1
|
Pasquali S, Moura DS, Danks MR, Manasterski PJ, Zaffaroni N, Stacchiotti S, Mondaza-Hernandez JL, Kerrison WGJ, Martin-Broto J, Huang PH, Brunton VG. Preclinical models of soft tissue sarcomas - generation and applications to enhance translational research. Crit Rev Oncol Hematol 2025; 207:104621. [PMID: 39824369 DOI: 10.1016/j.critrevonc.2025.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments. However, due to the rarity of these tumors there are limited STS models available. Here we review the existing preclinical models of STS, including patient-derived cell lines and organoids, patient-derived xenografts and genetically engineered mouse models. We discuss the advantages and disadvantages of the different models and describe to what extent they have aided clinical translation. Finally, we consider what can be done in the future to enhance their predictivity in the preclinical setting.
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - David S Moura
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Molly R Danks
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Piotr J Manasterski
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Silvia Stacchiotti
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Jose L Mondaza-Hernandez
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - William G J Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Javier Martin-Broto
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK.
| |
Collapse
|
2
|
Kawai-Kawachi A, Lenormand MM, Astier C, Herbel N, Cutrona MB, Ngo C, Garrido M, Eychenne T, Dorvault N, Bordelet L, Song F, Bouyakoub R, Loktev A, Romo-Morales A, Henon C, Colmet-Daage L, Vibert J, Drac M, Brough R, Schwob E, Martella O, Pinna G, Shipley JM, Mittnacht S, Zimmermann A, Gulati A, Mir O, Le Cesne A, Faron M, Honoré C, Lord CJ, Chabanon RM, Postel-Vinay S. Replication Stress Is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors. Cancer Res 2025; 85:154-170. [PMID: 39412947 DOI: 10.1158/0008-5472.can-23-3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma subtype that is driven by the EWS-WT1 chimeric transcription factor. The prognosis for DSRCT is poor, and major advances in treating DSRCT have not occurred for over two decades. To identify effective therapeutic approaches to target DSRCT, we conducted a high-throughput drug sensitivity screen in a DSRCT cell line assessing chemosensitivity profiles for 79 small-molecule inhibitors. DSRCT cells were sensitive to PARP inhibitors (PARPi) and ataxia-telangiectasia and Rad3-related inhibitors (ATRi), as monotherapies and in combination. These effects were recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, clinically relevant models of DSRCT, including cell lines, a patient-derived xenograft-derived organoid model, and a cell line-derived xenograft mouse model. Mechanistically, exposure to a combination of PARPi and ATRi caused increased DNA damage, G2-M checkpoint activation, micronuclei accumulation, replication stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes and was epistatic with exogenous expression of the R-loop resolution enzyme RNase H1 in reversing sensitivity to PARPi and ATRi monotherapies. The combination of PARPi and ATRi also induced EWS-WT1-dependent cell-autonomous activation of the cyclic GMP-AMP synthase-stimulator of IFN genes innate immune pathway and cell-surface expression of PD-L1. Taken together, these findings point toward a role for EWS-WT1 in generating R-loop-dependent replication stress that leads to a targetable vulnerability, providing a rationale for the clinical assessment of PARPi and ATRi in DSRCT. Significance: EWS-WT1, the unique oncogenic driver of desmoplastic small round cell tumors, confers sensitivity to PARP and ATR inhibitors, supporting the potential of these drugs in treating patients with this aggressive sarcoma subtype.
Collapse
Affiliation(s)
- Asuka Kawai-Kawachi
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Madison M Lenormand
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Department of Genomes and Genetics, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Clémence Astier
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Noé Herbel
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- Viroxis SAS Biotech, Gustave Roussy, Villejuif, France
| | | | - Carine Ngo
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Thomas Eychenne
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nicolas Dorvault
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Laetitia Bordelet
- Experimental and Translational Pathology (PETRA) Platform, AMMICa Unit (CNRS Unit UMS 3655, Inserm Unit US 23), Gustave Roussy, Villejuif, France
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ryme Bouyakoub
- Organoid Core Facility, Gustave Roussy, Villejuif, France
| | - Anastasia Loktev
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Henon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | | | - Guillaume Pinna
- RNA Interference Platform PARi, IRCM/IBFJ/CEA UMRE008, Fontenay-aux-Roses, France
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Astrid Zimmermann
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Olivier Mir
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | | | | | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Roman M Chabanon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophie Postel-Vinay
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
3
|
Boulay G, Broye LC, Dong R, Iyer S, Sanalkumar R, Xing YH, Buisson R, Rengarajan S, Naigles B, Duc B, Volorio A, Awad ME, Renella R, Chebib I, Nielsen GP, Choy E, Cote GM, Zou L, Letovanec I, Stamenkovic I, Rivera MN, Riggi N. EWS-WT1 fusion isoforms establish oncogenic programs and therapeutic vulnerabilities in desmoplastic small round cell tumors. Nat Commun 2024; 15:7460. [PMID: 39198430 PMCID: PMC11358472 DOI: 10.1038/s41467-024-51851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
EWS fusion oncoproteins underlie several human malignancies including Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer driven by EWS-WT1 fusion proteins. Here we combine chromatin occupancy and 3D profiles to identify EWS-WT1-dependent gene regulation networks and target genes. We show that EWS-WT1 is a powerful chromatin activator controlling an oncogenic gene expression program that characterizes primary tumors. Similar to wild type WT1, EWS-WT1 has two isoforms that differ in their DNA binding domain and we find that they have distinct DNA binding profiles and are both required to generate viable tumors that resemble primary DSRCT. Finally, we identify candidate EWS-WT1 target genes with potential therapeutic implications, including CCND1, whose inhibition by the clinically-approved drug Palbociclib leads to marked tumor burden decrease in DSRCT PDXs in vivo. Taken together, our studies identify gene regulation programs and therapeutic vulnerabilities in DSRCT and provide a mechanistic understanding of the complex oncogenic activity of EWS-WT1.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liliane C Broye
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Rui Dong
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Yu-Hang Xing
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benoît Duc
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Angela Volorio
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raffaele Renella
- Department Woman-Mother-Child, Division of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lee Zou
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | - Miguel N Rivera
- Department of Pathology & Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland.
- Genentech Inc, Department of Cell and Tissue Genomics (CTG), South San Francisco, CA, USA.
