1
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
2
|
Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell Tissue Res 2022; 388:117-132. [PMID: 35106623 PMCID: PMC8976778 DOI: 10.1007/s00441-022-03592-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required. However, it is not known whether expansion of CD34 + cells has an impact on their function and neuroregenerative capacity. We addressed this knowledge gap in this study, via expansion of UCB-derived CD34 + cells using combinations of LDL, UM171 and SR-1 to yield large numbers of cells and then tested their functionality. CD34 + cells expanded for 14 days in media containing UM171 and SR-1 resulted in over 1000-fold expansion. The expanded cells showed an up-regulation of the neurotrophic factor genes BDNF, GDNF, NTF-3 and NTF-4, as well as the angiogenic factors VEGF and ANG. In vitro functionality testing showed that these expanded cells promoted angiogenesis and, in brain glial cells, promoted cell proliferation and reduced production of reactive oxygen species (ROS) during oxidative stress. Collectively, this study showed that our 14-day expansion protocol provided a robust expansion that could produce enough cells for therapeutic purposes. These expanded cells, when tested in in vitro, maintained functionality as demonstrated through promotion of cell proliferation, attenuation of ROS production caused by oxidative stress and promotion of angiogenesis.
Collapse
|
3
|
Abstract
: Hematopoietic stem cells (HSCs) are a unique population of cells with the remarkable ability to replenish themselves through self-renewal and to give rise to differentiated cell lineages. Though having been discovered more than 50 years ago, and having been widely used in bone marrow transplantation to treat blood disorders including leukemia, expansion of HSCs remains an unmet task, thus affecting its more effective usage in clinical practice. PURPOSE OF REVIEW The purpose of this review article is to summarize past efforts in ex-vivo HSC expansion and to compare recent advances in expanding murine and human HSCs by targeting the N-methyladenosine (mA) pathway. RECENT FINDINGS Unlike past many efforts that mainly target single or limited pathways and often lead to lineage bias or expansion of progenitor cells or limited long-term HSCs (LT-HSCs), the blocking the degradation of mA pathway has an advantage of stabilizing hundreds of key factors required for maintaining HSCs, thus resulting in expansion of functional LT-HSCs. SUMMARY The new approach of targeting the mA pathway has a promising application in clinical HSC-based transplantation.
Collapse
|
4
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Batista ML, Mintz A, Birbrair A. Adipocytes role in the bone marrow niche. Cytometry A 2018; 93:167-171. [PMID: 29236351 PMCID: PMC6067923 DOI: 10.1002/cyto.a.23301] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Abstract
Adipocyte infiltration in the bone marrow follows chemotherapy or irradiation. Previous studies indicate that bone marrow fat cells inhibit hematopoietic stem cell function. Recently, Zhou et al. (2017) using state-of-the-art techniques, including sophisticated Cre/loxP technologies, confocal microscopy, in vivo lineage-tracing, flow cytometry, and bone marrow transplantation, reveal that adipocytes promote hematopoietic recovery after irradiation. This study challenges the current view of adipocytes as negative regulators of the hematopoietic stem cells niche, and reopens the discussion about adipocytes' roles in the bone marrow. Strikingly, genetic deletion of stem cell factor specifically from adipocytes leads to deficiency in hematopoietic stem cells, and reduces animal survival after myeloablation, The emerging knowledge from this research will be important for the treatment of multiple hematologic disorders. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Daniel A. P. Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E. Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F. G. Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrick O. Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Miguel Luiz Batista
- Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Zhang D, Lee J, Kilian KA. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis. Adv Healthc Mater 2017; 6. [PMID: 28841770 DOI: 10.1002/adhm.201700535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Junmin Lee
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| |
Collapse
|
7
|
Xie J, Zhang C. Ex vivo expansion of hematopoietic stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:839-53. [PMID: 26246379 DOI: 10.1007/s11427-015-4895-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023]
Abstract
Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.
