1
|
Gryskiewicz J, Slavin BV, Slavin BR, Nayak VV, Pierrot RG, Taghioff SM, Alameddine KO, Singh D, Chopra K, Coelho PG. The Aesthetic Surgery Education and Research Foundation (ASERF): A 30-Year Retrospective Analysis. Aesthet Surg J 2024; 44:658-667. [PMID: 38195091 DOI: 10.1093/asj/sjae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
Federal government research grants provide limited funding to plastic surgeon-scientists, with reconstructive research taking precedence over aesthetic research. The Aesthetic Surgery Education and Research Foundation (ASERF) is a nonprofit, 501(c)(3) organization that seeks to support innovative, diverse research endeavors within aesthetic surgery. A total of 130 ASERF-funded studies and 32 non-funded applications from 1992 to 2022 were reviewed. Kruskal Wallis, Fisher's exact, and chi-squared tests were utilized to assess the potential relationship between self-identified gender, practice setting, geographical location, and study type with individual grant amounts and grant funding decision. Although significant differences were observed between male and female grant recipient h-indices (P < .05), there were no differences in the amount of funding they received (P > .05). Grant amounts were also consistent between study types as well as principal investigator practice settings and geographical locations (P > .05). The subanalysis revealed that the practice setting of the primary investigator (PI) was the only variable to exhibit a significant association with the decision to award funding (P < .05). Further, of the 61 applicants between 2017 and 2022, only 2 PIs self-identified as female. ASERF serves as an excellent funding source for global aesthetic surgery. To promote further research diversification, increased emphasis should be placed on recruiting applicants from outside academia and those who identify as female or gender nonbinary.
Collapse
|
2
|
Farokhi M, Solouk A, Mirzadeh H, Herbert Teuschl A, Redl H. An Injectable Enzymatically Crosslinked and Mechanically Tunable Silk Fibroin/Chondroitin Sulfate Chondro‐Inductive Hydrogel. MACROMOLECULAR MATERIALS AND ENGINEERING 2023; 308. [DOI: 10.1002/mame.202200503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractAn injectable hybrid hydrogel is synthesized, comprising silk fibroin (SF) and chondroitin sulfate (CS) through di‐tyrosine formation bond of SF chains. CS and SF are reported with excellent biocompatibility as tissue engineering scaffolds. Nonetheless, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate articular cartilage. As CS is one of the cartilage extracellular matrix (ECM) components, it has the potential to enhance the biological activity of SF‐based hydrogel in terms of cartilage repair. Therefore, altering the CS concentrations (i.e., 0 wt%, 0.25 wt%, 0.5 wt%, 1 wt%, and 2 wt%), which are interpenetrated between SF β‐sheets and chains, can potentially adjust the physical, chemical, and mechanical features of these hybrid hydrogels. The formation of β‐sheets by 30 days of immersion in de‐ionized (DI) water can improve the compression strength of the SF/CS hybrid hydrogels in comparison with the same SF/CS hybrid hydrogels in the dried state. Biological investigation and observation depicts proper cell attachment, proliferation and cell viability for C28/I2 cells. Gene expression of sex‐determining region YBox 9 (SOX9), Collagen II α1, and Aggrecan (AGG) exhibits positive C3H10T1/2 growth and expression of cartilage‐specific genes in the 0.25 wt% and 0.5 wt% SF/CS hydrogels.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Atefeh Solouk
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Anderaes Herbert Teuschl
- Department of Life Science Engineering University of Applied Sciences Technikum Wien Höchstädtplatz 6 Vienna 1200 Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology AUVA Research Center Donaueschingenstrasse 13 Vienna 1200 Austria
| |
Collapse
|
3
|
Hirano N, Kusuhara H, Sueyoshi Y, Teramura T, Murthy A, Asamura S, Isogai N, Jacquet RD, Landis WJ. Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. PLoS One 2021; 16:e0253149. [PMID: 34242238 PMCID: PMC8270150 DOI: 10.1371/journal.pone.0253149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
A major obstacle for tissue engineering ear-shaped cartilage is poorly developed tissue comprising cell-scaffold constructs. To address this issue, bioresorbable scaffolds of poly-ε-caprolactone (PCL) and polyglycolic acid nanofibers (nanoPGA) were evaluated using an ethanol treatment step before auricular chondrocyte scaffold seeding, an approach considered to enhance scaffold hydrophilicity and cartilage regeneration. Auricular chondrocytes were isolated from canine ears and human surgical samples discarded during otoplasty, including microtia reconstruction. Canine chondrocytes were seeded onto PCL and nanoPGA sheets either with or without ethanol treatment to examine cellular adhesion in vitro. Human chondrocytes were seeded onto three-dimensional bioresorbable composite scaffolds (PCL with surface coverage of nanoPGA) either with or without ethanol treatment and then implanted into athymic mice for 10 and 20 weeks. On construct retrieval, scanning electron microscopy showed canine auricular chondrocytes seeded onto ethanol-treated scaffolds in vitro developed extended cell processes contacting scaffold surfaces, a result suggesting cell-scaffold adhesion and a favorable microenvironment compared to the same cells with limited processes over untreated scaffolds. Adhesion of canine chondrocytes was statistically significantly greater (p ≤ 0.05) for ethanol-treated compared to untreated scaffold sheets. After implantation for 10 weeks, constructs of human auricular chondrocytes seeded onto ethanol-treated scaffolds were covered with glossy cartilage while constructs consisting of the same cells seeded onto untreated scaffolds revealed sparse connective tissue and cartilage regeneration. Following 10 weeks of implantation, RT-qPCR analyses of chondrocytes grown on ethanol-treated scaffolds showed greater expression levels for several cartilage-related genes compared to cells developed on untreated scaffolds with statistically significantly increased SRY-box transcription factor 5 (SOX5) and decreased interleukin-1α (inflammation-related) expression levels (p ≤ 0.05). Ethanol treatment of scaffolds led to increased cartilage production for 20- compared to 10-week constructs. While hydrophilicity of scaffolds was not assessed directly in the present findings, a possible factor supporting the summary data is that hydrophilicity may be enhanced for ethanol-treated nanoPGA/PCL scaffolds, an effect leading to improvement of chondrocyte adhesion, the cellular microenvironment and cartilage regeneration in tissue-engineered auricle constructs.
Collapse
Affiliation(s)
- Narihiko Hirano
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
| | - Hirohisa Kusuhara
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
| | - Yu Sueyoshi
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University, Osakasayama, Japan
| | - Ananth Murthy
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Medical Center, Akron, Ohio, United States of America
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical College, Wakayama, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kindai University, Osakasayama, Japan
- * E-mail: (WJL); (NI)
| | - Robin DiFeo Jacquet
- Division of Plastic and Reconstructive Surgery, Children’s Hospital Medical Center, Akron, Ohio, United States of America
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
| | - William J. Landis
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
- * E-mail: (WJL); (NI)
| |
Collapse
|
4
|
Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym 2020; 248:116776. [DOI: 10.1016/j.carbpol.2020.116776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
|
5
|
Pleumeekers MM, Nimeskern L, Koevoet JLM, Karperien M, Stok KS, van Osch GJVM. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS One 2018; 13:e0190744. [PMID: 29489829 PMCID: PMC5830031 DOI: 10.1371/journal.pone.0190744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. METHODS hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. RESULTS The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. CONCLUSIONS This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Collapse
Affiliation(s)
- M. M. Pleumeekers
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - L. Nimeskern
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - J. L. M. Koevoet
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - M. Karperien
- Department of Tissue Regeneration, MIRA-institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - K. S. Stok
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - G. J. V. M. van Osch
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
6
|
Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 2017; 8:jfb8040049. [PMID: 29156629 PMCID: PMC5748556 DOI: 10.3390/jfb8040049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies.