| |
Collapse
|
4
|
Magrath JW, Espinosa-Cotton M, Flinchum DA, Sampath SS, Cheung NK, Lee SB. Desmoplastic small round cell tumor: from genomics to targets, potential paths to future therapeutics. Front Cell Dev Biol 2024; 12:1442488. [PMID: 39139449 PMCID: PMC11319132 DOI: 10.3389/fcell.2024.1442488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive pediatric cancer caused by a reciprocal translocation between chromosomes 11 and 22, leading to the formation of the EWSR1::WT1 oncoprotein. DSRCT presents most commonly in the abdominal and pelvic peritoneum and remains refractory to current treatment regimens which include chemotherapy, radiotherapy, and surgery. As a rare cancer, sample and model availability have been a limiting factor to DSRCT research. However, the establishment of rare tumor banks and novel cell lines have recently propelled critical advances in the understanding of DSRCT biology and the identification of potentially promising targeted therapeutics. Here we review model and dataset availability, current understanding of the EWSR1::WT1 oncogenic mechanism, and promising preclinical therapeutics, some of which are now advancing to clinical trials. We discuss efforts to inhibit critical dependencies including NTRK3, EGFR, and CDK4/6 as well as novel immunotherapy strategies targeting surface markers highly expressed in DSRCT such as B7-H3 or neopeptides either derived from or driven by the fusion oncoprotein. Finally, we discuss the prospect of combination therapies and strategies for prioritizing clinical translation.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nai Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
5
|
Magrath JW, Sampath SS, Flinchum DA, Hartono AB, Goldberg IN, Boehling JR, Savkovic SD, Lee SB. Comprehensive Transcriptomic Analysis of EWSR1::WT1 Targets Identifies CDK4/6 Inhibitors as an Effective Therapy for Desmoplastic Small Round Cell Tumors. Cancer Res 2024; 84:1426-1442. [PMID: 38588409 PMCID: PMC11063761 DOI: 10.1158/0008-5472.can-23-3334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024]
Abstract
Desmoplastic small round cell tumors (DSRCT) are a type of aggressive, pediatric sarcoma characterized by the EWSR1::WT1 fusion oncogene. Targeted therapies for DSRCT have not been developed, and standard multimodal therapy is insufficient, leading to a 5-year survival rate of only 15% to 25%. Here, we depleted EWSR1::WT1 in DSRCT and established its essentiality in vivo. Transcriptomic analysis revealed that EWSR1::WT1 induces unique transcriptional alterations compared with WT1 and other fusion oncoproteins and that EWSR1::WT1 binding directly mediates gene upregulation. The E-KTS isoform of EWSR1::WT1 played a dominant role in transcription, and it bound to the CCND1 promoter and stimulated DSRCT growth through the cyclin D-CDK4/6-RB axis. Treatment with the CDK4/6 inhibitor palbociclib successfully reduced growth in two DSRCT xenograft models. As palbociclib has been approved by the FDA for the treatment of breast cancer, these findings demonstrate the sensitivity of DSRCT to palbociclib and support immediate clinical investigation of palbociclib for treating this aggressive pediatric cancer. SIGNIFICANCE EWSR1::WT1 is essential for desmoplastic small round cell tumors and upregulates the cyclin D-CDK4/6-RB axis that can be targeted with palbociclib, providing a targeted therapeutic strategy for treating this deadly tumor type.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alifiani B. Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ilon N. Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Julia R. Boehling
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Suzana D. Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
6
|
Chen G, Zhang Q, Xia D. Abdominopelvic desmoplastic small round cell tumor with metastasis: A case report and literature review. Medicine (Baltimore) 2024; 103:e37664. [PMID: 38579065 PMCID: PMC10994471 DOI: 10.1097/md.0000000000037664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024] Open
Abstract
RATIONALE Desmoplastic small round cell tumor (DSRCT) is a rare and rapidly metastasizing soft tissue sarcoma, distinguished by its unique cell morphology and pleomorphic differentiation. PATIENT CONCERNS This report describes the case of an 18-year-old male diagnosed with abdominopelvic DSRCT exhibiting metastases to the peritoneum, liver, pleura, bone, and muscle. The patient primarily presented with symptoms of incomplete intestinal obstruction and an abdominal mass. DIAGNOSES Colonoscopy revealed lumen stenosis caused by external compression mass. Contrast-enhanced computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography revealed multiple lesions in the abdominopelvic cavity. A needle biopsy of an abdominal wall lesion established it as a malignant tumor, origin unknown. Immunohistochemical staining post-surgery showed positive results for Cytokeratin (CK), CK7, Desmin, Vimentin, Caudal type homeobox 2 (CDX2), and Ki-67. Fluorescence in situ hybridization analysis revealed an Ewing sarcoma breakpoint region 1/EWS RNA binding protein 1 (EWSR1) rearrangement, and next-generation sequencing identified an EWSR1-Wilms tumor protein 1 (WT1) gene fusion. INTERVENTIONS The patient underwent laparoscopic exploratory surgery, which encompassed biopsy, ascites drainage, adhesion lysis, reinforcement of weakened sections of the small intestinal walls, and repositioning of twisted intestines. Postoperatively, the treatment protocol included fasting, rehydration, gastrointestinal decompression, and parenteral nutrition. However, the patient did not received chemotherapy. OUTCOMES The patient declined further treatment and deceased in early November. LESSONS This case highlights the nonspecific nature of DSRCT symptoms. In clinical practice, it is crucial to meticulously evaluate unexplained intestinal obstruction in young patients, considering DSRCT as a differential diagnosis to avoid delays in diagnosis.
Collapse
Affiliation(s)
- Guoyong Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qian Zhang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Dong Xia
- Gastrointestinal Group, Department of General Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
7
|
Magrath JW, Goldberg IN, Truong DD, Hartono AB, Sampath SS, Jackson CE, Ghosh A, Cardin DL, Zhang H, Ludwig JA, Lee SB. Enzalutamide induces cytotoxicity in desmoplastic small round cell tumor independent of the androgen receptor. Commun Biol 2024; 7:411. [PMID: 38575753 PMCID: PMC10995187 DOI: 10.1038/s42003-024-06003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Ilon N Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Danh D Truong
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alifiani B Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Chandler E Jackson
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Anushka Ghosh
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Derrick L Cardin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Joseph A Ludwig
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
8
|
Magrath JW, Flinchum DA, Hartono AB, Sampath SS, O'Grady TM, Baddoo M, Haoyang L, Xu X, Flemington EK, Lee SB. Transcriptomic analysis identifies B-lymphocyte kinase as a therapeutic target for desmoplastic small round cell tumor cancer stem cell-like cells. Oncogenesis 2024; 13:2. [PMID: 38177125 PMCID: PMC10767073 DOI: 10.1038/s41389-023-00504-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive pediatric cancer caused by the EWSR1-WT1 fusion oncoprotein. The tumor is refractory to treatment with a 5-year survival rate of only 15-25%, necessitating the development of novel therapeutics, especially those able to target chemoresistant subpopulations. Novel in vitro cancer stem cell-like (CSC-like) culture conditions increase the expression of stemness markers (SOX2, NANOG) and reduce DSRCT cell line susceptibility to chemotherapy while maintaining the ability of DSRCT cells to form xenografts. To gain insights into this chemoresistant model, RNA-seq was performed to elucidate transcriptional alterations between DSRCT cells grown in CSC-like spheres and normal 2-dimensional adherent state. Commonly upregulated and downregulated genes were identified and utilized in pathway analysis revealing upregulation of pathways related to chromatin assembly and disassembly and downregulation of pathways including cell junction assembly and extracellular matrix organization. Alterations in chromatin assembly suggest a role for epigenetics in the DSRCT CSC-like state, which was further investigated with ATAC-seq, identifying over 10,000 differentially accessible peaks, including 4444 sphere accessible peaks and 6,120 adherent accessible peaks. Accessible regions were associated with higher gene expression, including increased accessibility of the CSC marker SOX2 in CSC-like culture conditions. These analyses were further utilized to identify potential CSC therapeutic targets, leading to the identification of B-lymphocyte kinase (BLK) as a CSC-enriched, EWSR1-WT1-regulated, druggable target. BLK inhibition and knockdown reduced CSC-like properties, including abrogation of tumorsphere formation and stemness marker expression. Importantly, BLK knockdown reduced DSRCT CSC-like cell chemoresistance, making its inhibition a promising target for future combination therapy.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Dane A Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Alifiani B Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
- Department of Molecular & Medical Pharmacology, University of California Los Angeles, 630 Charles E Young Dr. S., Los Angeles, CA, 90095, USA
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Tina M O'Grady
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Liang Haoyang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA
| | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
9
|
Magrath JW, Goldberg IN, Truong DD, Hartono AB, Sampath SS, Jackson CE, Ghosh A, Cardin DL, Zhang H, Ludwig JA, Lee SB. Enzalutamide Induces Cytotoxicity in Desmoplastic Small Round Cell Tumor Independent of the Androgen Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565842. [PMID: 37986851 PMCID: PMC10659336 DOI: 10.1101/2023.11.06.565842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare, pediatric cancer caused by the EWSR1::WT1 fusion protein. DSRCT predominantly occurs in males, which comprise 80-90% of the patient population. While the reason for this male predominance remains unknown, one hypothesis is that the androgen receptor (AR) plays a critical role in DSRCT and elevated testosterone levels in males help drive tumor growth. Here, we demonstrate that AR is highly expressed in DSRCT relative to other fusion-driven sarcomas and that the AR antagonists enzalutamide and flutamide reduce DSRCT growth. However, despite these findings, which suggest an important role for AR in DSRCT, we show that DSRCT cell lines form xenografts in female mice at the same rate as male mice and AR depletion does not significantly alter DSRCT growth in vitro. Further, we find that AR antagonists reduce DSRCT growth in cells depleted of AR, establishing an AR-independent mechanism of action. These findings suggest that AR dependence is not the reason for male predominance in DSRCT and that AR-targeted therapies may provide therapeutic benefit primarily through an AR-independent mechanism that requires further elucidation.
