortea J, Lleó A. Myelin loss in C9orf72 hexanucleotide expansion carriers. J Neurosci Res 2022; 100:1862-1875. [PMID: 35766328 DOI: 10.1002/jnr.25100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.
Collapse
Affiliation(s)
- Sònia Sirisi
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Querol-Vilaseca
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Dols-Icardo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victor Montal
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Laia Muñoz
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Soraya Torres
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Paula Ferrer-Raventós
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Florencia Iulita
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Érika Sánchez-Aced
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jordi Clarimon
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
22
|
Shenouda M, Xiao S, MacNair L, Lau A, Robertson J. A C-Terminally Truncated TDP-43 Splice Isoform Exhibits Neuronal Specific Cytoplasmic Aggregation and Contributes to TDP-43 Pathology in ALS. Front Neurosci 2022; 16:868556. [PMID: 35801182 PMCID: PMC9253772 DOI: 10.3389/fnins.2022.868556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023] Open
Abstract
Neuronal cytoplasmic aggregation and ubiquitination of TDP-43 is the most common disease pathology linking Amyotrophic Lateral Sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 pathology is characterized by the presence of low molecular weight TDP-43 species generated through proteolytic cleavage and/or abnormal RNA processing events. In addition to N-terminally truncated TDP-43 species, it has become evident that C-terminally truncated variants generated through alternative splicing in exon 6 also contribute to the pathophysiology of ALS/FTLD. Three such variants are listed in UCSD genome browser each sharing the same C-terminal unique sequence of 18 amino acids which has been shown to contain a putative nuclear export sequence. Here we have identified an additional C-terminally truncated variant of TDP-43 in human spinal cord tissue. This variant, called TDP43C-spl, is generated through use of non-canonical splice sites in exon 6, skipping 1,020 bp and encoding a 272 aa protein lacking the C-terminus with the first 256 aa identical to full-length TDP-43 and the same 18 amino acid C-terminal unique sequence. Ectopic expression studies in cells revealed that TDP43C-spl was localized to the nucleus in astrocytic and microglial cell lines but formed cytoplasmic ubiquitinated aggregates in neuronal cell lines. An antibody raised to the unique 18 amino acid sequence showed elevated levels of C-terminally truncated variants in ALS spinal cord tissues, and co-labeled TDP-43 pathology in disease affected spinal motor neurons. The retention of this 18 amino acid sequence among several C-terminally truncated TDP-43 variants suggests important functional relevance. Our studies of TDP43C-spl suggest this may be related to the selective vulnerability of neurons to TDP-43 pathology and cell-subtype differences in nuclear export.
Collapse
Affiliation(s)
- Marc Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Laura MacNair
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Agnes Lau
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Sadler GL, Lewis KN, Narayana VK, De Souza DP, Mason J, McLean C, Gonsalvez DG, Turner BJ, Barton SK. Lipid Metabolism Is Dysregulated in the Motor Cortex White Matter in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12060554. [PMID: 35736487 PMCID: PMC9230865 DOI: 10.3390/metabo12060554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is profoundly dysregulated in amyotrophic lateral sclerosis (ALS), yet the lipid composition of the white matter, where the myelinated axons of motor neurons are located, remains uncharacterised. We aimed to comprehensively characterise how myelin is altered in ALS by assessing its lipid and protein composition. We isolated white matter from the motor cortex from post-mortem tissue of ALS patients (n = 8 sporadic ALS cases and n = 6 familial ALS cases) and age- and sex-matched controls (n = 8) and conducted targeted lipidomic analyses, qPCR for gene expression of relevant lipid metabolising enzymes and Western blotting for myelin proteins. We also quantified myelin density by using spectral confocal reflectance microscopy (SCoRe). Whilst myelin protein composition was similar in ALS and control tissue, both the lipid levels and the expression of their corresponding enzymes were dysregulated, highlighting altered lipid metabolism in the white matter as well as a likely change in myelin composition. Altered myelin composition could contribute to motor neuron dysfunction, and this highlights how oligodendrocytes may play a critical role in ALS pathogenesis.