Collapse
|
7
|
Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS One 2017; 12:e0170312. [PMID: 28095466 PMCID: PMC5240960 DOI: 10.1371/journal.pone.0170312] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022] Open
Abstract
Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process.
Collapse
|
8
|
Xia X, Li J, Xia B, Yang H, Zhang D, Zhou B, Zhang J, Zhou M, Liu F. Matrigel scaffold combined with Ad-hBMP7-transfected chondrocytes improves the repair of rabbit cartilage defect. Exp Ther Med 2016; 13:542-550. [PMID: 28352329 PMCID: PMC5348698 DOI: 10.3892/etm.2016.3972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/27/2016] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to explore an effective method for the repair of cartilage defects using chitosan/glycerophosphate (C/GP) gel- and Matrigel-engineered human bone morphogenetic protein 7 (hBMP7)-expressing chondrocytes. Rabbit chondrocytes were obtained, cultured in vitro and transfected with an adenovirus containing hBMP7 and green fluorescent protein (Ad-hBMP7-GFP). The expression of hBMP7 in the transfected cells was tested by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. The phenotype of the transfected cells was evaluated by detecting the yields of collagen II and hyaluronic acid using RT-PCR and enzyme-linked immunosorbent assay (ELISA). The growth of chondrocytes in the C/GP gel and Matrigel was accessed by measuring the cell growth rate, hematoxylin and eosin (H&E) staining and observation under a scanning microscope. Twelve adult male New Zealand white rabbits were randomly divided into three groups. Two cartilage defects were created in the rabbits' knees by aseptic surgery. Group A (n=4) did not receive any treatment, group B (n=4) were treated with C/GP gel and Matrigel-engineered Ad-mock-GFP-transfected chondrocytes, and group C (n=4) were treated with C/GP gel and Matrigel-engineered Ad-hBMP7-GFP-transfected chondrocytes. Rabbits were sacrificed at 4 weeks after transplantation, and the repair effect was measured by the Wakitani scoring method. On the basis of the RT-PCR and western blot results, hBMP7 was efficiently overexpressed in the Ad-hBMP7-GFP-transfected chondrocytes. The ELISA results showed that the yields of collagen II and hyaluronic acid in Ad-hBMP7-GFP-transfected chondrocytes were significantly higher than those in Ad-mock-GFP-transfected chondrocytes. Chondrocytes have a better morphology and arrangement in a Matrigel scaffold than in C/GP, as assessed by H&E staining and scanning microscopy. According to the Wakitani score, Matrigel combined with Ad-hBMP7-GFP-transfected chondrocytes successfully promoted the repair of cartilage defects in rabbit knees.
Collapse
Affiliation(s)
- Xiaopeng Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China; Department of Orthopedics, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 215000, P.R. China
| | - Jing Li
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Bo Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Huilin Yang
- Department of Orthopedics, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 215000, P.R. China
| | - Dongmei Zhang
- Department of Immunology, Medical College of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Bin Zhou
- Department of Orthopedics, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 215000, P.R. China
| | - Jie Zhang
- Department of Immunology, Medical College of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Man Zhou
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Fan Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China; Department of Orthopedics, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 215000, P.R. China
| |
Collapse
|
9
|
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, du Toit LC, Pillay V. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules 2016; 21:E1580. [PMID: 27879635 PMCID: PMC6272998 DOI: 10.3390/molecules21111580] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Pariksha J Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
10
|
Kean TJ, Mera H, Whitney GA, MacKay DL, Awadallah A, Fernandes RJ, Dennis JE. Disparate response of articular- and auricular-derived chondrocytes to oxygen tension. Connect Tissue Res 2016; 57:319-33. [PMID: 27128439 PMCID: PMC4984267 DOI: 10.1080/03008207.2016.1182996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM To determine the effect of reduced (5%) oxygen tension on chondrogenesis of auricular-derived chondrocytes. Currently, many cell and tissue culture experiments are performed at 20% oxygen with 5% carbon dioxide. Few cells in the body are subjected to this supra-physiological oxygen tension. Chondrocytes and their mesenchymal progenitors are widely reported to have greater chondrogenic expression when cultured at low, more physiological, oxygen tension (1-7%). Although generally accepted, there is still some controversy, and different culture methods, species, and outcome metrics cloud the field. These results are, however, articular chondrocyte biased and have not been reported for auricular-derived chondrocytes. MATERIALS AND METHODS Auricular and articular chondrocytes were isolated from skeletally mature New Zealand White rabbits, expanded in culture and differentiated in high density cultures with serum-free chondrogenic media. Cartilage tissue derived from aggregate cultures or from the tissue engineered sheets were assessed for biomechanical, glycosaminoglycan, collagen, collagen cross-links, and lysyl oxidase activity and expression. RESULTS Our studies show increased proliferation rates for both auricular and articular chondrocytes at low (5%) O2 versus standard (20%) O2. In our scaffold-free chondrogenic cultures, low O2 was found to increase articular chondrocyte accumulation of glycosaminoglycan, but not cross-linked type II collagen, or total collagen. Conversely, auricular chondrocytes accumulated less glycosaminoglycan, cross-linked type II collagen and total collagen under low oxygen tension. CONCLUSIONS This study highlights the dramatic difference in response to low O2 of chondrocytes isolated from different anatomical sites. Low O2 is beneficial for articular-derived chondrogenesis but detrimental for auricular-derived chondrogenesis.
Collapse
Affiliation(s)
- Thomas J. Kean
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA,Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hisashi Mera
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA,Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA,Department of Health and Sports Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - G. Adam Whitney
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA,Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| | - Danielle L. MacKay
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Amad Awadallah
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| | - Russell J. Fernandes
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - James E. Dennis
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA,Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Visscher DO, Bos EJ, Peeters M, Kuzmin NV, Groot ML, Helder MN, van Zuijlen PPM. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. Tissue Eng Part C Methods 2016; 22:573-84. [PMID: 27089896 DOI: 10.1089/ten.tec.2016.0073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-ɛ-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno)histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations.