Collapse
Affiliation(s)
- JingJing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, China
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | - ChengCheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| |
Collapse
|
8
|
Lai L, Zhang M, Goldschneider I. Recombinant IL-7/HGFβ efficiently induces transplantable murine hematopoietic stem cells. J Clin Invest 2012; 122:3552-62. [PMID: 22996694 DOI: 10.1172/jci46055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/26/2012] [Indexed: 01/29/2023] Open
Abstract
Difficulty obtaining sufficient hematopoietic stem cells (HSCs) directly from the donor has limited the clinical use of HSC transplantation. Numerous attempts to stimulate the ex vivo growth of purified HSCs with cytokines and growth factors generally have induced only modest increases in HSC numbers while decreasing their in vivo reconstituting ability. We previously developed a recombinant single-chain form of a naturally occurring murine hybrid cytokine of IL-7 and the β chain of hepatocyte growth factor (rIL-7/HGFβ) that stimulates the in vitro proliferation and/or differentiation of common lymphoid progenitors, pre-pro-B cells, and hematopoietic progenitor cells (day 12 spleen colony-forming units) in cultures of mouse BM. Here we used the rIL-7/HGFβ in culture to induce large numbers of HSCs from multiple cell sources, including unseparated BM cells, purified HSCs, CD45- BM cells, and embryonic stem cells. In each instance, most of the HSCs were in the G0 phase of the cell cycle and exhibited reduced oxidative stress, decreased apoptosis, and increased CXCR4 expression. Furthermore, when injected i.v., these HSCs migrated to BM, self-replicated, provided radioprotection, and established long-term hematopoietic reconstitution. These properties were amplified by injection of rIL-7/HGFβ directly into the BM cavity but not by treatment with rIL-7, rHGF, and/or rHGFβ.
Collapse
Affiliation(s)
- Laijun Lai
- Department of Immunology, University of Connecticut, Stem Cell Institute, School of Medicine, Health Center, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
9
|
Tursky ML, Collier FM, Ward AC, Kirkland MA. Systematic investigation of oxygen and growth factors in clinically valid ex vivo expansion of cord blood CD34(+) hematopoietic progenitor cells. Cytotherapy 2012; 14:679-85. [PMID: 22424214 DOI: 10.3109/14653249.2012.666851] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS Cord blood is considered to be a superior source of hematopoietic stem and progenitor cells for transplantation, but clinical use is limited primarily because of the low numbers of cells harvested. Ex vivo expansion has the potential to provide a safe, effective means of increasing cell numbers. However, an absence of consensus regarding optimum expansion conditions prevents standard implementation. Many studies lack clinical applicability, or have failed to investigate the combinational effects of different parameters. METHODS This is the first study to characterize systematically the effect of growth factor combinations across multiple oxygen levels on the ex vivo expansion of cord blood CD34(+) hematopoietic cells utilizing clinically approvable reagents and methodologies throughout. RESULTS Optimal fold expansion, as assessed both phenotypically and functionally, was greatest with thrombopoietin, stem cell factor, Flt-3 ligand and interleukin-6 at an oxygen level of 10%. With these conditions, serial expansion showed continual target population expansion and consistently higher expression levels of self-renewal associated genes. CONCLUSIONS This study has identified optimized fold expansion conditions, with the potential for direct clinical translation to increase transplantable cell dose and as a baseline methodology against which future factors can be tested.