Collapse
Affiliation(s)
- Gemma L. Sadler
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Katherine N. Lewis
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Catriona McLean
- Victorian Brain Bank, Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia;
| | - David G. Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia;
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Samantha K. Barton
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
- Correspondence:
| |
Collapse
|
24
|
Goldman JE, Rippon GA, Chin SS, Marder K. Corticobasal Syndrome with TAR Binding Protein 43-Positive Oligodendrocyte Inclusions. Mov Disord 2022; 37:1564-1565. [PMID: 35616487 DOI: 10.1002/mds.29070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- James E Goldman
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Gregory A Rippon
- OMNI Medical Unit, US Medical Affairs, Genentech/Roche, South San Francisco, California, USA
| | - Steven S Chin
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karen Marder
- Department of Neurology, Gertrude H. Sergievsky Center, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| |
Collapse
|
25
|
Smethurst P, Franklin H, Clarke BE, Sidle K, Patani R. The role of astrocytes in prion-like mechanisms of neurodegeneration. Brain 2022; 145:17-26. [PMID: 35265969 PMCID: PMC8967097 DOI: 10.1093/brain/awab366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neurodegenerative diseases are not merely neuronal in nature but comprise multicellular involvement, with astrocytes emerging as key players. The pathomechanisms of several neurodegenerative diseases involve the deposition of misfolded protein aggregates in neurons that have characteristic prion-like behaviours such as template-directed seeding, intercellular propagation, distinct conformational strains and protein-mediated toxicity. The role of astrocytes in dealing with these pathological prion-like protein aggregates and whether their responses either protect from or conspire with the disease process is currently unclear. Here we review the existing literature implicating astrocytes in multiple neurodegenerative proteinopathies with a focus on prion-like behaviour in this context.
Collapse
Affiliation(s)
- Phillip Smethurst
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Franklin
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E Clarke
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Sidle
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Correspondence may also be addressed to: Katie Sidle E-mail:
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence to: Rickie Patani The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK E-mail:
| |
Collapse
|
26
|
Quek H, Cuní-López C, Stewart R, Colletti T, Notaro A, Nguyen TH, Sun Y, Guo CC, Lupton MK, Roberts TL, Lim YC, Oikari LE, La Bella V, White AR. ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression. J Neuroinflammation 2022; 19:58. [PMID: 35227277 PMCID: PMC8887023 DOI: 10.1186/s12974-022-02421-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia.
Methods
In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls.
Results
We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression.
Conclusions
Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS.
Collapse
|
27
|
Yang C, Qiao T, Yu J, Wang H, Guo Y, Salameh J, Metterville J, Parsi S, Yusuf I, Brown RH, Cai H, Xu Z. Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice. PLoS One 2022; 17:e0255710. [PMID: 35113871 PMCID: PMC8812852 DOI: 10.1371/journal.pone.0255710] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Modestly increased expression of transactive response DNA binding protein (TDP-43) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.
Collapse
Affiliation(s)
- Chunxing Yang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tao Qiao
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Yu
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Hongyan Wang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yansu Guo
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Issa Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- RNA Therapeutic Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
28
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
29
|
Al Khleifat A, Iacoangeli A, van Vugt JJFA, Bowles H, Moisse M, Zwamborn RAJ, van der Spek RAA, Shatunov A, Cooper-Knock J, Topp S, Byrne R, Gellera C, López V, Jones AR, Opie-Martin S, Vural A, Campos Y, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc'h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. NPJ Genom Med 2022; 7:8. [PMID: 35091648 PMCID: PMC8799638 DOI: 10.1038/s41525-021-00267-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Alfredo Iacoangeli
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Harry Bowles
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ramona A J Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rick A A van der Spek
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Aleksey Shatunov
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Simon Topp
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Ross Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Cinzia Gellera
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Victoria López
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Ashley R Jones
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Sarah Opie-Martin
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Atay Vural
- Koc University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Yolanda Campos
- Mitochondrial pathology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Brendan Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kristel R Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bradley Smith
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Isabella Fogh
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Karen E Morrison
- Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Adriano Chio
- Rita Levi Montalcini, Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Azienda Ospedaliera Citta della Salute e della Scienza, Torino, Italy
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, Tours, France
- Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | | | - Monica P Panades
- Neurology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan D Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Christopher E Shaw
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
- King's College Hospital, Denmark Hill, London, UK
| | - Nazli Basak
- Koc University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK.
- King's College Hospital, Denmark Hill, London, UK.
| |
Collapse
|
30
|
Salem A, Wilson CJ, Rutledge BS, Dilliott A, Farhan S, Choy WY, Duennwald ML. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022; 8:794646. [PMID: 35083279 PMCID: PMC8784776 DOI: 10.3389/fmolb.2021.794646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Carter J. Wilson
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Benjamin S. Rutledge
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison Dilliott
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
- Department of Human Genetics, McGill Universty, Montreal, QC, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Martin L. Duennwald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
31
|
Valori CF, Neumann M. Contribution of RNA/DNA Binding Protein Dysfunction in Oligodendrocytes in the Pathogenesis of the Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration Spectrum Diseases. Front Neurosci 2021; 15:724891. [PMID: 34539339 PMCID: PMC8440855 DOI: 10.3389/fnins.2021.724891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders, often considered as the extreme manifestations of a disease spectrum, as they share similar pathomechanisms. In support of this, pathological aggregation of the RNA/DNA binding proteins trans-activation response element DNA-binding protein 43 (TDP-43) or fused in sarcoma (FUS) is the pathological hallmark found in neurons and glial cells of subsets of patients affected by either condition (i.e., ALS/FTLD—TDP-43 or ALS/FTLD—FUS, respectively). Among glia, oligodendrocytes are the most abundant population, designated to ensheath the axons with myelin and to provide them with metabolic and trophic support. In this minireview, we recapitulate the neuropathological evidence for oligodendroglia impairment in ALS/FTLD. We then debate how TDP-43 and FUS target oligodendrocyte transcripts, thereby controlling their homeostatic abilities toward the axons. Finally, we discuss cellular and animal models aimed at investigating the functional consequences of manipulating TDP-43 and FUS in oligodendrocytes in vivo. Taken together, current data provide increasing evidence for an important role of TDP-43 and FUS-mediated oligodendroglia dysfunction in the pathogenesis of ALS/FTLD. Thus, targeting disrupted oligodendroglial functions may represent a new treatment approach for these conditions.