Collapse
Affiliation(s)
- Justin W Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Ilon N Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Danh D Truong
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alifiani B Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Shruthi Sanjitha Sampath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Chandler E Jackson
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Anushka Ghosh
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Derrick L Cardin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Haitao Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Joseph A Ludwig
- Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| |
Collapse
|
10
|
Magrath JW, Flinchum DA, Hartono AB, Goldberg IN, Espinosa-Cotton M, Moroz K, Cheung NKV, Lee SB. Genomic Breakpoint Characterization and Transcriptome Analysis of Metastatic, Recurrent Desmoplastic Small Round Cell Tumor. Sarcoma 2023; 2023:6686702. [PMID: 37457440 PMCID: PMC10344636 DOI: 10.1155/2023/6686702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare pediatric cancer caused by the EWSR1-WT1 fusion oncogene. Despite initial response to chemotherapy, DSRCT has a recurrence rate of over 80% leading to poor patient prognosis with a 5-year survival rate of only 15-25%. Owing to the rarity of DSRCT, sample scarcity is a barrier in understanding DSRCT biology and developing effective therapies. Utilizing a novel pair of primary and recurrent DSRCTs, we present the first map of DSRCT genomic breakpoints and the first comparison of gene expression alterations between primary and recurrent DSRCT. Our genomic breakpoint map includes the lone previously published DSRCT genomic breakpoint, the breakpoint from our novel primary/recurrent DSRCT pair, as well as the breakpoints of five available DSRCT cell lines and five additional DSRCTs. All mapped breakpoints were unique and most breakpoints included a 1-3 base pair microhomology suggesting microhomology-mediated end-joining as the mechanism of translocation fusion and providing novel insights into the etiology of DSRCT. Through RNA-sequencing analysis, we identified altered genes and pathways between primary and recurrent DSRCTs. Upregulated pathways in the recurrent tumor included several DNA repair and mRNA splicing-related pathways, while downregulated pathways included immune system function and focal adhesion. We further found higher expression of the EWSR1-WT1 upregulated gene set in the recurrent tumor as compared to the primary tumor and lower expression of the EWSR1-WT1 downregulated gene set, suggesting the EWSR1-WT1 fusion continues to play a prominent role in recurrent tumors. The identified pathways including upregulation of DNA repair and downregulation of immune system function may help explain DSRCT's high rate of recurrence and can be utilized to improve the understanding of DSRCT biology and identify novel therapies to both help prevent recurrence and treat recurrent tumors.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Dane A. Flinchum
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Alifiani B. Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Ilon N. Goldberg
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | | | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave. New Orleans, LA, USA
| |
Collapse
|
11
|
Hovsepyan S, Giani C, Pasquali S, Di Giannatale A, Chiaravalli S, Colombo C, Orbach D, Bergamaschi L, Vennarini S, Gatz SA, Gasparini P, Berlanga P, Casanova M, Ferrari A. Desmoplastic small round cell tumor: from state of the art to future clinical prospects. Expert Rev Anticancer Ther 2023; 23:471-484. [PMID: 37017324 DOI: 10.1080/14737140.2023.2200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Desmoplastic small round cell tumor (DSRCT) is an extremely rare and highly aggressive soft tissue sarcoma, presenting mainly in male adolescents and young adults with multiple nodules disseminated within the abdominopelvic cavity. Despite a multimodal approach including aggressive cytoreductive surgery, intensive multi-agent chemotherapy, and postoperative whole abdominopelvic radiotherapy, the prognosis for DSRCT remains dismal. Median progression-free survival ranges between 4 and 21 months, and overall survival between 17 and 60 months, with the 5-year overall survival rate in the range of 10-20%. AREA COVERED This review discusses the treatment strategies used for DSRCT over the years, the state of the art of current treatments, and future clinical prospects. EXPERT OPINION The unsatisfactory outcomes for patients with DSRCT warrant investigations into innovative treatment combinations. An international multidisciplinary and multi-stakeholder collaboration, involving both pediatric and adult sarcoma communities, is needed to propel preclinical model generation and drug development, and innovative clinical trial designs to enable the timely testing of treatments involving novel agents guided by biology to boost the chances of survival for patients with this devastating disease.
Collapse
Affiliation(s)
- Shushan Hovsepyan
- Department of Pediatric Oncology, Pediatric Cancer and Blood Disorders Center of Armenia, Yerevan, Armenia
| | - Claudia Giani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology, Hematology/Oncology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Colombo
- Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel Orbach
- SIREDO Oncology Center, Institut Curie, PSL University, Paris, France
| | - Luca Bergamaschi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Susanne Andrea Gatz
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pablo Berlanga
- Department of Pediatric and Adolescent Oncology, Gustave-Roussy, Villejuif, France
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
12
|
Magrath JW, Kang HJ, Hartono A, Espinosa-Cotton M, Somwar R, Ladanyi M, Cheung NKV, Lee SB. Desmoplastic small round cell tumor cancer stem cell-like cells resist chemotherapy but remain dependent on the EWSR1-WT1 oncoprotein. Front Cell Dev Biol 2022; 10:1048709. [PMID: 36506091 PMCID: PMC9732033 DOI: 10.3389/fcell.2022.1048709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive pediatric cancer driven by the EWSR1-WT1 fusion oncogene. Combinations of chemotherapy, radiation and surgery are not curative, and the 5-years survival rate is less than 25%. One potential explanation for refractoriness is the existence of a cancer stem cell (CSC) subpopulation able escape current treatment modalities. However, no study to-date has examined the role of CSCs in DSRCT or established in vitro culture conditions to model this subpopulation. In this study, we investigated the role of stemness markers in DSRCT survival and metastasis, finding that elevated levels of SOX2 and NANOG are associated with worse survival in sarcoma patients and are elevated in metastatic DSRCT tumors. We further develop the first in vitro DSRCT CSC model which forms tumorspheres, expresses increased levels of stemness markers (SOX2, NANOG, KLF4, and OCT4), and resists doxorubicin chemotherapy treatment. This model is an important addition to the DSRCT tool kit and will enable investigation of this critical DSRCT subpopulation. Despite lower sensitivity to chemotherapy, the DSRCT CSC model remained sensitive to knockdown of the EWSR1-WT1 fusion protein, suggesting that future therapies directed against this oncogenic driver have the potential to treat both DSRCT bulk tumor and CSCs.