Collapse
|
10
|
Nagao H, Ijiri K, Hirotsu M, Ishidou Y, Yamamoto T, Nagano S, Takizawa T, Nakashima K, Komiya S, Setoguchi T. Role of GLI2 in the growth of human osteosarcoma. J Pathol 2011; 224:169-79. [DOI: 10.1002/path.2880] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/12/2011] [Accepted: 02/20/2011] [Indexed: 12/20/2022]
|
11
|
Li J. Quiescence regulators for hematopoietic stem cell. Exp Hematol 2011; 39:511-20. [PMID: 21288477 DOI: 10.1016/j.exphem.2011.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 01/18/2011] [Accepted: 01/24/2011] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cell (HSC) either stays in quiescence or proliferates toward differentiation for the production of mature blood cells, or toward self-renewal for giving rise to itself. In order to both maintain a supply of mature blood cells and not exhaust HSCs throughout the lifetime of an individual, under steady state, most HSCs remain quiescent and only a small number enter the cell cycle. Quiescence of HSCs is not only critical for protecting the stem cell compartment and sustaining stem cell pools over long periods, but it is also critical for protecting stem cells by minimizing their accumulation of replication-associated mutations. The balance between quiescence and proliferation is tightly controlled by both HSC-intrinsic and -extrinsic mechanisms. In recent years, through reductionistic strategies, a wide variety of molecules or pathways critical for HSC quiescence regulation have been identified. This regulation network involves both positive and negative regulators. Understanding quiescence regulation in HSC is of great importance not only for understanding the physiological foundation of HSCs, but also for understanding the pathophysiological origins of many related disorders. In this article, I will briefly review the current advance in the quiescence regulators for the HSCs.
Collapse
Affiliation(s)
- June Li
- Department of Genetics, The University of Texas, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Hirotsu M, Setoguchi T, Sasaki H, Matsunoshita Y, Gao H, Nagao H, Kunigou O, Komiya S. Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer 2010; 9:5. [PMID: 20067614 PMCID: PMC2818696 DOI: 10.1186/1476-4598-9-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 01/12/2010] [Indexed: 12/26/2022] Open
Abstract
Background The Hedgehog signaling pathway functions as an organizer in embryonic development. Recent studies have demonstrated constitutive activation of Hedgehog pathway in various types of malignancies. However, it remains unclear how Hedgehog pathway is involved in the pathogenesis of osteosarcoma. To explore the involvement of aberrant Hedgehog pathway in the pathogenesis of osteosarcoma, we investigated the expression and activation of Hedgehog pathway in osteosarcoma and examined the effect of SMOOTHENED (SMO) inhibition. Results To evaluate the expression of genes of Hedgehog pathway, we performed real-time PCR and immunohistochemistry using osteosarcoma cell lines and osteosarcoma biopsy specimens. To evaluate the effect of SMO inhibition, we did cell viability, colony formation, cell cycle in vitro and xenograft model in vivo. Real-time PCR revealed that osteosarcoma cell lines over-expressed Sonic hedgehog, Indian hedgehog, PTCH1, SMO, and GLI. Real-time PCR revealed over-expression of SMO, PTCH1, and GLI2 in osteosarcoma biopsy specimens. These findings showed that Hedgehog pathway is activated in osteosarcomas. Inhibition of SMO by cyclopamine, a specific inhibitor of SMO, slowed the growth of osteosarcoma in vitro. Cell cycle analysis revealed that cyclopamine promoted G1 arrest. Cyclopamine reduced the expression of accelerators of the cell cycle including cyclin D1, cyclin E1, SKP2, and pRb. On the other hand, p21cip1 wprotein was up-regulated by cyclopamine treatment. In addition, knockdown of SMO by SMO shRNA prevents osteosarcoma growth in vitro and in vivo. Conclusions These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Masataka Hirotsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rittié L, Stoll SW, Kang S, Voorhees JJ, Fisher GJ. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell 2009; 8:738-51. [PMID: 20050020 DOI: 10.1111/j.1474-9726.2009.00526.