Collapse
Affiliation(s)
- Chiara F Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
33
|
Lin Z, Kim E, Ahmed M, Han G, Simmons C, Redhead Y, Bartlett J, Pena Altamira LE, Callaghan I, White MA, Singh N, Sawiak S, Spires-Jones T, Vernon AC, Coleman MP, Green J, Henstridge C, Davies JS, Cash D, Sreedharan J. MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Commun 2021; 3:fcab114. [PMID: 34136812 PMCID: PMC8204366 DOI: 10.1093/braincomms/fcab114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are overlapping diseases in which MRI reveals brain structural changes in advance of symptom onset. Recapitulating these changes in preclinical models would help to improve our understanding of the molecular causes underlying regionally selective brain atrophy in early disease. We therefore investigated the translational potential of the TDP-43Q331K knock-in mouse model of amyotrophic lateral sclerosis-frontotemporal dementia using MRI. We performed in vivo MRI of TDP-43Q331K knock-in mice. Regions of significant volume change were chosen for post-mortem brain tissue analyses. Ex vivo computed tomography was performed to investigate skull shape. Parvalbumin neuron density was quantified in post-mortem amyotrophic lateral sclerosis frontal cortex. Adult mutants demonstrated parenchymal volume reductions affecting the frontal lobe and entorhinal cortex in a manner reminiscent of amyotrophic lateral sclerosis-frontotemporal dementia. Subcortical, cerebellar and brain stem regions were also affected in line with observations in pre-symptomatic carriers of mutations in C9orf72, the commonest genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Volume loss was also observed in the dentate gyrus of the hippocampus, along with ventricular enlargement. Immunohistochemistry revealed reduced parvalbumin interneurons as a potential cellular correlate of MRI changes in mutant mice. By contrast, microglia was in a disease activated state even in the absence of brain volume loss. A reduction in immature neurons was found in the dentate gyrus, indicative of impaired adult neurogenesis, while a paucity of parvalbumin interneurons in P14 mutant mice suggests that TDP-43Q331K disrupts neurodevelopment. Computerized tomography imaging showed altered skull morphology in mutants, further suggesting a role for TDP-43Q331K in development. Finally, analysis of human post-mortem brains confirmed a paucity of parvalbumin interneurons in the prefrontal cortex in sporadic amyotrophic lateral sclerosis and amyotrophic lateral sclerosis linked to C9orf72 mutations. Regional brain MRI changes seen in human amyotrophic lateral sclerosis-frontotemporal dementia are recapitulated in TDP-43Q331K knock-in mice. By marrying in vivo imaging with targeted histology, we can unravel cellular and molecular processes underlying selective brain vulnerability in human disease. As well as helping to understand the earliest causes of disease, our MRI and histological markers will be valuable in assessing the efficacy of putative therapeutics in TDP-43Q331K knock-in mice.
Collapse
Affiliation(s)
- Ziqiang Lin
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Eugene Kim
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Gang Han
- Molecular Neurobiology Group, Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Camilla Simmons
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Jack Bartlett
- Molecular Neurobiology Group, Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Luis Emiliano Pena Altamira
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | - Isobel Callaghan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | - Matthew A White
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | - Nisha Singh
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
- School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, 4th floor Lambeth Wing, London SE1 7EH, UK
| | - Stephen Sawiak
- Department of Clinical Neurosciences, Cambridge University, Cambridge CB2 0QQ, UK
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| | | | - Jeremy Green
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy’s Hospital, King’s College London, London SE1 9RT, UK
| | - Christopher Henstridge
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jeffrey S Davies
- Molecular Neurobiology Group, Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Diana Cash
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King’s College London, London SE5 9NU, UK
| | - Jemeen Sreedharan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 9RT, UK
| |
Collapse
|
34
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
35
|
Fazal R, Boeynaems S, Swijsen A, De Decker M, Fumagalli L, Moisse M, Vanneste J, Guo W, Boon R, Vercruysse T, Eggermont K, Swinnen B, Beckers J, Pakravan D, Vandoorne T, Vanden Berghe P, Verfaillie C, Van Den Bosch L, Van Damme P. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J 2021; 40:e106177. [PMID: 33694180 PMCID: PMC8013789 DOI: 10.15252/embj.2020106177] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.