Collapse
Affiliation(s)
- Dafydd O Visscher
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
| | - Ernst J Bos
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
| | - Mirte Peeters
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 3 Department of Orthopedic Surgery, VU Medical Center , Amsterdam, Netherlands
| | - Nikolay V Kuzmin
- 4 LaserLaB Amsterdam, Department of Physics, Vrije Universiteit , Amsterdam, Netherlands
| | - Marie Louise Groot
- 4 LaserLaB Amsterdam, Department of Physics, Vrije Universiteit , Amsterdam, Netherlands
| | - Marco N Helder
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 3 Department of Orthopedic Surgery, VU Medical Center , Amsterdam, Netherlands
| | - Paul P M van Zuijlen
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 5 Red Cross Hospital Beverwijk , Beverwijk, Netherlands
| |
Collapse
|
12
|
Cohen BP, Hooper RC, Puetzer JL, Nordberg R, Asanbe O, Hernandez KA, Spector JA, Bonassar LJ. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo. Tissue Eng Part A 2016; 22:461-8. [PMID: 26847742 DOI: 10.1089/ten.tea.2015.0323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an alternative method of auricular reconstruction. Using this method, patient-specific ears composed of collagen scaffolds and auricular chondrocytes have generated auricular cartilage with great fidelity following 3 months of subcutaneous implantation, however, this short time frame may not portend long-term tissue stability. We hypothesized that constructs developed using this technique would undergo continued auricular cartilage maturation without degradation during long-term (6 month) implantation. Full-sized, juvenile human ear constructs were injection molded from high-density collagen hydrogels encapsulating juvenile bovine auricular chondrocytes and implanted subcutaneously on the backs of nude rats for 6 months. Upon explantation, constructs retained overall patient morphology and displayed no evidence of tissue necrosis. Limited contraction occurred in vivo, however, no significant change in size was observed beyond 1 month. Constructs at 6 months showed distinct auricular cartilage microstructure, featuring a self-assembled perichondrial layer, a proteoglycan-rich bulk, and rounded cellular lacunae. Verhoeff's staining also revealed a developing elastin network comparable to native tissue. Biochemical measurements for DNA, glycosaminoglycan, and hydroxyproline content and mechanical properties of aggregate modulus and hydraulic permeability showed engineered tissue to be similar to native cartilage at 6 months. Patient-specific auricular constructs demonstrated long-term stability and increased cartilage tissue development during extended implantation, and offer a potential tissue-engineered solution for the future of auricular reconstructions.
Collapse
Affiliation(s)
- Benjamin Peter Cohen
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Rachel C Hooper
- 2 Laboratory for Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College , New York, New York
| | - Jennifer L Puetzer
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Rachel Nordberg
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Ope Asanbe
- 2 Laboratory for Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College , New York, New York
| | - Karina A Hernandez
- 2 Laboratory for Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College , New York, New York
| | - Jason A Spector
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York.,2 Laboratory for Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College , New York, New York
| | - Lawrence J Bonassar
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York.,3 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
13
|
Cartilage Regeneration in the Head and Neck Area: Combination of Ear or Nasal Chondrocytes and Mesenchymal Stem Cells Improves Cartilage Production. Plast Reconstr Surg 2016; 136:762e-774e. [PMID: 26267395 DOI: 10.1097/prs.0000000000001812] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cartilage tissue engineering can offer promising solutions for restoring cartilage defects in the head and neck area and has the potential to overcome limitations of current treatments. However, to generate a construct of reasonable size, large numbers of chondrocytes are required, which limits its current applicability. Therefore, the authors evaluate the suitability of a combination of cells for cartilage regeneration: bone marrow-derived mesenchymal stem cells and ear or nasal chondrocytes. METHODS Human bone marrow-derived mesenchymal stem cells were encapsulated in alginate hydrogel as single-cell-type populations or in combination with bovine ear chondrocytes or nasal chondrocytes at an 80:20 ratio. Constructs were either cultured in vitro or implanted directly subcutaneously into mice. Cartilage formation was evaluated with biochemical and biomechanical analyses. The use of a xenogeneic coculture system enabled the analyses of the contribution of the individual cell types using species-specific gene-expression analyses. RESULTS In vivo, human bone marrow-derived mesenchymal stem cells/bovine ear chondrocytes or human bone marrow-derived mesenchymal stem cells/bovine nasal chondrocytes contained amounts of cartilage components similar to those of constructs containing chondrocytes only (i.e., bovine ear and nasal chondrocytes). In vitro, species-specific gene-expression analyses demonstrated that aggrecan was expressed by the chondrocytes only, which suggests a more trophic role for human bone marrow-derived mesenchymal stem cells. Furthermore, the additional effect of human bone marrow-derived mesenchymal stem cells was more pronounced in combination with bovine nasal chondrocytes. CONCLUSIONS By supplementing low numbers of bovine ear or nasal chondrocytes with human bone marrow-derived mesenchymal stem cells, the authors were able to engineer cartilage constructs with properties similar to those of constructs containing chondrocytes only. This makes the procedure more feasible for future applicability in the reconstruction of cartilage defects in the head and neck area because fewer chondrocytes are required.
Collapse
|
14
|
Jessop ZM, Javed M, Otto IA, Combellack EJ, Morgan S, Breugem CC, Archer CW, Khan IM, Lineaweaver WC, Kon M, Malda J, Whitaker IS. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering. Stem Cell Res Ther 2016; 7:19. [PMID: 26822227 PMCID: PMC4730656 DOI: 10.1186/s13287-015-0273-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Iris A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Siân Morgan
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Corstiaan C Breugem
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Charles W Archer
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
| | - Ilyas M Khan
- KhanLab, Swansea University, ILS2, Swansea, SA2 8SS, UK.
| | - William C Lineaweaver
- Division of Plastic Surgery, University of Mississippi Medical Center, Jackson, Mississippi, 39216, USA.
| | - Moshe Kon
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Domplein 29, 3512 JE, Utrecht, The Netherlands.
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| |
Collapse
|
15
|
Conditions for seeding and promoting neo-auricular cartilage formation in a fibrous collagen scaffold. J Craniomaxillofac Surg 2015; 43:382-9. [DOI: 10.1016/j.jcms.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 01/25/2023] Open
|
16
|
Huang Y, Zhang Y, Ding X, Liu S, Sun T. Osmolarity influences chondrocyte repair after injury in human articular cartilage. J Orthop Surg Res 2015; 10:19. [PMID: 25626354 PMCID: PMC4326434 DOI: 10.1186/s13018-015-0158-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/08/2015] [Indexed: 11/14/2022] Open
Abstract
Background The purpose was to determine the influence of irrigation solution osmolarity on articular chondrocytes survival and metabolic state following mechanical injury. Methods Osteochondral explants were harvested from patients undergoing total knee arthroplasty for osteoarthritis and then cut through their full thickness to establish mechanical injury models. Cartilage explants were incubated in irrigation solutions (saline and balanced salt) with different osmolarities (180, 280, 380, 580 mOsm/L) for 2 h. The percentage of cell death (100 × number of dead cells/number of dead and live cells) was quantified with the laser confocal microscopy. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was performed to detect apoptosis index of injured cartilage. The contents of proteoglycan elution were determined by spectrophotometer at 530 nm, and HIF-1α and type II collagen mRNA yields were quantified with real-time PCR. Results In situ dead chondrocytes were mainly localized to the superficial tangential region of injured cartilage edge after mechanical injury. The percentage of cell death was decreased, and proteoglycan elution was gradually reduced with the increasing of osmolarity. The apoptosis indices of TUNEL assay in different osmolarities had no significant difference (P = 0.158). HIF-1α and type II collagen mRNA yields were the least for chondrocytes exposed to 180 mOsm/L medium and were the greatest for chondrocytes exposed to 380 mOsm/L medium. Compared with the saline group, the cell death of superficial zone was significantly decreased (P = 0.001) and contents of proteoglycan elution were also significantly decreased (P = 0.045) in the balanced salt. HIF-1α (P = 0.017) and type II collagen (P = 0.034) mRNA yields in the chondrocytes exposed to the balanced salt were significantly more than the saline group. Conclusion The osmolarity of irrigation solutions plays an important role in the survival and metabolic state of chondrocytes following mechanical injury, and the chondrocyte death is not caused by apoptosis. Increasing osmolarity of irrigation solutions may be chondroprotective with decreasing the chondrocyte death, reducing inhibition of metabolism and proteoglycan elution, ultimately preventing cartilage degeneration and promoting integrative repair.
