1
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
2
|
Kedziorek DA, Solaiyappan M, Walczak P, Ehtiati T, Fu Y, Bulte JWM, Shea SM, Brost A, Wacker FK, Kraitchman DL. Using C-arm x-ray imaging to guide local reporter probe delivery for tracking stem cell engraftment. Theranostics 2013; 3:916-26. [PMID: 24396502 PMCID: PMC3879108 DOI: 10.7150/thno.6943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/28/2013] [Indexed: 11/05/2022] Open
Abstract
Poor cell survival and difficulties with visualization of cell delivery are major problems with current cell transplantation methods. To protect cells from early destruction, microencapsulation methods have been developed. The addition of a contrast agent to the microcapsule also could enable tracking by MR, ultrasound, and X-ray imaging. However, determining the cell viability within the microcapsule still remains an issue. Reporter gene imaging provides a way to determine cell viability, but delivery of the reporter probe by systemic injection may be hindered in ischemic diseases. In the present study, mesenchymal stem cells (MSCs) were transfected with triple fusion reporter gene containing red fluorescent protein, truncated thymidine kinase (SPECT/PET reporter) and firefly luciferase (bioluminescence reporter). Transfected cells were microencapsulated in either unlabeled or perfluorooctylbromide (PFOB) impregnated alginate. The addition of PFOB provided radiopacity to enable visualization of the microcapsules by X-ray imaging. Before intramuscular transplantation in rabbit thigh muscle, the microcapsules were incubated with D-luciferin, and bioluminescence imaging (BLI) was performed immediately. Twenty-four and forty-eight hours post transplantation, c-arm CT was used to target the luciferin to the X-ray-visible microcapsules for BLI cell viability assessment, rather than systemic reporter probe injections. Not only was the bioluminescent signal emission from the PFOB-encapsulated MSCs confirmed as compared to non-encapsulated, naked MSCs, but over 90% of injection sites of PFOB-encapsulated MSCs were visible on c-arm CT. The latter aided in successful targeting of the reporter probe to injection sites using conventional X-ray imaging to determine cell viability at 1-2 days post transplantation. Blind luciferin injections to the approximate location of unlabeled microcapsules resulted in successful BLI signal detection in only 18% of injections. In conclusion, reporter gene probes can be more precisely targeted using c-arm CT for in vivo transplant viability assessment, thereby avoiding large and costly systemic injections of a reporter probe.
Collapse
Affiliation(s)
- Dorota A Kedziorek
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Meiyappan Solaiyappan
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Piotr Walczak
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 2. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tina Ehtiati
- 3. Center for Applied Medical Imaging, Corporate Technology, Siemens Corporation, Baltimore, Maryland, United States
| | - Yingli Fu
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeff W M Bulte
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 2. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Steven M Shea
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 3. Center for Applied Medical Imaging, Corporate Technology, Siemens Corporation, Baltimore, Maryland, United States
| | - Alexander Brost
- 4. Pattern Recognition Lab, University of Erlangen, Erlangen, Germany
| | - Frank K Wacker
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States. ; 5. Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Dara L Kraitchman
- 1. Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Arifin DR, Kedziorek DA, Fu Y, Chan KWY, McMahon MT, Weiss CR, Kraitchman DL, Bulte JWM. Microencapsulated cell tracking. NMR IN BIOMEDICINE 2013; 26:850-859. [PMID: 23225358 PMCID: PMC3655121 DOI: 10.1002/nbm.2894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/08/2012] [Accepted: 10/28/2012] [Indexed: 06/01/2023]
Abstract
Microencapsulation of therapeutic cells has been widely pursued to achieve cellular immunoprotection following transplantation. Initial clinical studies have shown the potential of microencapsulation using semi-permeable alginate layers, but much needs to be learned about the optimal delivery route, in vivo pattern of engraftment, and microcapsule stability over time. In parallel with noninvasive imaging techniques for 'naked' (i.e. unencapsulated) cell tracking, microcapsules have now been endowed with contrast agents that can be visualized by (1) H MRI, (19) F MRI, X-ray/computed tomography and ultrasound imaging. By placing the contrast agent formulation in the extracellular space of the hydrogel, large amounts of contrast agents can be incorporated with negligible toxicity. This has led to a new generation of imaging biomaterials that can render cells visible with multiple imaging modalities.