Collapse
Affiliation(s)
- Raheem Fazal
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Steven Boeynaems
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Ann Swijsen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Mathias De Decker
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Joni Vanneste
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Wenting Guo
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ruben Boon
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Thomas Vercruysse
- Department of Microbiology, Immunology and TransplantationLaboratory of Virology and ChemotherapyRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Pieter Vanden Berghe
- Department of Chronic Diseases, Metabolism and AgeingTranslational Research in GastroIntestinal Disorders, KU LeuvenLeuvenBelgium
| | - Catherine Verfaillie
- Stem Cell InstituteDepartment of Development and RegenerationStem Cell Biology and EmbryologyKU LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Center for Brain & Disease ResearchLaboratory of NeurobiologyVIBLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
36
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
37
|
Giannini LAA, Peterson C, Ohm D, Xie SX, McMillan CT, Raskovsky K, Massimo L, Suh E, Van Deerlin VM, Wolk DA, Trojanowski JQ, Lee EB, Grossman M, Irwin DJ. Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology. Acta Neuropathol Commun 2021; 9:30. [PMID: 33622418 PMCID: PMC7901087 DOI: 10.1186/s40478-021-01129-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/10/2023] Open
Abstract
Frontotemporal lobar degeneration proteinopathies with tau inclusions (FTLD-Tau) or TDP-43 inclusions (FTLD-TDP) are associated with clinically similar phenotypes. However, these disparate proteinopathies likely differ in cellular severity and regional distribution of inclusions in white matter (WM) and adjacent grey matter (GM), which have been understudied. We performed a neuropathological study of subcortical WM and adjacent GM in a large autopsy cohort (n = 92; FTLD-Tau = 37, FTLD-TDP = 55) using a validated digital image approach. The antemortem clinical phenotype was behavioral-variant frontotemporal dementia (bvFTD) in 23 patients with FTLD-Tau and 42 with FTLD-TDP, and primary progressive aphasia (PPA) in 14 patients with FTLD-Tau and 13 with FTLD-TDP. We used linear mixed-effects models to: (1) compare WM pathology burden between proteinopathies; (2) investigate the relationship between WM pathology burden and WM degeneration using luxol fast blue (LFB) myelin staining; (3) study regional patterns of pathology burden in clinico-pathological groups. WM pathology burden was greater in FTLD-Tau compared to FTLD-TDP across regions (beta = 4.21, SE = 0.34, p < 0.001), and correlated with the degree of WM degeneration in both FTLD-Tau (beta = 0.32, SE = 0.10, p = 0.002) and FTLD-TDP (beta = 0.40, SE = 0.08, p < 0.001). WM degeneration was greater in FTLD-Tau than FTLD-TDP particularly in middle-frontal and anterior cingulate regions (p < 0.05). Distinct regional patterns of WM and GM inclusions characterized FTLD-Tau and FTLD-TDP proteinopathies, and associated in part with clinical phenotype. In FTLD-Tau, WM pathology was particularly severe in the dorsolateral frontal cortex in nonfluent-variant PPA, and GM pathology in dorsolateral and paralimbic frontal regions with some variation across tauopathies. Differently, FTLD-TDP had little WM regional variability, but showed severe GM pathology burden in ventromedial prefrontal regions in both bvFTD and PPA. To conclude, FTLD-Tau and FTLD-TDP proteinopathies have distinct severity and regional distribution of WM and GM pathology, which may impact their clinical presentation, with overall greater severity of WM pathology as a distinguishing feature of tauopathies.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Neurology, Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Katya Raskovsky
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRah Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
AAV9-mediated gene delivery of MCT1 to oligodendrocytes does not provide a therapeutic benefit in a mouse model of ALS. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:508-519. [PMID: 33614825 PMCID: PMC7878966 DOI: 10.1016/j.omtm.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Oligodendrocyte dysfunction has been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder characterized by progressive motor neuron loss. The failure of trophic support provided by oligodendrocytes is associated with a concomitant reduction in oligodendroglial monocarboxylate transporter 1 (MCT1) expression and is detrimental for the long-term survival of motor neuron axons. Therefore, we established an adeno-associated virus 9 (AAV9)-based platform by which MCT1 was targeted mostly to white matter oligodendrocytes to investigate whether this approach could provide a therapeutic benefit in the SOD1G93A mouse model of ALS. Despite good oligodendrocyte transduction and AAV-mediated MCT1 transgene expression, the disease outcome of SOD1G93A mice was not altered. Our study further increases our current understanding about the complex nature of oligodendrocyte pathology in ALS and provides valuable insights into the future development of therapeutic strategies to efficiently modulate these cells.