Collapse
Affiliation(s)
- Yuelong Huang
- Arthritis Clinic and Research Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Yujun Zhang
- Clinic Molecular Institute, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Xiaoquan Ding
- Arthritis Clinic and Research Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Songyang Liu
- Arthritis Clinic and Research Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Tiezheng Sun
- Arthritis Clinic and Research Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
17
|
Sosio C, Di Giancamillo A, Deponti D, Gervaso F, Scalera F, Melato M, Campagnol M, Boschetti F, Nonis A, Domeneghini C, Sannino A, Peretti GM. Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: a large-animal study. Tissue Eng Part A 2014; 21:704-15. [PMID: 25316498 DOI: 10.1089/ten.tea.2014.0129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A novel three-dimensional bicomponent substitute made of collagen type I and hydroxyapatite was tested for the repair of osteochondral lesions in a swine model. This scaffold was assembled by a newly developed method that guarantees the strict integration between the organic and the inorganic parts, mimicking the biological tissue between the chondral and the osseous phase. Thirty-six osteochondral lesions were created in the trochlea of six pigs; in each pig, two lesions were treated with scaffolds seeded with autologous chondrocytes (cell+group), two lesions were treated with unseeded scaffolds (cell- group), and the two remaining lesions were left untreated (untreated group). After 3 months, the animals were sacrificed and the newly formed tissue was analyzed to evaluate the degree of maturation. The International Cartilage Repair Society (ICRS) macroscopic assessment showed significantly higher scores in the cell- and untreated groups when compared with the cell+ group. Histological evaluation showed the presence of repaired tissue, with fibroblast-like and hyaline-like areas in all groups; however, with respect to the other groups, the cell- group showed significantly higher values in the ICRS II histological scores for "cell morphology" and for the "surface/superficial assessment." While the scaffold seeded with autologous chondrocytes promoted the formation of a reparative tissue with high cellularity but low glycosaminoglycans (GAG) production, on the contrary, the reparative tissue observed with the unseeded scaffold presented lower cellularity but higher and uniform GAG distribution. Finally, in the lesions treated with scaffolds, the immunohistochemical analysis showed the presence of collagen type II in the peripheral part of the defect, indicating tissue maturation due to the migration of local cells from the surroundings. This study showed that the novel osteochondral scaffold was easy to handle for surgical implantation and was stable within the site of lesion; at the end of the experimental time, all implants were well integrated with the surrounding tissue and no signs of synovitis were observed. The quality of the reparative tissue seemed to be superior for the lesions treated with the unseeded scaffolds, indicating the promising potential of this novel biomaterial for use in a one-stage procedure for osteochondral repair.
Collapse
|
18
|
O'Sullivan NA, Kobayashi S, Ranka MP, Zaleski KL, Yaremchuk MJ, Bonassar LJ, Randolph MA. Adhesion and integration of tissue engineered cartilage to porous polyethylene for composite ear reconstruction. J Biomed Mater Res B Appl Biomater 2014; 103:983-91. [PMID: 25196223 DOI: 10.1002/jbm.b.33269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/07/2014] [Accepted: 08/08/2014] [Indexed: 11/09/2022]
Abstract
The objective of this study was to assess the ability of tissue engineered cartilage to adhere to and integrate with porous polyethylene (PPE) in vivo and to evaluate the biomechanical integrity of the bond formed at the interface. Porcine auricular, articular, and costal chondrocytes were suspended in fibrin gel polymer and placed between discs of PPE to form tri-layer constructs. Controls consisted of fibroblasts suspended in gel or gel alone between the discs. Constructs were implanted into nude mice for 6, 12, and 18 weeks. Upon harvest, specimens were evaluated for neocartilage formation and integration into the PPE, using histological, dimensional (mass, thickness, diameter), and biomechanical (adhesion strength, interfacial stiffness, failure energy and failure strain) analyses. Neotissue was formed in all experimental constructs, consisting mostly of neocartilage integrating with discs of PPE. Control samples contained only fibrous tissue. Biomechanical analyses demonstrated that adhesion strength, interfacial stiffness, and failure energy were all significantly higher in the chondrocyte-seeded samples than in fibroblast-seeded controls, with the exception of costal constructs at 12 weeks, which were not significantly greater than controls. In general, failure strains did not vary between groups. In conclusion, porous polyethylene supported the growth of neocartilage that formed mechanically functional bonds with the PPE.
Collapse
Affiliation(s)
- Niamh A O'Sullivan
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Shinji Kobayashi
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mitun P Ranka
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Katherine L Zaleski
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael J Yaremchuk
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Lawrence J Bonassar
- Department of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
19
|
Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, Zhang W, Cao Y, Liu Y, Zhou G. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials 2014; 35:4878-87. [DOI: 10.1016/j.biomaterials.2014.02.043] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 12/21/2022]
|
20
|
Shasti M, Jacquet R, McClellan P, Yang J, Matsushima S, Isogai N, Murthy A, Landis WJ. Effects of FGF-2 and OP-1 in vitro on donor source cartilage for auricular reconstruction tissue engineering. Int J Pediatr Otorhinolaryngol 2014; 78:416-22. [PMID: 24439635 DOI: 10.1016/j.ijporl.2013.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Microtia is a congenital partial or total loss of the external ear with current treatment approaches involving autologous construction from costal cartilage. Alternatively, tissue engineering provides possible use of normal or microtia auricular chondrocytes harvested from patients. This study investigated effects in vitro of basic fibroblast growth factor (FGF-2) and osteogenic protein 1 (OP-1) on human pediatric normal and microtia auricular chondrocytes and their potential proliferation and differentiation for cellular expansion. A working hypothesis was that FGF-2 promotes proliferation and OP-1 maintains an auricular phenotype of these cells. METHODS Two patients, one undergoing otoplasty and one an ear construction, yielded normal and microtia auricular chondrocytes, respectively. The two donor sets of isolated chondrocytes were equally divided into four experimental cell groups. These were controls without added growth factors and cells supplemented with FGF-2, OP-1 or FGF-2/OP-1 combined. Cells were cultured 3, 5, 7, and 10 days (3 replicates/time point), counted and assayed by RT-qPCR to determine elastin and types II and III collagen gene expression. RESULTS Compared to control counterparts, normal and microtia chondrocytes with OP-1 alone were similar in numbers and varied in elastin and types II and III collagen expression over all culture times. Compared to respective controls and chondrocyte groups with OP-1 alone, normal and microtia cell groups with FGF-2 had statistically significant (p<0.05) enhanced proliferation and statistically significant (p<0.05) decreased elastin and types II and III collagen expression over 10 days of culture. CONCLUSIONS FGF-2 effects on normal and microtia chondrocytes support its use for increasing cell numbers while OP-1 maintains a chondrocyte phenotype, otherwise marked by increasing type III collagen expression and cellular dedifferentiation to fibroblasts in culture.