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isolated human bulge cells, characterized as CD200+/KRT15+/KRT19+ cells of the HF, by dissection-combined CD200 selection in young and aged human skin. Targeted transcriptional profiling indicates that KRT15, KRT19, Dkk3, Dkk4, Tcf3, S100A4, Gas1, EGFR and CTGF/CCN2 are also preferentially expressed by human bulge cells, compared to differentiated HF keratinocytes (KC). Our results demonstrate that aging does not alter expression or localization of these HF SC markers. In addition, we could not detect significant differences in HF density or bulge cell number between young and aged human scalp skin. Interestingly, hedgehog (Hh) signaling is activated in human bulge cells in vivo, and down-regulated in differentiated HF KCs, both in young and aged skin. In addition, activation of Hh signaling by lentivirus-mediated overexpression of transcription factor Gli1 induces transcription of HF SC markers KRT15, KRT19, and Gas1, in cultured KCs. Together with previously reported knock-out mouse results, these data suggest a role for Hh signaling in maintaining bulge cell phenotype in young and aged human skin.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Flt3 ligand (FL) is an early-acting hematopoietic cytokine that stimulates the proliferation and differentiation of hematopoietic progenitor cells by activating its cognate receptor, Flt3. Recently, FL was shown to potently contribute to the development and expansion of antigen-presenting dendritic cells and CD34(+) natural killer cell progenitors in vivo. Here, we report a comprehensive method for the production of bioactive recombinant human FL (rhFL) in E. coli, suitable for structural, biophysical and physiological studies. A soluble form of human FL capable of binding to the Ftl3 receptor could be overexpressed in the E. coli strain Rosetta-gami(DE3) as inclusion bodies. We have established protocols for the efficient in vitro refolding and ensuing purification of rhFL to homogeneity (>95%), with yields approaching 5 mg of pure rhFL per liter of culture. The ability of rhFL to adopt a bioactive conformation was confirmed via a cell-proliferation assay and the activation of the Flt3 receptor in the human leukemic cell line, OCI-AML3.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Regulation of the multiple fates of hematopoietic stem cells - including quiescence, self-renewal, differentiation, apoptosis, and mobilization from the niche - requires the cooperative actions of several cytokines and other hormones that bind to receptors on these cells. In this review we discuss recent advances in the identification of novel hematopoietic stem cell supportive cytokines and the mechanisms by which they control hematopoietic stem cell fate decisions. RECENT FINDINGS Several extrinsic factors that stimulate ex-vivo expansion of hematopoietic stem cells were recently identified by a number of experimental approaches, including forward genetic screening and transcriptional profiling of supportive stromal cells. Recent experiments in which multiple cytokine signaling pathways are activated or suppressed in hematopoietic stem cells reveal the complexity of signal transduction and cell-fate choice in hematopoietic stem cells in vivo and in vitro. SUMMARY The study of genetically modified mice and improvements in the in-vitro hematopoietic stem cell culture system will be powerful tools to elucidate the functions of cytokines that regulate hematopoietic stem cell function. These will further reveal the complex nature of the mechanisms by which extrinsic factors regulate signal transduction and cell-fate decisions of hematopoietic stem cells.
Collapse
|
16
|
Cdx gene deficiency compromises embryonic hematopoiesis in the mouse. Proc Natl Acad Sci U S A 2008; 105:7756-61. [PMID: 18511567 DOI: 10.1073/pnas.0708951105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cdx genes (Cdx1, Cdx2, and Cdx4) encode a family of caudal-related transcription factors that mediate anterior-posterior patterning during embryogenesis through Hox gene regulation. Homologues in the zebrafish have been shown to play key roles in blood formation. To define the role of Cdx genes during embryonic hematopoiesis in a mammalian system, we examined the hematopoietic potential of Cdx-deficient mouse embryonic stem cells (ESCs) in vitro and in vivo. Individual Cdx-deficient ESCs exhibited impaired embryonic hematopoietic progenitor formation and altered Hox gene expression, most notably for Cdx2 deficiency. A more severe hematopoietic defect was observed with compound Cdx deficiency than loss of function of any single Cdx gene. Reduced hematopoietic progenitor formation of ESCs deficient in multiple Cdx genes could be rescued by ectopic expression of Cdx4, concomitant with partially restored Hox gene expression. These results reveal an essential and partially redundant role for multiple Cdx genes during embryonic hematopoiesis in the mouse.