Collapse
Affiliation(s)
- Justin W. Magrath
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Jun Kang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alifiani Hartono
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sean B. Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
13
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
14
|
Hartono AB, Kang HJ, Shi L, Phipps W, Ungerleider N, Giardina A, Chen W, Spraggon L, Somwar R, Moroz K, Drewry DH, Burow ME, Flemington E, Ladanyi M, Lee SB. Salt-Inducible Kinase 1 is a potential therapeutic target in Desmoplastic Small Round Cell Tumor. Oncogenesis 2022; 11:18. [PMID: 35443736 PMCID: PMC9021191 DOI: 10.1038/s41389-022-00395-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare and aggressive malignant cancer caused by a chromosomal translocation t(11;22)(p13;q12) that produces an oncogenic transcription factor, EWSR1-WT1. EWSR1-WT1 is essential for the initiation and progression of DSRCT. However, the precise mechanism by which EWSR1-WT1 drives DSRCT oncogenesis remains unresolved. Through our integrative gene expression analysis, we identified Salt Inducible Kinase 1 (SIK1) as a direct target of EWSR1-WT1. SIK1 as a member of the AMPK related kinase is involved in many biological processes. We showed that depletion of SIK1 causes inhibition of tumor cell growth, similar to the growth inhibition observed when EWSR1-WT1 is depleted. We further showed that silencing SIK1 leads to cessation of DNA replication in DSRCT cells and inhibition of tumor growth in vivo. Lastly, combined inhibition of SIK1 and CHEK1with small molecule inhibitors, YKL-05-099 and prexasertib, respectively, showed enhanced cytotoxicity in DSRCT cells compared to inhibition of either kinases alone. This work identified SIK1 as a new potential therapeutic target in DSRCT and the efficacy of SIK1 inhibition may be improved when combined with other intervention strategies.
Collapse
Affiliation(s)
- Alifiani Bonita Hartono
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Hong-Jun Kang
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Lawrence Shi
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Whitney Phipps
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Alexandra Giardina
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - WeiPing Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, Maryland, USA
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Krzysztof Moroz
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - David H Drewry
- University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | | | - Erik Flemington
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean Bong Lee
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA.
| |
Collapse
|
15
|
Bleijs M, Pleijte C, Engels S, Ringnalda F, Meyer-Wentrup F, van de Wetering M, Clevers H. EWSR1-WT1 Target Genes and Therapeutic Options Identified in a Novel DSRCT In Vitro Model. Cancers (Basel) 2021; 13:cancers13236072. [PMID: 34885181 PMCID: PMC8657306 DOI: 10.3390/cancers13236072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Desmoplastic small round cell tumor (DSRCT) is an extremely rare soft tissue sarcoma arising in the abdomen of adolescents and young adults. This sarcoma is driven by a single genomic rearrangement, resulting in the expression of the EWSR1-WT1 fusion gene. No effective treatment exists for DSRCT patients, which highlights the need for preclinical models to study disease progression and drug sensitivity. The aim of this study is to develop a pre-clinical DSRCT in vitro model, which enables investigating the molecular target genes of the EWSR1-WT1 fusion gene and allows for medium-throughput drug screening to discover new therapeutic options. Abstract Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive soft tissue sarcoma with a lack of effective treatment options and a poor prognosis. DSRCT is characterized by a chromosomal translocation, resulting in the EWSR1-WT1 gene fusion. The molecular mechanisms driving DSRCT are poorly understood, and a paucity of preclinical models hampers DSRCT research. Here, we establish a novel primary patient-derived DSRCT in vitro model, recapitulating the original tumor. We find that EWSR1-WT1 expression affects cell shape and cell survival, and we identify downstream target genes of the EWSR1-WT1 fusion. Additionally, this preclinical in vitro model allows for medium-throughput drug screening. We discover sensitivity to several drugs, including compounds targeting RTKs. MERTK, which has been described as a therapeutic target for several malignancies, correlates with EWSR1-WT1 expression. Inhibition of MERTK with the small-molecule inhibitor UNC2025 results in reduced proliferation of DSRCT cells in vitro, suggesting MERTK as a therapeutic target in DSRCT. This study underscores the usefulness of preclinical in vitro models for studying molecular mechanisms and potential therapeutic options.
Collapse
Affiliation(s)
- Margit Bleijs
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Corine Pleijte
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Sem Engels
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Friederike Meyer-Wentrup
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, 3584 CT Utrecht, The Netherlands; (M.B.); (C.P.); (S.E.); (F.R.); (F.M.-W.); (M.v.d.W.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
16
|
Smith RS, Odintsov I, Liu Z, Lui AJW, Hayashi T, Vojnic M, Suehara Y, Delasos L, Mattar MS, Hmeljak J, Ramirez HA, Shaw M, Bui G, Hartono AB, Gladstone E, Kunte S, Magnan H, Khodos I, De Stanchina E, La Quaglia MP, Yao J, Laé M, Lee SB, Spraggon L, Pratilas CA, Ladanyi M, Somwar R. Novel patient-derived models of DSRCT enable validation of ERBB signaling as a potential therapeutic vulnerability. Dis Model Mech 2021; 15:273569. [PMID: 34841430 PMCID: PMC8807576 DOI: 10.1242/dmm.047621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) is characterized by the t(11;22)(p13;q12) translocation, which fuses the transcriptional regulatory domain of EWSR1 with the DNA-binding domain of WT1, resulting in the oncogenic EWSR1-WT1 fusion protein. The paucity of DSRCT disease models has hampered preclinical therapeutic studies on this aggressive cancer. Here, we developed preclinical disease models and mined DSRCT expression profiles to identify genetic vulnerabilities that could be leveraged for new therapies. We describe four DSRCT cell lines and one patient-derived xenograft model. Transcriptomic, proteomic and biochemical profiling showed evidence of activation of the ERBB pathway. Ectopic expression of EWSR1-WT1 resulted in upregulation of ERRB family ligands. Treatment of DSRCT cell lines with ERBB ligands resulted in activation of EGFR, ERBB2, ERK1/2 and AKT, and stimulation of cell growth. Antagonizing EGFR function with shRNAs, small-molecule inhibitors (afatinib, neratinib) or an anti-EGFR antibody (cetuximab) inhibited proliferation of DSRCT cells. Finally, treatment of mice bearing DSRCT xenografts with a combination of cetuximab and afatinib significantly reduced tumor growth. These data provide a rationale for evaluating EGFR antagonists in patients with DSRCT. This article has an associated First Person interview with the joint first authors of the paper. Summary: Novel models of desmoplastic small round cell tumor (DSRCT) reveal a role for the ERBB pathway in regulating growth of this sarcoma and provide a rationale for evaluating EGFR antagonists in patients with DSRCT.
Collapse
Affiliation(s)
- Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zebing Liu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allan Jo-Weng Lui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Takuo Hayashi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morana Vojnic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yoshiyuki Suehara
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lukas Delasos
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa S Mattar
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julija Hmeljak
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hillary A Ramirez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Shaw
- Gerstner School of Graduate Studies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabrielle Bui
- Gerstner School of Graduate Studies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Eric Gladstone
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siddharth Kunte
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heather Magnan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna Khodos
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael P La Quaglia
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinjuan Yao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marick Laé
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean B Lee
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Lee Spraggon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Slotkin EK, Bowman AS, Levine MF, Dela Cruz F, Coutinho DF, Sanchez GI, Rosales N, Modak S, Tap WD, Gounder MM, Thornton KA, Bouvier N, You D, Gundem G, Gerstle JT, Heaton TE, LaQuaglia MP, Wexler LH, Meyers PA, Kung AL, Papaemmanuil E, Zehir A, Ladanyi M, Shukla N. Comprehensive Molecular Profiling of Desmoplastic Small Round Cell Tumor. Mol Cancer Res 2021; 19:1146-1155. [PMID: 33753552 PMCID: PMC8293793 DOI: 10.1158/1541-7786.mcr-20-0722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Desmoplastic small round cell tumor (DSRCT) is characterized by the EWSR1-WT1 t(11;22) (p13:q12) translocation. Few additional putative drivers have been identified, and research has suffered from a lack of model systems. Next-generation sequencing (NGS) data from 68 matched tumor-normal samples, whole-genome sequencing data from 10 samples, transcriptomic and affymetrix array data, and a bank of DSRCT patient-derived xenograft (PDX) are presented. EWSR1-WT1 fusions were noted to be simple, balanced events. Recurrent mutations were uncommon, but were noted in TERT (3%), ARID1A (6%), HRAS (5%), and TP53 (3%), and recurrent loss of heterozygosity (LOH) at 11p, 11q, and 16q was identified in 18%, 22%, and 34% of samples, respectively. Comparison of tumor-normal matched versus unmatched analysis suggests overcalling of somatic mutations in prior publications of DSRCT NGS data. Alterations in fibroblast growth factor receptor 4 (FGFR4) were identified in 5 of 68 (7%) of tumor samples, whereas differential overexpression of FGFR4 was confirmed orthogonally using 2 platforms. PDX models harbored the pathognomic EWSR1-WT1 fusion and were highly representative of corresponding tumors. Our analyses confirm DSRCT as a genomically quiet cancer defined by the balanced translocation, t(11;22)(p13:q12), characterized by a paucity of secondary mutations but a significant number of copy number alterations. Against this genomically quiet background, recurrent activating alterations of FGFR4 stood out, and suggest that this receptor tyrosine kinase, also noted to be highly expressed in DSRCT, should be further investigated. Future studies of DSRCT biology and preclinical therapeutic strategies should benefit from the PDX models characterized in this study. IMPLICATIONS: These data describe the general quiescence of the desmoplastic small round cell tumor (DSRCT) genome, present the first available bank of DSRCT model systems, and nominate FGFR4 as a key receptor tyrosine kinase in DSRCT, based on high expression, recurrent amplification, and recurrent activating mutations.