Collapse
Affiliation(s)
- Mark Shasti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Robin Jacquet
- Department of Polymer Science, University of Akron, Akron, OH, United States
| | - Phillip McClellan
- Department of Polymer Science, University of Akron, Akron, OH, United States
| | - Julianne Yang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Seika Matsushima
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-sayama, Osaka, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-sayama, Osaka, Japan
| | - Ananth Murthy
- Division of Plastic and Reconstructive Surgery, Children's Hospital Medical Center, Akron, OH, United States
| | - William J Landis
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States; Department of Polymer Science, University of Akron, Akron, OH, United States.
| |
Collapse
|
21
|
Auricular Reconstruction Using Tissue-Engineered Alloplastic Implants for Improved Clinical Outcomes. Plast Reconstr Surg 2014; 133:360e-369e. [DOI: 10.1097/01.prs.0000438460.68098.4b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Cakmak O, Babakurban ST, Akkuzu HG, Bilgi S, Ovalı E, Kongur M, Altintas H, Yilmaz B, Bilezikçi B, Y. Celik Z, Yakicier MC, Sahin FI. Injectable tissue-engineered cartilage using commercially available fibrin glue. Laryngoscope 2013; 123:2986-92. [DOI: 10.1002/lary.24156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Ozcan Cakmak
- Acibadem University Faculty of Medicine-Otolaryngology Department; Ankara Turkey
| | - Seda T. Babakurban
- Baskent University Faculty of Medicine-Otolaryngology Department; Ankara Turkey
| | - Hatice G. Akkuzu
- Acibadem Healthcare Group Atasehir Surgery Medicine Center Otolaryngology Department; Ankara Turkey
| | - Selcuk Bilgi
- Acibadem University Faculty of Medicine-Pathology Department; Ankara Turkey
| | - Ercüment Ovalı
- Acibadem Healthcare Group Labcell Stem Cell Laboratory and Umbilical Cord Blood Bank; Ankara Turkey
| | - Merve Kongur
- Acibadem Healthcare Group Labcell Stem Cell Laboratory and Umbilical Cord Blood Bank; Ankara Turkey
| | - Hande Altintas
- Acibadem Healthcare Group Kadikoy Hospital Otolaryngology Department; Ankara Turkey
| | - Bayram Yilmaz
- Yeditepe University Faculty of Medicine-Physiology Department; Ankara Turkey
| | - Banu Bilezikçi
- Baskent University Faculty of Medicine-Pathology Department; Ankara Turkey
| | - Zerrin Y. Celik
- Baskent University Faculty of Medical Genetics; Ankara Turkey
| | - Mustafa C. Yakicier
- Acibadem University Faculty of Medicine-Department of Medical Biology; Ankara Turkey
| | - Feride I. Sahin
- Baskent University Faculty of Medical Genetics; Ankara Turkey
| |
Collapse
|
23
|
Qi BW, Yu AX, Zhu SB, Zhou M, Wu G. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med (Maywood) 2013; 238:23-30. [PMID: 23479760 DOI: 10.1258/ebm.2012.012223] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The aim of this work is to explore the feasibility and therapeutic effect of repairing rabbit articular cartilage defects using thermo-sensitive chitosan/poly (vinyl alcohol) composite hydrogel engineered Ad-hTGF-β1-transfected bone marrow mesenchymal stem cells. Rabbit's bone marrow stromal cells (BMSCs) were obtained and cultured in vitro and transfected with a well-constructed Ad-hTGF-β1 vector, the cartilage phenotype of the transfected cells was tested by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Twenty-four New Zealand white rabbits with articular cartilage defects were randomly divided into four groups: group A was treated with CS/PVA gel and transfected BMSCs; group B received CS/PVA gel and un-transfected BMSCs; group C was treated with CS/PVA gel alone and group D was the untreated control group. Experimental animals of each group were killed at 16 weeks after operation. General observation, Masson's trichrome staining and collagen II immunohistological staining of the specimens were performed to evaluate the repair effect. The Wakitani scoring method was used to evaluate the repair effect. RT-PCR and Western blot confirmed that the hTGF-β1 gene was expressed in BMSCs and triggered the expression of specific markers of cartilage differentiation such as aggrecan mRNA and Collagen II in BMSCs after transfection with Ad-hTGF-β1. Sixteen weeks after operation, the defects in group A had smooth and flat surfaces, and the defects appeared to have completely healed, exhibiting almost the same color and texture as the surrounding cartilage. Masson's trichrome staining showed that the cell arrangement and density of regenerated cartilage tissue in group A was not significantly different from that of normal cartilage tissue. The immunohistochemical staining of Col II showed a strong expression in group A and weak expression in group B, but no expression in groups C and D. According to the Wakitani score, the difference between experimental group A and all of the other groups was statistically significant (P < 0.01). To conclude, as a thermosensitive and injectable scaffold material, CS/PVA gel engineered with BMSCs transfected with hTGF-β1 can effectively repair rabbit articular cartilage defects.
Collapse
Affiliation(s)
- Bai-wen Qi
- Department of Micro Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
24
|
Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels. Acta Biomater 2012; 8:3754-64. [PMID: 22750738 DOI: 10.1016/j.actbio.2012.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/24/2012] [Accepted: 06/20/2012] [Indexed: 01/22/2023]
Abstract
Fibrin and alginate hydrogels have been widely used to support chondrogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs) for articular cartilage and fibrocartilage tissue engineering, with each material offering distinct advantages and disadvantages. Attempting to produce a gel scaffold exhibiting beneficial characteristics of both materials, we fabricated fibrin/alginate blended hydrogels at various blend ratios and evaluated the gel morphology, mechanical properties and their support for BM-MSC chondrogenesis. Results show that when the fibrin/alginate ratio decreased, the fibrin architecture transitioned from uniform to interconnected fibrous and finally to disconnected islands against an alginate background, with opposing trends in the alginate architecture. Fibrin maintained gel extensibility and promoted cell proliferation, while alginate improved the gel biostability and better supported glycosaminoglycan and collagen II production and chondrogenic gene expression. Blended gels had physical and biological characteristics intermediate between fibrin and alginate. Of the blends examined, FA 40:8 (40 mg ml(-1) fibrinogen blended with 8 mg ml(-1) alginate) was found to be the most appropriate group for future studies on tension-driven BM-MSC fibrochondrogenesis. As BM-MSC differentiation appeared to vary between fibrin and alginate regions of blended scaffolds, this study also highlighted the potential to develop spatially heterogeneous tissues through manipulating the heterogeneity of scaffold composition.
Collapse
|
25
|
Zhao X, Bichara DA, Ballyns FP, Yoo JJ, Ong W, Randolph MA, Bonassar LJ, Gill TJ. Properties of cartilage engineered from elderly human chondrocytes for articular surface repair. Tissue Eng Part A 2012; 18:1490-9. [PMID: 22435677 DOI: 10.1089/ten.tea.2011.0445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous studies on engineering cartilage utilizing chondrocytes from juvenile animal sources have been reported. However, there are many unknown aspects of engineering cartilage using human chondrocytes-especially from middle-aged or elderly adults-which are critical for clinical application of tissue engineering in the field of orthopedic surgery. The primary aim of this study was to engineer neocartilage tissue from 50-60-year-old human chondrocytes in comparison to engineered cartilage made from juvenile swine chondrocytes (JSCs). Articular chondrocytes from middle-aged, nonarthritic humans and juvenile swine were isolated and placed in culture for expansion. The chondrocytes (passage 1) were mixed in fibrin gel at 40-60×10(6) cells/mL until polymerization. Cells/nodule constructs and devitalized cartilage-cells/hydrogel-devitalized cartilage constructs (three-layered model) were implanted into subcutaneous pockets of nude mice for 12, 18, and 24 weeks. The specimens were evaluated histologically, biochemically, and biomechanically. This allowed for direct comparison of the cartilage engineered from human versus swine cells. Histological analysis demonstrated that samples engineered utilizing chondrocytes from middle-aged adults accumulated basophilic, sulfated glycosaminoglycans (sGAG), and abundant type II collagen around the cells in a manner similar to that seen in samples engineered using JSCs at all time points. Biochemical analysis revealed that samples made with human cells had about 40%-60% of the amount hydroxyproline of native human cartilage, a trend parallel to that observed in the specimens made with swine chondrocytes. The amount of sGAG in the human chondrocyte specimens was about one-and-a-half times the amount in native human cartilage, whereas the amount in the samples made with swine chondrocytes was always less than native cartilage. The biomechanical analysis revealed that the stiffness and tensile of samples made with human cells were in a pattern similar to that seen with swine chondrocytes. This study demonstrates that chondrogenesis using articular chondrocytes from middle-aged adults can be achieved in a predictable and reliable manner similar to that shown in studies using cells from juvenile animals and can form the basis of engineering cartilage with degradable scaffolds in this patient population.