Collapse
|
17
|
Colmegna I, Diaz-Borjon A, Fujii H, Schaefer L, Goronzy JJ, Weyand CM. Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. ACTA ACUST UNITED AC 2008; 58:990-1000. [PMID: 18383391 DOI: 10.1002/art.23287] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), telomeres of lymphoid and myeloid cells are age-inappropriately shortened, suggesting excessive turnover of hematopoietic precursor cells (HPCs). The purpose of this study was to examine the functional competence (proliferative capacity, maintenance of telomeric reserve) of CD34+ HPCs in RA. METHODS Frequencies of peripheral blood CD34+,CD45+ HPCs from 63 rheumatoid factor-positive RA patients and 48 controls matched for age, sex, and ethnicity were measured by flow cytometry. Proliferative burst, cell cycle dynamics, and induction of lineage-restricted receptors were tested in purified CD34+ HPCs after stimulation with early hematopoietins. Telomere sequences were quantified by real-time polymerase chain reaction. HPC functions were correlated with the duration, activity, and severity of RA as well as its treatment. RESULTS In healthy donors, CD34+ HPCs accounted for 0.05% of nucleated cells; their numbers were strictly age dependent and declined at a rate of 1.3% per year. In RA patients, CD34+ HPC frequencies were age-independently reduced to 0.03%. Upon growth factor stimulation, control HPCs passed through 5 replication cycles over 4 days. In contrast, RA-derived HPCs completed only 3 generations. Telomeres of RA CD34+ HPCs were age-inappropriately shortened by 1,600 bp. All HPC defects were independent of disease duration, disease activity, and smoking status, and were present to the same degree in untreated patients. CONCLUSION In RA, circulating bone marrow-derived progenitor cells were diminished, and concentrations stagnated at levels typical of those in old control subjects. HPCs from RA patients displayed growth factor nonresponsiveness and sluggish cell cycle progression; marked telomere shortening indicated proliferative stress-induced senescence. Defective HPC function independent of disease activity markers suggests bone marrow failure as a potential pathogenic factor in RA.
Collapse
Affiliation(s)
- Inés Colmegna
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
18
|
Saha K, Pollock JF, Schaffer DV, Healy KE. Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 2007; 11:381-7. [PMID: 17669680 PMCID: PMC1993842 DOI: 10.1016/j.cbpa.2007.05.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/31/2007] [Indexed: 12/13/2022]
Abstract
The micro-environment in which stem cells reside regulates their fate, and synthetic materials have recently been designed to emulate these regulatory processes for various medical applications. Ligands inspired by the natural extracellular matrix, cell-cell contacts, and growth factors have been incorporated into synthetic materials with precisely engineered density and presentation. Furthermore, material architecture and mechanical properties are material design parameters that provide a context for receptor-ligand interactions and thereby contribute to fate determination of uncommitted stem cells. Although significant progress has been made in biomaterials development for cellular control, the design of more sophisticated and robust synthetic materials can address future challenges in achieving spatiotemporal control of cellular phenotype and in implementing histocompatible clinical therapies.
Collapse
Affiliation(s)
- Krishanu Saha
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, California
| | - Jacob F. Pollock
- Department of Bioengineering, University of California at Berkeley, Berkeley, California
- UCSF and UCB Joint Graduate Group in Bioengineering, University of California at Berkeley, Berkeley, California
| | - David V. Schaffer
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California
- Correspondence should be addressed to D.V.S.: 201 Gilman Hall, Berkeley, California 94720-1462, (510) 643-5963, (510) 642-4778 (fax), , K.E.H: 370 Hearst Memorial Mining Building, #1760, Berkeley, California 94720-1760, (510) 643-3559, (510) 643-5792 (fax),
| | - Kevin E. Healy
- Department of Bioengineering, University of California at Berkeley, Berkeley, California
- UCSF and UCB Joint Graduate Group in Bioengineering, University of California at Berkeley, Berkeley, California
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California
- Correspondence should be addressed to D.V.S.: 201 Gilman Hall, Berkeley, California 94720-1462, (510) 643-5963, (510) 642-4778 (fax), , K.E.H: 370 Hearst Memorial Mining Building, #1760, Berkeley, California 94720-1760, (510) 643-3559, (510) 643-5792 (fax),
| |
Collapse
|