Collapse
Affiliation(s)
- Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Max F Levine
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diego F Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Glorymar I Sanchez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nestor Rosales
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mrinal M Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine A Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunes Gundem
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin T Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Todd E Heaton
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael P LaQuaglia
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Mello CA, Campos FAB, Santos TG, Silva MLG, Torrezan GT, Costa FD, Formiga MN, Nicolau U, Nascimento AG, Silva C, Curado MP, Nakagawa SA, Lopes A, Aguiar S. Desmoplastic Small Round Cell Tumor: A Review of Main Molecular Abnormalities and Emerging Therapy. Cancers (Basel) 2021; 13:cancers13030498. [PMID: 33525546 PMCID: PMC7865637 DOI: 10.3390/cancers13030498] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Desmoplastic small round cell tumor is a rare neoplasm with extremely aggressive behavior. Despite the multimodal treatment for newly diagnosed patients with chemotherapy, cytoreductive surgery and radiation, the cure rate is still low. For relapsed or progressive disease, there is limited data regarding second and third-line therapies. Novel agents have shown only modest activity. Recent molecular changes have been identified in this disease and this opens opportunities to be explored in future clinical trials. Abstract Desmoplastic small round cell tumor (DSRCT) is an extremely rare, aggressive sarcoma affecting adolescents and young adults with male predominance. Generally, it originates from the serosal surface of the abdominal cavity. The hallmark characteristic of DSRCT is the EWSR1–WT1 gene fusion. This translocation up-regulates the expression of PDGFRα, VEGF and other proteins related to tumor and vascular cell proliferation. Current management of DSRCT includes a combination of chemotherapy, radiation and aggressive cytoreductive surgery plus intra-peritoneal hyperthermic chemotherapy (HIPEC). Despite advances in multimodal therapy, outcomes remain poor since the majority of patients present disease recurrence and die within three years. The dismal survival makes DSRCT an orphan disease with an urgent need for new drugs. The treatment of advanced and recurrent disease with tyrosine kinase inhibitors, such as pazopanib, sunitinib, and mTOR inhibitors was evaluated by small trials. Recent studies using comprehensive molecular profiling of DSRCT identified potential therapeutic targets. In this review, we aim to describe the current studies conducted to better understand DSRCT biology and to explore the new therapeutic strategies under investigation in preclinical models and in early phase clinical trials.
Collapse
Affiliation(s)
- Celso Abdon Mello
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
- Correspondence: ; Tel.: +55-11-2189-2779
| | - Fernando Augusto Batista Campos
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Tiago Goss Santos
- Laboratory of Tumor Biology and Biomarkers, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil;
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
| | | | - Giovana Tardin Torrezan
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, Sao Paulo 05403-010, Brazil;
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Felipe D’Almeida Costa
- Department of Pathology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.D.C.); (A.G.N.)
| | - Maria Nirvana Formiga
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Ulisses Nicolau
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | | | - Cassia Silva
- Department of Medical Oncology, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (F.A.B.C.); (M.N.F.); (U.N.); (C.S.)
| | - Maria Paula Curado
- Department of Epidemiology, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil;
| | - Suely Akiko Nakagawa
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Ademar Lopes
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| | - Samuel Aguiar
- Department of Surgery, A.C.Camargo Cancer Center, Sao Paulo 01509-010, Brazil; (S.A.N.); (A.L.)
| |
Collapse
|
19
|
van Erp AEM, van Houdt L, Hillebrandt-Roeffen MHS, van Bree NFHN, Flucke UE, Mentzel T, Shipley J, Desar IME, Fleuren EDG, Versleijen-Jonkers YMH, van der Graaf WTA. Olaparib and temozolomide in desmoplastic small round cell tumors: a promising combination in vitro and in vivo. J Cancer Res Clin Oncol 2020; 146:1659-1670. [PMID: 32279088 PMCID: PMC7256072 DOI: 10.1007/s00432-020-03211-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
Abstract
Purpose Desmoplastic small round cell tumors (DSRCTs) are highly malignant and very rare soft tissue sarcomas with a high unmet need for new therapeutic options. Therefore, we examined poly(ADP-ribose) polymerase 1 (PARP1) and Schlafen-11 (SLFN11) expression in DSRCT tumor tissue and the combination of PARP inhibitor olaparib with the alkylating agent temozolomide (TMZ) in a preclinical DSRCT model. Methods PARP1 and SLFN11 have been described as predictive biomarkers for response to PARP inhibition. Expression of PARP1 and SLFN11 was assessed in 16 and 12 DSRCT tumor tissue samples, respectively. Effects of single-agent olaparib, and olaparib and TMZ combination treatment were examined using the preclinical JN-DSRCT-1 model. In vitro, single-agent and combination treatment effects on cell viability, the cell cycle, DNA damage and apoptosis were examined. Olaparib and TMZ combination treatment was also assessed in vivo. Results PARP1 and SLFN11 expression was observed in 100% and 92% of DSRCT tumor tissues, respectively. Olaparib treatment reduced cell viability and cell migration in a dose-dependent manner in vitro. Drug synergy between olaparib and TMZ was observed in vitro and in vivo. Combination treatment led to a cell-cycle arrest and induction of DNA damage and apoptosis, even when combined at low dosages. Conclusion We show high PARP1 and SLFN11 expression in DSRCT tumor material and antitumor effects following olaparib and TMZ combination treatment in a preclinical DSRCT model. This suggests that olaparib and TMZ combination treatment could be a potential treatment option for DSRCTs. Electronic supplementary material The online version of this article (10.1007/s00432-020-03211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anke E M van Erp
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Laurens van Houdt
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Niek F H N van Bree
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Emmy D G Fleuren
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Yvonne M H Versleijen-Jonkers
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute-Van Leeuwenhoek, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Romo-Morales A, Aladowicz E, Blagg J, Gatz SA, Shipley JM. Catalytic inhibition of KDM1A in Ewing sarcoma is insufficient as a therapeutic strategy. Pediatr Blood Cancer 2019; 66:e27888. [PMID: 31207107 DOI: 10.1002/pbc.27888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ewing sarcoma and desmoplastic small round cell tumors (DSRCT) are rare and clinically aggressive sarcomas usually characterized by oncogenic fusion proteins involving EWS. Emerging studies of Ewing sarcoma have demonstrated EWS-FLI1-driven chromatin remodeling as a key aspect of tumorigenicity. In particular, the lysine-specific demethylase KDM1A/LSD1 is linked to transcriptional regulation of target genes orchestrated by the EWS portion of the fusion protein interacting with repressive chromatin-remodeling complexes. Consistent with this model, depletion of KDM1A supports it is a molecular therapeutic target in Ewing sarcoma cells, but effective drugs need to be identified. PROCEDURE A comprehensive phenotypic analysis of the effects of catalytic KDM1A inhibitors ORY-1001 and GSK2879552, including clinically relevant doses, was carried out in 2D and 3D spheroid models of Ewing sarcoma and DSRCT. RESULTS Catalytic inhibition of KDM1A did not affect cell viability in 2D and 3D assays and had no impact on invasion in a 3D assay. CONCLUSIONS Overall, evidence presented here does not support inhibition of KDM1A catalytic demethylase activity as an effective therapeutic strategy for Ewing sarcoma or DSRCT. However, roles of KDM1A beyond its demethylase activity should be considered for these sarcomas.