Collapse
Affiliation(s)
- Xing Zhao
- Laboratory for Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, Massachusetts General Hospital , Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jung Y, Kim SH, Kim YH, Kim SH. The Effect of Hybridization of Hydrogels and Poly(L-lactide-co-ε-caprolactone) Scaffolds on Cartilage Tissue Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:581-92. [DOI: 10.1163/156856209x430579] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Youngmee Jung
- a Biomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-650, South Korea, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sang-Heon Kim
- b Biomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-650, South Korea
| | - Young Ha Kim
- c Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Soo Hyun Kim
- d Biomaterials Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-650, South Korea;,
| |
Collapse
|
27
|
Deponti D, Di Giancamillo A, Mangiavini L, Pozzi A, Fraschini G, Sosio C, Domeneghini C, Peretti GM. Fibrin-based model for cartilage regeneration: tissue maturation from in vitro to in vivo. Tissue Eng Part A 2012; 18:1109-22. [PMID: 22316220 DOI: 10.1089/ten.tea.2011.0272] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the crucial points for a successful tissue-engineering approach for cartilage repair is represented by the level of in vitro maturation of the engineered tissue before implantation. The purpose of this work was to evaluate the effect of the level of in vitro maturation of engineered cartilaginous samples on the tissue quality after in vivo implantation. Samples were obtained from isolated swine articular chondrocytes embedded in fibrin glue. The cell-fibrin composites were either cultured in vitro or directly implanted in vivo for 1, 5, and 9 weeks. Other experimental samples were precultured for either 1 or 5 weeks in vitro and then implanted in vivo for 4 additional weeks. All the samples were analyzed by histology, immunohistochemistry, biochemistry, and gene expression. The results strongly suggest that the in vivo culture in this model promoted a better tissue maturation than that obtained in the in vitro condition, and that 1 week in vitro preculture resulted in the primary structuring of the engineered composites and their subsequent maturation in vivo, without affecting the cell viability and activity, while a prolonged in vitro preculture caused a cell and matrix degeneration that could not be rescued in vivo.
Collapse
Affiliation(s)
- Daniela Deponti
- Faculty of Exercise Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, Kohl B, Haisch A, Schulze-Tanzil G. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2011; 7:61-72. [PMID: 22081560 DOI: 10.1002/term.496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/23/2011] [Accepted: 07/12/2011] [Indexed: 11/06/2022]
Abstract
The availability of autologous articular chondrocytes remains a limiting issue in matrix assisted autologous chondrocyte transplantation. Non-articular heterotopic chondrocytes could be an alternative autologous cell source. The aims of this study were to establish heterotopic chondrocyte cocultures to analyze cell-cell compatibilities and to characterize the chondrogenic potential of nasoseptal chondrocytes compared to articular chondrocytes. Primary porcine and human nasoseptal and articular chondrocytes were investigated for extracellular cartilage matrix (ECM) expression in a monolayer culture. 3D polyglycolic acid- (PGA) associated porcine heterotopic mono- and cocultures were assessed for cell vitality, types II, I, and total collagen-, and proteoglycan content. The type II collagen, lubricin, and Sox9 gene expressions were significantly higher in articular compared with nasoseptal monolayer chondrocytes, while type IX collagen expression was lower in articular chondrocytes. Only β1-integrin gene expression was significantly inferior in humans but not in porcine nasoseptal compared with articular chondrocytes, indicating species-dependent differences. Heterotopic chondrocytes in PGA cultures revealed high vitality with proteoglycan-rich hyaline-like ECM production. Similar amounts of type II collagen deposition and type II/I collagen ratios were found in heterotopic chondrocytes cultured on PGA compared to articular chondrocytes. Quantitative analyses revealed a time-dependent increase in total collagen and proteoglycan content, whereby the differences between heterotopic and articular chondrocyte cultures were not significant. Nasoseptal and auricular chondrocytes monocultured in PGA or cocultured with articular chondrocytes revealed a comparable high chondrogenic potential in a tissue engineering setting, which created the opportunity to test them in vivo for articular cartilage repair.
Collapse
Affiliation(s)
- K El Sayed
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, Garystraße 5, 14195, Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials 2011; 32:7856-69. [DOI: 10.1016/j.biomaterials.2011.07.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/04/2011] [Indexed: 12/13/2022]
|
30
|
Abstract
The aim of this study is to evaluate the injectable cross-linked chitosan (CS) microparticles (MPs) to apply for biomedical applications specifically for bone regeneration. The CS MPs were fabricated by emulsification method and formed the cross-links between the amide groups in the CS and phosphate groups in the sodium tripolyphosphate (TPP) ionic cross-linking agent. The MPS were analyzed for morphology by Scanning Electron Microscope (SEM). The fabricated CS MPs were in the spherical shape with the size range of 20-100 μm. These CS MPs were analyzed for biodegradation by immersing in phosphate buffered saline (PBS, pH = 7.4) at 37°C for 30 weeks. The biodegradation of CS MPs in PBS was initiated at week 25. Mesenchymal stem cells (MSCs) were harvested from the bone marrow of mice tibia and femurs. The MSC attachment on CS MPs was tested using LIVE/DEAD cell sassy with a Fluorescence Microscope. The murine MSCs attachment onto CS MPs at day 2 was confirmed by visualizing fluorescence images. The CS MPs were also analyzed for the injectability and retainability at the site using a subcutaneous injection in a rat model. The fabricated CS MPs possess injectability, biodegradability and biocompatibility. Therefore, these CS MPs have a great potential to apply for various biomedical applications including bone regeneration by injection.
Collapse
|
31
|
Bichara DA, O'Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, Randolph MA. The tissue-engineered auricle: past, present, and future. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:51-61. [PMID: 21827281 DOI: 10.1089/ten.teb.2011.0326] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The reconstruction, repair, and regeneration of the external auricular framework continue to be one of the greatest challenges in the field of tissue engineering. To replace like with like, we should emulate the native structure and composition of auricular cartilage by combining a suitable chondrogenic cell source with an appropriate scaffold under optimal in vitro and in vivo conditions. Due to the fact that a suitable and reliable substitute for auricular cartilage has yet to be engineered, hand-carved autologous costal cartilage grafts and ear-shaped porous polyethylene implants are the current treatment modalities for auricular reconstruction. However, over the last decade, significant advances have been made in the field of regenerative medicine and tissue engineering. A variety of scaffolds and innovative approaches have been investigated as alternatives to using autologous carved costal cartilage or porous polyethylene implants. A review of recent developments and the current state of the art and science is presented, focusing on scaffolds, cell sources, seeding densities, and mechanical characteristics of tissue-engineered auricular cartilage.