Collapse
|
39
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
40
|
Ferrer I, Andrés-Benito P, Carmona M, Assialioui A, Povedano M. TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP. J Neuropathol Exp Neurol 2021; 80:229-239. [PMID: 33421065 PMCID: PMC7899266 DOI: 10.1093/jnen/nlaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.
Collapse
Affiliation(s)
- Isidro Ferrer
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Utrecht, The Netherlands
| |
Collapse
|
41
|
Neumann M, Mackenzie IRA. Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2020; 45:19-40. [PMID: 30357887 DOI: 10.1111/nan.12526] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical syndrome associated with frontotemporal lobar degeneration (FTLD) as a relatively consistent neuropathological hallmark feature. However, the discoveries in the past decade of many of the relevant pathological proteins aggregating in human FTD brains in addition to several new FTD causing gene mutations underlined that FTD is a diverse condition on the neuropathological and genetic basis. This resulted in a novel molecular classification of these conditions based on the predominant protein abnormality and allows most cases of FTD to be placed now into one of three broad molecular subgroups; FTLD with tau, TAR DNA-binding protein 43 or FET protein accumulation (FTLD-tau, FTLD-TDP and FTLD-FET respectively). This review will provide an overview of the molecular neuropathology of non-tau FTLD, insights into disease mechanisms gained from the study of human post mortem tissue as well as discussion of current controversies in the field.
Collapse
Affiliation(s)
- M Neumann
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany.,Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - I R A Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
42
|
McGurk L, Rifai OM, Bonini NM. TDP-43, a protein central to amyotrophic lateral sclerosis, is destabilized by tankyrase-1 and -2. J Cell Sci 2020; 133:jcs245811. [PMID: 32409565 PMCID: PMC7328137 DOI: 10.1242/jcs.245811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
In >95% of cases of amyotrophic lateral sclerosis (ALS) and ∼45% of frontotemporal degeneration (FTD), the RNA/DNA-binding protein TDP-43 is cleared from the nucleus and abnormally accumulates in the cytoplasm of affected brain cells. Although the cellular triggers of disease pathology remain enigmatic, mounting evidence implicates the poly(ADP-ribose) polymerases (PARPs) in TDP-43 neurotoxicity. Here we show that inhibition of the PARP enzymes tankyrase 1 and tankyrase 2 (referred to as Tnks-1/2) protect primary rodent neurons from TDP-43-associated neurotoxicity. We demonstrate that Tnks-1/2 interacts with TDP-43 via a newly defined tankyrase-binding domain. Upon investigating the functional effect, we find that interaction with Tnks-1/2 inhibits the ubiquitination and proteasomal turnover of TDP-43, leading to its stabilization. We further show that proteasomal turnover of TDP-43 occurs preferentially in the nucleus; our data indicate that Tnks-1/2 stabilizes TDP-43 by promoting cytoplasmic accumulation, which sequesters the protein from nuclear proteasome degradation. Thus, Tnks-1/2 activity modulates TDP-43 and is a potential therapeutic target in diseases associated with TDP-43, such as ALS and FTD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Riku Y. Reappraisal of the anatomical spreading and propagation hypothesis about TDP-43 aggregation in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neuropathology 2020; 40:426-435. [PMID: 32157757 DOI: 10.1111/neup.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Neuronal inclusion of transactivation response DNA-binding protein 43 kDa (TDP-43) is known to be a pathologic hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43, which is physiologically a nuclear protein, is mislocalized from the nucleus and aggregated within the cytoplasm of affected neurons in ALS and FTLD patients. Neuropathologic or experimental studies have addressed mechanisms underlying spreading of TDP-43 inclusions in the central nervous system of ALS and FTLD patients. On the basis of postmortem observations, it is hypothesized that TDP-43 inclusions spread along the neural projections. A centrifugal gradient of TDP-43 pathology in certain anatomical systems and axonal or synaptic aggregation of TDP-43 may support the hypothesis. Experimental studies have revealed cell-to-cell propagation of aggregated or truncated TDP-43, which indicates a direct transmission of TDP-43 inclusions to contiguous cells. However, discrepancies remain between the cell-to-cell propagation suggested in the experimental models and the anatomical spreading of TDP-43 aggregations based on postmortem observations. Trans-synaptic transmission, rather than the direct cell-to-cell transmission, may be consistent with the anatomical spreading of TDP-43 aggregations, but cellular mechanisms of trans-synaptic transmission of aggregated proteins remain to be elucidated. Moreover, the spreading of TDP-43 inclusions varies among patients and genetic backgrounds, which indicates host-dependent factors for spreading of TDP-43 aggregations. Perturbation of cellular TDP-43 clearance may be a possible factor modifying the aggregation and spreading. This review discusses postmortem and experimental evidence that address mechanisms of spreading of TDP-43 pathology in the central nervous system of ALS and FTLD patients.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan.,Department of Neuropathology Raymond Escourolle, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| |