Collapse
Affiliation(s)
- Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Susanne A Gatz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.,Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
21
|
Hayes-Jordan AA, Ma X, Menegaz BA, Lamhamedi-Cherradi SE, Kingsley CV, Benson JA, Camacho PE, Ludwig JA, Lockworth CR, Garcia GE, Craig SL. Efficacy of ONC201 in Desmoplastic Small Round Cell Tumor. Neoplasia 2018; 20:524-532. [PMID: 29626752 PMCID: PMC5915995 DOI: 10.1016/j.neo.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022] Open
Abstract
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing’s sarcoma gene (EWSR1) and the Wilms’ tumor suppressor gene (WT1). Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4) within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT.
Collapse
Affiliation(s)
- Andrea A Hayes-Jordan
- Division of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 1484, Houston, TX, USA.
| | - Xiao Ma
- Division of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 1484, Houston, TX, USA
| | - Brian A Menegaz
- Division of Sarcoma Medical Oncology-Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 1952, Houston, TX, USA
| | - Salah-Eddine Lamhamedi-Cherradi
- Division of Sarcoma Medical Oncology-Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 1952, Houston, TX, USA
| | - Charles V Kingsley
- Department of Imaging Physics-Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 1902, Houston, TX, USA
| | - Jalen A Benson
- Division of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 1484, Houston, TX, USA
| | - Pamela E Camacho
- Department of Pediatrics-Patient Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 0087, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 0450, Houston, TX, USA
| | - Cynthia R Lockworth
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 0063, Houston, TX, USA
| | - Gloria E Garcia
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 0063, Houston, TX, USA
| | - Suzanne L Craig
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit, 0063, Houston, TX, USA
| |
Collapse
|
22
|
Uboldi S, Craparotta I, Colella G, Ronchetti E, Beltrame L, Vicario S, Marchini S, Panini N, Dagrada G, Bozzi F, Pilotti S, Galmarini CM, D'Incalci M, Gatta R. Mechanism of action of trabectedin in desmoplastic small round cell tumor cells. BMC Cancer 2017; 17:107. [PMID: 28166781 PMCID: PMC5294815 DOI: 10.1186/s12885-017-3091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/27/2017] [Indexed: 11/26/2022] Open
Abstract
Background Desmoplastic small round cell tumor (DSRCT) is a rare and highly aggressive disease, that can be described as a member of the family of small round blue cell tumors. The molecular diagnostic marker is the t(11;22)(p13;q12) translocation, which creates an aberrant transcription factor, EWS-WT1, that underlies the oncogenesis of DSRCT. Current treatments are not very effective so new active drugs are needed. Trabectedin, now used as a single agent for the treatment of soft tissue sarcoma, was reported to be active in some pre-treated DSRCT patients. Using JN-DSRCT-1, a cell line derived from DSRCT expressing the EWS-WT1 fusion protein, we investigated the ability of trabectedin to modify the function of the chimeric protein, as in other sarcomas expressing fusion proteins. After detailed characterization of the EWS-WT1 transcripts structure, we investigated the mode of action of trabectedin, looking at the expression and function of the oncogenic chimera. Methods We characterized JN-DSRCT-1 cells using cellular approaches (FISH, Clonogenicity assay) and molecular approaches (Sanger sequencing, ChIP, GEP). Results JN-DSRCT-1 cells were sensitive to trabectedin at nanomolar concentrations. The cell line expresses different variants of EWS-WT1, some already identified in patients. EWS-WT1 mRNA expression was affected by trabectedin and chimeric protein binding on its target gene promoters was reduced. Expression profiling indicated that trabectedin affects the expression of genes involved in cell proliferation and apoptosis. Conclusions The JN-DSRCT-1 cell line, in vitro, is sensitive to trabectedin: after drug exposure, EWS-WT1 chimera expression decreases as well as binding on its target promoters. Probably the heterogeneity of chimera transcripts is an obstacle to precisely defining the molecular mode of action of drugs, calling for further cellular models of DSRCT, possibly growing in vivo too, to mimic the biological complexity of this disease. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Uboldi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - I Craparotta
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - G Colella
- Experimental Oncology and Pharmacogenomics, IRCCS Fondazione "Salvatore Maugeri"-Istituto di Pavia, Pavia, Italy
| | - E Ronchetti
- Experimental Oncology and Pharmacogenomics, IRCCS Fondazione "Salvatore Maugeri"-Istituto di Pavia, Pavia, Italy
| | - L Beltrame
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Vicario
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Marchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - N Panini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - G Dagrada
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - F Bozzi
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Pilotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - C M Galmarini
- Cell Biology and Pharmacogenomics Department, PharmaMar, Madrid, 28770, Spain
| | - M D'Incalci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - R Gatta
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy.
| |
Collapse
|
23
|
Muff R, Botter SM, Husmann K, Tchinda J, Selvam P, Seeli-Maduz F, Fuchs B. Explant culture of sarcoma patients' tissue. J Transl Med 2016; 96:752-62. [PMID: 27111283 DOI: 10.1038/labinvest.2016.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/08/2016] [Accepted: 03/03/2016] [Indexed: 01/18/2023] Open
Abstract
Human sarcomas comprise a heterogeneous group of rare tumors that affect soft tissues and bone. Due to the scarcity and heterogeneity of these diseases, patient-derived cells that can be used for preclinical research are limited. In this study, we investigated whether the tissue explant technique can be used to obtain sarcoma cell lines from fresh as well as viable frozen tissue obtained from 8 out of 12 soft tissue and 9 out of 13 bone tumor entities as defined by the World Health Organization. The success rate, defined as the percent of samples that yielded sufficient numbers of outgrowing cells to be frozen, and the time to freeze were determined for a total of 734 sarcoma tissue specimens. In 552 cases (75%) enough cells were obtained to be frozen at early passage. Success rates were higher in bone tumors (82%) compared with soft tissue tumors (68%), and the mean time to freezing was lower in bone tumors (65 days) compared with soft tissue tumors (84 days). Overall, from 40% of the tissues cells could be frozen at early passage within <2 month after tissue removal. Comparable results as with fresh tissue were obtained after explant of viable frozen patient-derived material. In a selected number of bone and soft tissue sarcoma entities, conventional karyotyping and/or FISH (fluorescence in situ hybridization) analysis revealed a high amount (>60%) of abnormal cells in 41% of analyzed samples, especially in bone sarcomas (osteosarcoma and Ewing sarcoma). In conclusion, the explant technique is well suited to establish patient-derived cell lines for a large majority of bone and soft tissue sarcoma entities with adequate speed. This procedure thus opens the possibility for molecular analysis and drug testing for therapeutic decision making even during patient treatment.