Collapse
Affiliation(s)
- David A Bichara
- Plastic Surgery Research Laboratory, Division of Plastic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:281-99. [PMID: 21510824 DOI: 10.1089/ten.teb.2011.0077] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair.
Collapse
Affiliation(s)
- Kara L Spiller
- Biomaterials and Drug Delivery Laboratory, Drexel University, Philadelphia, Pensylvania, USA.
| | | | | |
Collapse
|
33
|
In vitro and in vivo neo-cartilage formation by heterotopic chondrocytes seeded on PGA scaffolds. Histochem Cell Biol 2011; 136:57-69. [DOI: 10.1007/s00418-011-0822-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2011] [Indexed: 01/28/2023]
|
34
|
Cohen DL, Lo W, Tsavaris A, Peng D, Lipson H, Bonassar LJ. Increased Mixing Improves Hydrogel Homogeneity and Quality of Three-Dimensional Printed Constructs. Tissue Eng Part C Methods 2011; 17:239-48. [DOI: 10.1089/ten.tec.2010.0093] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel L. Cohen
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Winifred Lo
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Andrew Tsavaris
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey
| | - David Peng
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Hod Lipson
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Faculty of Computing and Information Science, Cornell University, Ithaca, New York
| | - Lawrence J. Bonassar
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
35
|
Jayasuriya AC, Bhat A. Mesenchymal stem cell function on hybrid organic/inorganic microparticles in vitro. J Tissue Eng Regen Med 2010; 4:340-8. [PMID: 20033925 DOI: 10.1002/term.244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate mesenchymal stem cell (MSC) function on novel type hybrid organic/inorganic microparticles (MPs) for application to bone regeneration. The MPs were based on chitosan (CS) and consisted of inorganic components, such as dibasic calcium phosphate (CaHPO(4)) or calcium carbonate (CaCO(3)). The MPs were crosslinked using tripolyphosphate. Four types of hybrid MPs were fabricated: CS; CS-10% CaHPO(4); CS-20% CaHPO(4); and CS-10% CaCO(3). The MSCs were attached to all the types of MPs at day 1 and started to spread and proliferate further by days 2 and 7, as analysed by fluorescence microcopy. Cell proliferation was measured at days 7, 14, 21 and 28 by counting the cells attached on the MPs. The number of proliferated cells increased significantly for all types of MPs as time increased. MSC differentiation was analysed using osteoblast (OB) phenotype markers, including alkaline phosphatase activity (ALP), collagen I (COLLI) and osteocalcin (OCN) at days 7, 14, 21 and 28, using quantitative real-time PCR. The normalized mRNA expression of ALP for all MPs was observed only at day 7. The normalized mRNA expression of COLLI and OCN was significantly increased for all types of hybrid MPs at each time point compared to the control samples. Collectively, our results proved that hybrid organic/inorganic MPs were non-cytotoxic and supported MSC attachment, spreading, proliferation and differentiation into the OB phenotype. These hybrid MPs have great potential for application as bone-void fillers or bone tissue engineering scaffolds in bone regeneration.
Collapse
|
36
|
Lee SJ, Broda C, Atala A, Yoo JJ. Engineered cartilage covered ear implants for auricular cartilage reconstruction. Biomacromolecules 2010; 12:306-13. [PMID: 21182236 DOI: 10.1021/bm100856g] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
37
|
Papadopoulos A, Bichara DA, Zhao X, Ibusuki S, Randolph MA, Anseth KS, Yaremchuk MJ. Injectable and photopolymerizable tissue-engineered auricular cartilage using poly(ethylene glycol) dimethacrylate copolymer hydrogels. Tissue Eng Part A 2010; 17:161-9. [PMID: 20695772 DOI: 10.1089/ten.tea.2010.0253] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study we investigated the histological, biochemical, and integrative features of the neocartilage using swine auricular chondrocytes photoencapsulated into two poly(ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels of a different degradation profile: degradable (PEG-4,5LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 60:40 and 70:30. Integration of the engineered tissue with existing native cartilage was examined using an articular cartilaginous ring model. Experimental group samples (total n=96) were implanted subcutaneously into nude mice and harvested at 6, 12, and 18 weeks. Nonimplanted constructs (total n=16) were used as controls for quantification of DNA, glycosaminoglycan, and hydroxyproline. Histologically, neocartilage resembled both the cellular population and composition of the extracellular matrix of the native swine auricular cartilage. DNA content demonstrated that the photoencapsulated chondrocytes were capable of survival and proliferation over time. Both glycosaminoglycan and hydroxyproline contents appeared higher in the neotissue, which was supported by less degradable PEGDM hydrogel. Integration of neocartilage with surrounding native cartilage improved with time, resulting in the development of tight integration interface. PEGDM copolymer hydrogels can support in vivo chondrogenesis by photoencapsulating auricular chondrocytes.
Collapse
Affiliation(s)
- Anestis Papadopoulos
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Sayed KE, Haisch A, John T, Marzahn U, Lohan A, Müller RD, Kohl B, Ertel W, Stoelzel K, Schulze-Tanzil G. Heterotopic Autologous Chondrocyte Transplantation—A Realistic Approach to Support Articular Cartilage Repair? TISSUE ENGINEERING PART B-REVIEWS 2010; 16:603-16. [DOI: 10.1089/ten.teb.2010.0167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Karym El Sayed
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Andreas Haisch
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Thilo John
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Ulrike Marzahn
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Anke Lohan
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Riccarda D. Müller
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Benjamin Kohl
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Wolfgang Ertel
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Katharina Stoelzel
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Gundula Schulze-Tanzil
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
39
|
Hellingman CA, Verwiel ETP, Slagt I, Koevoet W, Poublon RML, Nolst-Trenité GJ, Baatenburg de Jong RJ, Jahr H, van Osch GJVM. Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles. Cell Transplant 2010; 20:925-40. [PMID: 21054934 DOI: 10.3727/096368910x539119] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular chondrocytes in monolayer proliferated less and more slowly (two passages took 26.7 ± 2.1 days and were reached in 4.37 ± 0.30 population doublings) than nasoseptal chondrocytes (19.3 ± 2.5 days; 5.45 ± 0.20 population doublings). However, auricular chondrocytes produced larger pellets with more cartilage-like matrix than nasoseptal chondrocytes (2.2 ± 0.71 vs. 1.7 ± 0.13 mm in diameter after 35 days of culture). Although the matrix formed by auricular and nasoseptal chondrocytes contained collagen X, it did not mineralize in an in vitro model or after in vivo subcutaneous implantation. A DNA microarray study on expanded auricular and nasoseptal chondrocytes from the same donors revealed 1,090 differentially expressed genes. No difference was observed in the expression of known markers of chondrogenic capacity (e.g., collagen II, FGFR3, BMP2, and ALK1). The most striking differences were that the auricular chondrocytes had a higher expression of anabolic growth factors BMP5 and IGF1, while matrix-degrading enzymes MMP13 and ADAMTS5 were higher expressed in nasoseptal chondrocytes. This might offer a possible explanation for the observed higher matrix production by auricular chondrocytes. Moreover, chondrocytes isolated from auricular or nasoseptal cartilage had specific gene expression profiles even after expansion. These differently expressed genes were not restricted to known characterization of donor site subtype (e.g., elastic), but were also related to developmental processes.