Collapse
|
44
|
Weskamp K, Tank EM, Miguez R, McBride JP, Gómez NB, White M, Lin Z, Gonzalez CM, Serio A, Sreedharan J, Barmada SJ. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J Clin Invest 2020; 130:1139-1155. [PMID: 31714900 PMCID: PMC7269575 DOI: 10.1172/jci130988] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability and mislocalization of the RNA-binding protein TDP43 are highly conserved features in amyotrophic lateral sclerosis (ALS). Nevertheless, the relationship between these phenomena remains poorly defined. Here, we showed that hyperexcitability recapitulates TDP43 pathology by upregulating shortened TDP43 (sTDP43) splice isoforms. These truncated isoforms accumulated in the cytoplasm and formed insoluble inclusions that sequestered full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression was toxic to mammalian neurons, suggesting neurodegeneration arising from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts were enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons and glia of ALS patients. Collectively, these studies uncover a pathogenic role for alternative TDP43 isoforms in ALS, and implicate sTDP43 as a key contributor to the susceptibility of motor neurons in this disorder.
Collapse
Affiliation(s)
| | | | | | - Jonathon P. McBride
- Department of Neurology
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolás B. Gómez
- Department of Neurology
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ziqiang Lin
- Department of Basic and Clinical Neuroscience and
| | - Carmen Moreno Gonzalez
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Andrea Serio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | | | - Sami J. Barmada
- Department of Neurology
- Neuroscience Graduate Program, and
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. Int J Mol Sci 2020; 21:ijms21031115. [PMID: 32046139 PMCID: PMC7036760 DOI: 10.3390/ijms21031115] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The intricate relationships between innate immunity and brain diseases raise increased interest across the wide spectrum of neurodegenerative and neuropsychiatric disorders. Barriers, such as the blood–brain barrier, and innate immunity cells such as microglia, astrocytes, macrophages, and mast cells are involved in triggering disease events in these groups, through the action of many different cytokines. Chronic inflammation can lead to dysfunctions in large-scale brain networks. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are associated with a substrate of dysregulated immune responses that impair the central nervous system balance. Recent evidence suggests that similar phenomena are involved in psychiatric diseases, such as depression, schizophrenia, autism spectrum disorders, and post-traumatic stress disorder. The present review summarizes and discusses the main evidence linking the innate immunological response in neurodegenerative and psychiatric diseases, thus providing insights into how the responses of innate immunity represent a common denominator between diseases belonging to the neurological and psychiatric sphere. Improved knowledge of such immunological aspects could provide the framework for the future development of new diagnostic and therapeutic approaches.
Collapse
|
46
|
Huang SL, Wu LS, Lee M, Chang CW, Cheng WC, Fang YS, Chen YR, Cheng PL, Shen CKJ. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun 2020; 8:3. [PMID: 31964415 PMCID: PMC6975031 DOI: 10.1186/s40478-020-0881-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset degenerative disorder of motor neurons. The diseased spinal cord motor neurons of more than 95% of amyotrophic lateral sclerosis (ALS) patients are characterized by the mis-metabolism of the RNA/DNA-binding protein TDP-43 (ALS-TDP), in particular, the presence of cytosolic aggregates of the protein. Most available mouse models for the basic or translational studies of ALS-TDP are based on transgenic overexpression of the TDP-43 protein. Here, we report the generation and characterization of mouse lines bearing homologous knock-in of fALS-associated mutation A315T and sALS-associated mutation N390D, respectively. Remarkably, the heterozygous TDP-43 (N390D/+) mice but not those heterozygous for the TDP-43 (A315T/+) mice develop a full spectrum of ALS-TDP-like pathologies at the molecular, cellular and behavioral levels. Comparative analysis of the mutant mice and spinal cord motor neurons (MN) derived from their embryonic stem (ES) cells demonstrates that different ALS-associated TDP-43 mutations possess critical ALS-causing capabilities and pathogenic pathways, likely modified by their genetic background and the environmental factors. Mechanistically, we identify aberrant RNA splicing of spinal cord Bcl-2 pre-mRNA and consequent increase of a negative regulator of autophagy, Bcl-2, which correlate with and are caused by a progressive increase of TDP-43, one of the early events associated with ALS-TDP pathogenesis, in the spinal cord of TDP-43 (N390D/+) mice and spinal cord MN derived from their ES cells. The TDP-43 (N390D/+) knock-in mice appear to be an ideal rodent model for basic as well as translational studies of ALS- TDP.