Collapse
Affiliation(s)
- Roman Muff
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Sander M Botter
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Knut Husmann
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Joelle Tchinda
- Oncology Laboratory, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philomina Selvam
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Franziska Seeli-Maduz
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| | - Bruno Fuchs
- Laboratory for Orthopedic Research, Department of Orthopedics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Mora J, Modak S, Cheung NK, Meyers P, de Alava E, Kushner B, Magnan H, Tirado OM, Laquaglia M, Ladanyi M, Rosai J. Desmoplastic small round cell tumor 20 years after its discovery. Future Oncol 2016; 11:1071-81. [PMID: 25804122 DOI: 10.2217/fon.15.32] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Desmoplastic small round cell tumor (DSRCT) was proposed as a distinct disease entity by William L Gerald and Juan Rosai in 1991. Over 850 patients have been reported in the medical literature. A specific translocation, t(11;22)(p13;q12), is seen in almost all cases, juxtaposing the EWS gene to the WT1 tumor suppressor gene. DSRCT is composed of nests of small round cells with polyphenotypic differentiation, typically a mixture of epithelial, mesenchymal and neural features, surrounded by a prominent desmoplastic stroma. DSRCT has a predilection for adolescent and young adult males, and primarily involves the abdominal cavity and pelvis. Survival is low despite their initial response to multimodal treatment. Most patients relapse with disseminated disease that is unresponsive to further therapy.
Collapse
Affiliation(s)
- Jaume Mora
- Department of Pediatric Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kang HJ, Park JH, Chen W, Kang SI, Moroz K, Ladanyi M, Lee SB. EWS-WT1 oncoprotein activates neuronal reprogramming factor ASCL1 and promotes neural differentiation. Cancer Res 2014; 74:4526-35. [PMID: 24934812 DOI: 10.1158/0008-5472.can-13-3663] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oncogenic fusion gene EWS-WT1 is the defining chromosomal translocation in desmoplastic small round-cell tumors (DSRCT), a rare but aggressive soft tissue sarcoma with a high rate of mortality. EWS-WT1 functions as an aberrant transcription factor that drives tumorigenesis, but the mechanistic basis for its pathogenic activity is not well understood. To address this question, we created a transgenic mouse strain that permits physiologic expression of EWS-WT1 under the native murine Ews promoter. EWS-WT1 expression led to a dramatic induction of many neuronal genes in embryonic fibroblasts and primary DSRCT, most notably the neural reprogramming factor ASCL1. Mechanistic analyses demonstrated that EWS-WT1 directly bound the proximal promoter of ASCL1, activating its transcription through multiple WT1-responsive elements. Conversely, EWS-WT1 silencing in DSRCT cells reduced ASCL1 expression and cell viability. Notably, exposure of DSRCT cells to neuronal induction media increased neural gene expression and induced neurite-like projections, both of which were abrogated by silencing EWS-WT1. Taken together, our findings reveal that EWS-WT1 can activate neural gene expression and direct partial neural differentiation via ASCL1, suggesting agents that promote neural differentiation might offer a novel therapeutic approach to treat DSRCT.
Collapse
Affiliation(s)
- Hong-Jun Kang
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, Louisiana
| | - Jun Hong Park
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, Louisiana
| | - WeiPing Chen
- Genomics Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Soo Im Kang
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, Louisiana
| | - Krzysztof Moroz
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, Louisiana
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sean Bong Lee
- Tulane University School of Medicine, Department of Pathology and Laboratory Medicine, New Orleans, Louisiana.
| |
Collapse
|
26
|
Ho AL, Vasudeva SD, Laé M, Saito T, Barbashina V, Antonescu CR, Ladanyi M, Schwartz GK. PDGF receptor alpha is an alternative mediator of rapamycin-induced Akt activation: implications for combination targeted therapy of synovial sarcoma. Cancer Res 2012; 72:4515-25. [PMID: 22787122 DOI: 10.1158/0008-5472.can-12-1319] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Akt activation by the IGF-1 receptor (IGF-1R) has been posited to be a mechanism of intrinsic resistance to mTORC1 inhibitors (rapalogues) for sarcomas. Here we show that rapamycin-induced phosphorylation of Akt can occur in an IGF-1R-independent manner. Analysis of synovial sarcoma cell lines showed that either IGF-1R or the PDGF receptor alpha (PDGFRA) can mediate intrinsic resistance to rapamycin. Repressing expression of PDGFRA or inhibiting its kinase activity in synovial sarcoma cells blocked rapamycin-induced phosphorylation of Akt and decreased tumor cell viability. Expression profiling of clinical tumor samples revealed that PDGFRA was the most highly expressed kinase gene among several sarcoma disease subtypes, suggesting that PDGFRA may be uniquely significant for synovial sarcomas. Tumor biopsy analyses from a synovial sarcoma patient treated with the mTORC1 inhibitor everolimus and PDGFRA inhibitor imatinib mesylate confirmed that this drug combination can impact both mTORC1 and Akt signals in vivo. Together, our findings define mechanistic variations in the intrinsic resistance of synovial sarcomas to rapamycin and suggest therapeutic strategies to address them.
Collapse
Affiliation(s)
- Alan L Ho
- Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 300 East 66th Street, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sohn EJ, Li H, Reidy K, Beers LF, Christensen BL, Lee SB. EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo. Cancer Res 2010; 70:1154-63. [PMID: 20103643 DOI: 10.1158/0008-5472.can-09-1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EWS/FLI1 is a fusion gene product generated by a chromosomal translocation t(11;22)(q24;q12) found in Ewing sarcoma. EWS/FLI1 encodes an aberrant transcription factor with oncogenic properties in vitro. Paradoxically, expression of EWS/FLI1 in nontransformed primary cells results in apoptosis, but the exact mechanism remains unclear. In primary mouse embryonic fibroblasts derived from conditional EWS/FLI1 knock-in embryos, expression of EWS/FLI1 resulted in apoptosis with concomitant increase in the endogenous Caspase 3 (Casp3) mRNA. EWS/FLI1 directly bound and activated the CASP3 promoter, whereas small interfering RNA-mediated knockdown of EWS/FLI1 led to a marked decrease in CASP3 transcripts in Ewing sarcoma cell lines. Ectopic expression of EWS/FLI1 resulted in an increased expression of CASP3 protein in heterologous cell lines. Importantly, expression of EWS/FLI1 in the mouse triggered an early onset of apoptosis in kidneys and acute lethality. These findings suggest that EWS/FLI1 induces apoptosis, at least partially, through the activation of CASP3 and show the cell context-dependent roles of EWS/FLI1 in apoptosis and tumorigenesis.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Iwasaki H, Nabeshima K, Nishio J, Jimi S, Aoki M, Koga K, Hamasaki M, Hayashi H, Mogi A. Pathology of soft-tissue tumors: Daily diagnosis, molecular cytogenetics and experimental approach. Pathol Int 2009; 59:501-21. [DOI: 10.1111/j.1440-1827.2009.02401.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Li H, Smolen GA, Beers LF, Xia L, Gerald W, Wang J, Haber DA, Lee SB. Adenosine transporter ENT4 is a direct target of EWS/WT1 translocation product and is highly expressed in desmoplastic small round cell tumor. PLoS One 2008; 3:e2353. [PMID: 18523561 PMCID: PMC2394657 DOI: 10.1371/journal.pone.0002353] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/30/2008] [Indexed: 12/03/2022] Open
Abstract
Background Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive malignancy that affects mainly adolescents and young adults. A defining characteristic of DSRCT is a specific chromosomal translocation, t(11;22)(p13;q12), that fuses EWS with WT1, leading to a production of two isoforms of chimeric transcription factor, EWS/WT1(−KTS) and EWS/WT1(+KTS). The chimeric proteins are thought to play critical roles in various stages of oncogenesis through aberrant transcription of different genes, but only a few of these genes have been identified. Methodology/Principal Findings We report the identification of a new target of EWS/WT1, ENT4 (equilibrative nucleoside transporter 4) which encodes a pH-dependent adenosine transporter. ENT4 is transcriptionally activated by both isoforms of EWS/WT1 as evidenced by promoter-reporter and chromatin immunoprecipitation (ChIP) analyses. Furthermore, ENT4 is highly and specifically expressed in primary tumors of DSRCT as well as in a DSRCT cell line, JN-DSRCT-1. Treatment of JN-DSRCT-1 cells with adenosine analogs, such as 2-chloro-2′-deoxyadenosine (2-CdA), resulted in an increased cytotoxic response in dose- and pH-dependent manner. Conclusions/Significance Our detailed analyses of a novel target of EWS/WT1 in DSRCT reveal an insight into the oncogenic mechanism of EWS-fusion chromosomal translocation gene products and provide a new marker for DSRCT. Furthermore, identification of ENT4 as a highly expressed transcript in DSRCT may represent an attractive pathway for targeting chemotherapeutic drugs into DSRCT.