Collapse
Affiliation(s)
- Dian R. Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dorota A. Kedziorek
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingli Fu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford R. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dara L. Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Barnett BP, Ruiz-Cabello J, Hota P, Liddell R, Walczak P, Howland V, Chacko VP, Kraitchman DL, Arepally A, Bulte JWM. Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology 2010; 258:182-91. [PMID: 20971778 DOI: 10.1148/radiol.10092339] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop novel immunoprotective alginate microcapsule formulations containing perfluorocarbons (PFCs) that may increase cell function, provide immunoprotection for xenografted cells, and simultaneously enable multimodality imaging. MATERIALS AND METHODS All animal experiments were approved by an Institutional Animal Care and Use Committee. Cadaveric human islet cells were encapsulated with alginate, poly-l-lysine, and perfluorooctyl bromide (PFOB) or perfluoropolyether (PFPE). In vitro viability and the glucose-stimulation index for insulin were determined over the course of 2 weeks and analyzed by using a cross-sectional time series regression model. The sensitivity of multimodality (computed tomography [CT], ultrasonography [US], and fluorine 19 [(19)F] magnetic resonance [MR] imaging) detection was determined for fluorocapsules embedded in gel phantoms. C57BL/6 mice intraperitoneally receiving 6000 PFOB-labeled (n = 6) or 6000 PFPE-labeled (n = 6) islet-containing fluorocapsules and control mice intraperitoneally receiving 6000 PFOB-labeled (n = 6) or 6000 PFPE-labeled (n = 6) fluorocapsules without islets were monitored for human C-peptide (insulin) secretion during a period of 55 days. Mice underwent (19)F MR imaging at 9.4 T and micro-CT. Swine (n = 2) receiving 9000 PFOB capsules through renal artery catheterization were imaged with a clinical multidetector CT scanner. Signal intensity was evaluated by using a paired t test. RESULTS Compared with nonfluorinated alginate microcapsules, PFOB fluorocapsules increased insulin secretion of encapsulated human islets, with values up to 18.5% (3.78 vs 3.19) at 8-mmol/L glucose concentration after 7 days in culture (P < .001). After placement of the immunoprotected encapsulated cells into mice, a sustained insulin release was achieved with human C-peptide levels of 19.1 pmol/L ± 0.9 (standard deviation) and 33.0 pmol/L ± 1.0 for PFPE and PFOB capsules, respectively. Fluorocapsules were readily visualized with (19)F MR imaging, US imaging, and CT with research- and clinical-grade imagers for all modalities. CONCLUSION Fluorocapsules enhance glucose responsiveness and insulin secretion in vitro, enable long-term insulin secretion by xenografted islet cells in vivo, and represent a novel contrast agent platform for multimodality imaging.
Collapse
Affiliation(s)
- Brad P Barnett
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, 720 Rutland Ave, 217 Traylor, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Perfluorocarbons (PFCs) are inert solutions that have a high capacity for dissolving oxygen. There has been a continuing level of research into the delivery of oxygen during solid organ preservation with the use of PFCs. The one- and two-layer methods have been used as static storage techniques, proving particularly successful for pancreas preservation. They can also be formulated as an emulsion for continual perfusion or as a simple flush solution. The success of PFCs in organ preservation seems to be somewhat organ and species dependant, and further experimental evidence is needed to establish their application.
Collapse
|
6
|
Gale SC, Gorman GD, Copeland JG, McDonagh PF. Perflubron Emulsion Prevents PMN Activation and Improves Myocardial Functional Recovery After Cold Ischemia and Reperfusion. J Surg Res 2007; 138:135-40. [DOI: 10.1016/j.jss.2006.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/18/2006] [Accepted: 08/29/2006] [Indexed: 11/28/2022]
|