Collapse
|
47
|
Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases. Acta Neuropathol 2020; 139:83-98. [PMID: 31501924 DOI: 10.1007/s00401-019-02070-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Frontotemporal lobar degeneration with TDP-43 immunoreactive (TDP-ir) inclusions (FTLD-TDP) is sub-classified based on the pattern of neocortical pathology, with each subtype showing clinical and genetic correlations. Recent studies indicate that accurate subtyping of cases may be important to help identify genetic risk factors and develop biomarkers. Although most FTLD-TDP cases are easily classified, some do not match well to one of the existing subtypes. In particular, cases with the C9orf72 repeat expansion (C9+) have been reported to show FTLD-TDP type A, type B or a combination of A and B pathology (A + B). In our series of FTLD-TDP cases, we found that those lacking the C9orf72 mutation (non-C9) were all readily classified as type A (n = 29), B (n = 16) or C (n = 18), using current criteria and standard observational methods. This classification was validated using non-biased hierarchical cluster analysis (HCA) of neocortical pathology data. In contrast, only 14/28 (50%) of the C9+ cases were classified as either pure type A or pure type B, with the remainder showing A + B features. HCA confirmed separation of the C9+ cases into three groups. We then investigated whether patterns of subcortical TDP-ir pathology helped to classify the difficult cases. For the non-C9 cases, each subtype showed a consistent pattern of subcortical involvement with significant differences among the groups. The most distinguishing features included white matter threads, neuronal intranuclear inclusions in hippocampus and striatum, and delicate threads in CA1 in type A; glial cytoplasmic inclusions in white matter and neuronal cytoplasmic inclusions (NCI) in lower motor neurons in type B; compact NCI in striatum in type C. HCA of the C9+ cases based on subcortical features increased the number that clustered with the non-C9 type A (46%) or non-C9 type B (36%); however, there remained a C9+ group with A + B features (18%). These findings suggest that most FTLD-TDP cases can be classified using existing criteria and that each group also shows characteristic subcortical TDP-ir pathology. However, C9+ cases may be unique in the degree to which their pathology overlaps between FTLD-TDP types A and B.
Collapse
|
48
|
Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol 2019; 138:813-826. [PMID: 31332509 DOI: 10.1007/s00401-019-02042-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 02/08/2023]
Abstract
Nuclear depletion of TDP-43, an essential RNA binding protein, may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). As several functions have been ascribed to this protein, the critical role(s) of TDP-43 in motor neurons that may be compromised in ALS remains unknown. We show here that TDP-43 mediated splicing repression, which serves to protect the transcriptome by preventing aberrant splicing, is central to the physiology of motor neurons. Expression in Drosophila TDP-43 knockout models of a chimeric repressor, comprised of the RNA recognition domain of TDP-43 fused to an unrelated splicing repressor, RAVER1, attenuated motor deficits and extended lifespan. Likewise, AAV9-mediated delivery of this chimeric rescue repressor to mice lacking TDP-43 in motor neurons delayed the onset, slowed the progression of motor symptoms, and markedly extended their lifespan. In treated mice lacking TDP-43 in motor neurons, aberrant splicing was significantly decreased and accompanied by amelioration of axon degeneration and motor neuron loss. This AAV9 strategy allowed long-term expression of the chimeric repressor without any adverse effects. Our findings establish that splicing repression is a major function of TDP-43 in motor neurons and strongly support the idea that loss of TDP-43-mediated splicing fidelity represents a key pathogenic mechanism underlying motor neuron loss in ALS.
Collapse
|
49
|
Kawakami I, Arai T, Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol 2019; 138:751-770. [PMID: 31555895 PMCID: PMC6800885 DOI: 10.1007/s00401-019-02077-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) was identified as a major disease-associated component in the brain of patients with amyotrophic lateral sclerosis (ALS), as well as the largest subset of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), which characteristically exhibits cytoplasmic inclusions that are positive for ubiquitin but negative for tau and α-synuclein. TDP-43 pathology occurs in distinct brain regions, involves disparate brain networks, and features accumulation of misfolded proteins in various cell types and in different neuroanatomical regions. The clinical phenotypes of ALS and FTLD-TDP (FTLD with abnormal intracellular accumulations of TDP-43) correlate with characteristic distribution patterns of the underlying pathology across specific brain regions with disease progression. Recent studies support the idea that pathological protein spreads from neuron to neuron via axonal transport in a hierarchical manner. However, little is known to date about the basis of the selective cellular and regional vulnerability, although the information would have important implications for the development of targeted and personalized therapies. Here, we aim to summarize recent advances in the neuropathology, genetics and animal models of TDP-43 proteinopathy, and their relationship to clinical phenotypes for the underlying selective neuronal and regional susceptibilities. Finally, we attempt to integrate these findings into the emerging picture of TDP-43 proteinopathy, and to highlight key issues for future therapy and research.