Collapse
Affiliation(s)
- Hongjie Li
- Genetics of Development and Disease Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gromoslaw A. Smolen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Lisa F. Beers
- Genetics of Development and Disease Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Li Xia
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - William Gerald
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - Daniel A. Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Sean Bong Lee
- Genetics of Development and Disease Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Observation n° 8. Ann Pathol 2007. [DOI: 10.1016/s0242-6498(07)91859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Abstract
Desmoplastic small round cell tumor (DSRCT) is a poorly understood neoplasm with distinctive clinical, histologic and immunophenotypic features. It is associated with a novel, specific chromosomal abnormality, t(11;22)(p13;q12) that fuses EWS with WT1 leading to production of a chimeric protein with transcriptional regulatory activity. This chimeric transcription factor has unique DNA-binding properties and regulates expression of specific target genes. Several of these have been identified and their biological role characterized. The dysregulated expression of EWS-WT1 targets contribute to the malignant phenotype of DSRCT and provide valuable insight regarding the molecular mechanisms underlying the development and progression of this distinct translocation associated tumor.
Collapse
Affiliation(s)
- William L Gerald
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
32
|
Tirado OM, Mateo-Lozano S, Notario V. Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax : Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene 2005; 24:3348-57. [PMID: 15782132 DOI: 10.1038/sj.onc.1208471] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rapamycin, a complex macrolide and potent fungicide, immunosuppressant and anticancer agent, is a highly specific inhibitor of mammalian target of rapamycin (mTOR). Rapamycin has been shown to induce G1-phase cell cycle arrest in diverse tumor cell types, and its derivatives RAD001 and CCI-779 are currently in phase I and phase II clinical trials, respectively, as anticancer agents. In this study, we show that rapamycin induced the apoptotic death of JN-DSRCT-1 cells, the only available in vitro model for Desmoplastic Small Round Cell Tumors (DSRCT), while having only minor effects on their cell cycle. Rapamycin induced apoptosis by increasing the Bax : Bcl-xL ratio as a consequence of the concomitant downregulation of Bcl-xL and upregulation of Bax, both at the post-transcriptional level. Rapamycin also downregulated the levels of EWS/WT1, the fusion protein characteristic of DSRCT. Transient transfection studies using kinase-dead and rapamycin-resistant forms of mTOR demonstrated that only the downregulation of Bcl-xL was caused by the mTOR inhibitory action of rapamycin, which prevented cap-dependent translation initiation, whereas Bax upregulation was induced by rapamycin through a mechanism independent of its mTOR inhibitory activity. Moreover, rapamycin treatment downregulated the mRNA and protein levels of the 26S p44.5 proteasome subunit, suggesting the involvement of the proteasome complex in the mechanisms of rapamycin-induced apoptosis. Treatment of JN-DSRCT-1 cells with MG-132, a proteasome specific inhibitor, also resulted in the induction of apoptosis through a similar increase in the Bax : Bcl-xL ratio specifically caused by inhibiting Bax degradation and turnover. These results suggested that rapamycin induces apoptosis by preventing the degradation of the Bax protein by the proteasome, and that this process is independent of mTOR inhibition. Furthermore, these results strongly support the introduction of the use of rapamycin as a cytotoxic agent for the treatment of DSRCT.
Collapse
Affiliation(s)
- Oscar M Tirado
- Laboratory of Experimental Carcinogenesis, Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
33
|
Gil A, Gomez Portilla A, Brun EA, Sugarbaker PH. Clinical perspective on desmoplastic small round-cell tumor. Oncology 2004; 67:231-42. [PMID: 15557784 DOI: 10.1159/000081323] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 04/23/2004] [Indexed: 12/12/2022]
Abstract
Rare diseases are often associated with uninformed medical decisions and poorly executed treatments because of inexperience of the physicians. Desmoplastic small round-cell tumor is a rare disease that is a form of peritoneal surface malignancy usually affecting young males, with a mean survival of 29 months. In order to begin to build a more knowledgeable clinical pathway all 7 patients treated at the Washington Hospital Center were studied and compared to patients described in the medical literature. Clinical and pathological data, tumor distribution, cytoreductive surgery, completeness of cytoreduction and survival were recorded and analyzed. The first most common symptoms were pain, increased abdominal girth and palpable abdominal mass in our patients and in the literature review. The overall survival did not improve with cytoreductive surgery plus intraperitoneal chemotherapy (mean survival 32 months); however, 2 long-term survivors who responded to systemic chemotherapy of 55 and 101 months were recorded. The latter may be the longest survivor reported in the literature. No consistent response to chemotherapy was observed in our patients or in any literature review. Complete surgical removal of this malignancy did not correlate with survival in our patients. The absence of improved survival of our aggressively treated patients as compared to the literature was thought to be a consequence of an advanced stage of the disease. A new comprehensive approach that uses complete clearing of cancer by surgery and perioperative systemic and perioperative intraperitoneal chemotherapy as early as is possible in the natural history of the disease emerged as goals for future management.
Collapse
Affiliation(s)
- Alberto Gil
- Washington Cancer Institute, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
34
|
Ito E, Honma R, Imai JI, Azuma S, Kanno T, Mori S, Yoshie O, Nishio J, Iwasaki H, Yoshida K, Gohda J, Inoue JI, Watanabe S, Semba K. A tetraspanin-family protein, T-cell acute lymphoblastic leukemia-associated antigen 1, is induced by the Ewing's sarcoma-Wilms' tumor 1 fusion protein of desmoplastic small round-cell tumor. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2165-72. [PMID: 14633590 PMCID: PMC1892365 DOI: 10.1016/s0002-9440(10)63573-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recurrent chromosomal translocations in neoplasms often generate hybrid genes that play critical roles in tumorigenesis. Desmoplastic small round-cell tumor (DSRCT) is an aggressive malignancy associated with the chromosomal translocation t(11;22)(p13;q12). This translocation generates a chimeric transcription factor, EWS-WT1, which consists of the transcriptional activation domain of the Ewing's sarcoma (EWS) protein and the DNA binding domain of the Wilms' tumor 1 (WT1) protein. One of the splice variants, EWS-WT1(-KTS) lacks three amino acid residues (Lys-Thr-Ser) in the DNA binding domain and transforms NIH3T3 cells. Therefore, it is likely that aberrant gene expression caused by EWS-WT1(-KTS) is involved in the malignant phenotype of DSRCT. Microarray analysis of 9600 human genes revealed that a gene encoding a tetraspanin-family protein, T-cell acute lymphoblastic leukemia-associated antigen 1 (TALLA-1), was induced in EWS-WT1(-KTS)-expressing cell clones. This induction was EWS-WT1(-KTS)-specific, and more importantly, TALLA-1 protein was expressed in the three independent cases of DSRCT. Tetraspanin-family genes encode transmembrane proteins that regulate various cell processes such as cell adhesion, migration and metastasis. Our findings provide a novel insight into the malignant phenotype of DSRCT, suggesting that TALLA-1 is a useful marker for diagnosis and a potential target for the therapy of DSRCT.
Collapse
Affiliation(s)
- Emi Ito
- Division of Cancer Genomics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|