Collapse
Affiliation(s)
- Ito Kawakami
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute, Tokyo, Japan
| | - Tetsuaki Arai
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
50
|
Bertrand A, Wen J, Rinaldi D, Houot M, Sayah S, Camuzat A, Fournier C, Fontanella S, Routier A, Couratier P, Pasquier F, Habert MO, Hannequin D, Martinaud O, Caroppo P, Levy R, Dubois B, Brice A, Durrleman S, Colliot O, Le Ber I. Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years. JAMA Neurol 2019; 75:236-245. [PMID: 29197216 DOI: 10.1001/jamaneurol.2017.4266] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Presymptomatic carriers of chromosome 9 open reading frame 72 (C9orf72) mutation, the most frequent genetic cause of frontotemporal lobar degeneration and amyotrophic lateral sclerosis, represent the optimal target population for the development of disease-modifying drugs. Preclinical biomarkers are needed to monitor the effect of therapeutic interventions in this population. Objectives To assess the occurrence of cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers. Design, Setting, and Participants The PREV-DEMALS study is a prospective, multicenter, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Eighty-four participants entered the study between October 2015 and April 2017; 80 (95%) were included in cross-sectional analyses of baseline data. All participants underwent neuropsychological testing and magnetic resonance imaging; 63 (79%) underwent diffusion tensor magnetic resonance imaging. Gray matter volumes and diffusion tensor imaging metrics were calculated within regions of interest. Anatomical and microstructural differences between individuals who carried the C9orf72 mutation (C9+) and those who did not carry the C9orf72 mutation (C9-) were assessed using linear mixed-effects models. Data were analyzed from October 2015 to April 2017. Main Outcomes and Measures Differences in neuropsychological scores, gray matter volume, and white matter integrity between C9+ and C9- individuals. Results Of the 80 included participants, there were 41 C9+ individuals (24 [59%] female; mean [SD] age, 39.8 [11.1] years) and 39 C9- individuals (24 [62%] female; mean [SD] age, 45.2 [13.9] years). Compared with C9- individuals, C9+ individuals had lower mean (SD) praxis scores (163.4 [6.1] vs 165.3 [5.9]; P = .01) and intransitive gesture scores (34.9 [1.6] vs 35.7 [1.5]; P = .004), atrophy in 8 cortical regions of interest and in the right thalamus, and white matter alterations in 8 tracts. When restricting the analyses to participants younger than 40 years, compared with C9- individuals, C9+ individuals had lower praxis scores and intransitive gesture scores, atrophy in 4 cortical regions of interest and in the right thalamus, and white matter alterations in 2 tracts. Conclusions and Relevance Cognitive, structural, and microstructural alterations are detectable in young C9+ individuals. Early and subtle praxis alterations, underpinned by focal atrophy of the left supramarginal gyrus, may represent an early and nonevolving phenotype related to neurodevelopmental effects of C9orf72 mutation. White matter alterations reflect the future phenotype of frontotemporal lobar degeneration/amyotrophic lateral sclerosis, while atrophy appears more diffuse. Our results contribute to a better understanding of the preclinical phase of C9orf72 disease and of the respective contribution of magnetic resonance biomarkers. Trial Registration clinicaltrials.gov Identifier: NCT02590276.
Collapse
Affiliation(s)
- Anne Bertrand
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France.,Department of Neuroradiology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Radiology, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Junhao Wen
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Daisy Rinaldi
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marion Houot
- Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sabrina Sayah
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clémence Fournier
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sabrina Fontanella
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandre Routier
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Couratier
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Limoges University, Institut d'Epidémiologie Neurologique et Neurologie Tropicale, Centre National de la Recherche Scientifique, Fédération de Recherche 3503, Institut Génomique, Environnement, Immunité, Santé et Thérapeutiques, Limoges, France
| | - Florence Pasquier
- Neurology Department, National Reference Center for Young Onset Dementia, Centre Hospitalier Régional Universitaire de Lille, INSERM U1171, Lille, France.,Equipe d'accueil 1046, Maladie d'Alzheimer et Pathologies Vasculaires, Lille University, Lille, France
| | - Marie-Odile Habert
- Department of Nuclear Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1146, Centre National de la Recherche Scientifique, UMR 7371, Paris, France
| | - Didier Hannequin
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Olivier Martinaud
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Paola Caroppo
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France.,Division of Neurology V and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
| | - Richard Levy
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanley Durrleman
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Colliot
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France.,Centre pour l'Acquisition et le Traitement des Images, Institut du Cerveau et la Moelle, Paris, France
| | - Isabelle Le Ber
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|