Collapse
Affiliation(s)
- Catharine A Hellingman
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Scotti C, Mangiavini L, Boschetti F, Vitari F, Domeneghini C, Fraschini G, Peretti GM. Effect of in vitro culture on a chondrocyte-fibrin glue hydrogel for cartilage repair. Knee Surg Sports Traumatol Arthrosc 2010; 18:1400-6. [PMID: 20033674 DOI: 10.1007/s00167-009-1014-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 11/27/2009] [Indexed: 01/30/2023]
Abstract
Research in tissue engineering has been focused on articular cartilage repair for more than a decade. Some pioneristic studies involved the use of hydrogels such as alginate and fibrin glue which still possess valuable potential for cartilage regeneration. One of the main issues in cartilage tissue engineering is represented by the ideal maturation of the construct, before in vivo implantation, in order to optimize matrix quality and integration. The present study was focused on the effect of in vitro culture on a fibrin glue hydrogel embedding swine chondrocytes. We performed an evaluation of the immunohistochemical and biochemical composition and of the biomechanical properties of the construct after 1 and 5 weeks of culture. We noticed that chondrocytes survived in the fibrin glue gel and enhanced their synthetic activity. In fact, DNA content remained stable, while all indices of cartilage matrix production increased (GAGs content, immunohistochemistry for collagen II and safranin-o staining). On the other hand, the biomechanical properties remained steady, indicating a gradual substitution of the hydrogel scaffold by cartilaginous matrix. This demonstrates that an optimal preculture could provide the surgeon with a better engineered cartilage for implantation. However, whether this more mature tissue will result in a more efficient regeneration of the articular surface still has to be evaluated in future investigations.
Collapse
Affiliation(s)
- Celeste Scotti
- Residency Program in Orthopaedics and Traumatology, Gaetano Pini Orthopaedic Institute, Università degli Studi di Milano, Piazza A. Ferrari 1, 20122 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Owen JR, Wayne JS. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone. Biomech Model Mechanobiol 2010; 10:461-71. [DOI: 10.1007/s10237-010-0247-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
42
|
Moutos FT, Guilak F. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng Part A 2010; 16:1291-301. [PMID: 19903085 DOI: 10.1089/ten.tea.2009.0480] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.
Collapse
Affiliation(s)
- Franklin T Moutos
- Department of Surgery, Duke University Medical Center , Durham, NC, USA
| | | |
Collapse
|
43
|
Milano G, Sanna Passino E, Deriu L, Careddu G, Manunta L, Manunta A, Saccomanno MF, Fabbriciani C. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage 2010; 18:971-80. [PMID: 20433936 DOI: 10.1016/j.joca.2010.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/22/2010] [Accepted: 03/31/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the effect of autologous platelet rich plasma (PRP) combined with microfractures on the treatment of chondral defects. The hypothesis of the study was that PRP can enhance cartilage repair after microfractures. METHODS A chronic full-thickness chondral lesion of the medial femoral condyle was performed in 15 sheep. Animals were divided into three groups, according to treatment: group 1: microfractures; group 2: microfractures+PRP and fibrin glue gel; group 3: microfractures+liquid-PRP injection. Animals were sacrificed at 6 months after treatment. Macroscopic appearance was evaluated according to International Cartilage Repair Society (ICRS) score; cartilage stiffness was analyzed with an electromechanical indenter (Artscan 200); histological appearance was scored according to a modified O'Driscoll score. Comparison between groups for each outcome was performed with Kruskal-Wallis test, and Tukey's test for pairwise comparisons. RESULTS Macroscopic ICRS score of group 2 was significantly better than those of the other groups, and score of group 1 was significantly lower than those of the other groups. Scores of group 1 and 3 were significantly lower than that of normal cartilage. Mean cartilage stiffness of groups 1 and 3 was significantly lower than that of normal cartilage. Histological total scores of group 2 and 3 were significantly better than that of group 1. CONCLUSIONS PRP showed a positive effect on cartilage repair and restoration after microfractures. The procedure was more effective when PRP was used as a gel in comparison with liquid intra-articular injection. Histological analysis revealed that none of experimental treatments produced hyaline cartilage.
Collapse
Affiliation(s)
- G Milano
- Department of Orthopaedics, Catholic University, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Babalola OM, Bonassar LJ. Effects of Seeding Density on Proteoglycan Assembly of Passaged Mesenchymal Stem Cells. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0107-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
45
|
Jayasuriya AC, Kibbe S. Rapid biomineralization of chitosan microparticles to apply in bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:393-398. [PMID: 19756963 DOI: 10.1007/s10856-009-3874-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
The aim of this study was to prepare bone like mineral (BLM) layers rapidly on the exterior surfaces of chitosan (CS) microparticles (MPs). The CS MPs were fabricated using a scale-up double emulsification method. The CS MPs were in the spherical shape and the size of 30-60 microm. The MPs were then placed in 5x concentrated simulated body fluid (5 x SBF) and allowed to undergo biomineralization to form a BLM layers on the surface of CS MPs at 37 degrees C over a 24 h period. The BML layers on the exterior surface of CS MPs were characterized using wide angle X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), and scanning electron microscopy (SEM). Insulin like growth factor-1 (IGF-1) was dissolved at a concentration of 1 microg/ml in 5 x SBF to incorporate into the BLM layer. The CS MPs (100 mg) were incubated in a sample of 4 ml of 5 x SBF containing IGF-1 at a concentration of 1 microg/ml for 24 h. The IGF-1 release from BML layers on CS MPs were studied by placing MPs in 4 ml of phosphate buffered saline (PBS) and incubating MPs at 37 degrees C for 30 days. Samples (100 microl) were taken over the course of the 30 days and analyzed using Enzyme-linked Immunosorbent assay (ELISA). The release IGF-1 from BML layers was in a burst manner followed by a sustained release during the 30-day period. This study suggests that the CS MPs have the potential to be used to help deliver therapeutic drugs to localized areas and hence increase and accelerate bone growth.
Collapse
Affiliation(s)
- A Champa Jayasuriya
- Department of Orthopaedics, University of Toledo, 3065 Arlington Avenue, Dowling Hall # 2447, Toledo, OH, 43614-5807, USA.
| | | |
Collapse
|
46
|
Sommaggio R, Máñez R, Costa C. TNF, Pig CD86, and VCAM-1 Identified as Potential Targets for Intervention in Xenotransplantation of Pig Chondrocytes. Cell Transplant 2009; 18:1381-93. [DOI: 10.3727/096368909x474249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenotransplantation of genetically engineered porcine chondrocytes may benefit many patients who suffer cartilage defects. In this work, we sought to elucidate the molecular bases of the cellular response to xenogeneic cartilage. To this end, we isolated pig costal chondrocytes (PCC) and conducted a series of functional studies. First, we determined by flow cytometry the cell surface expression of multiple immunoregulatory proteins in resting conditions or after treatment with human TNF-α, IL-1α, or IL-1β, which did not induce apoptosis. TNF-α and to a lesser extent IL-1α led to a marked upregulation of SLA I, VCAM-1, and ICAM-1 on PCC. SLA II and E-selectin remained undetectable in all the conditions assayed. Notably, CD86 was constitutively expressed at moderate levels, whereas CD80 and CD40 were barely detected. To assess their function, we next studied the interaction of PCC with human monoblastic U937 and Jurkat T cells. U937 cells adhered to resting and in a greater proportion to cytokine-stimulated PCC. Consistent with its expression pattern, pig VCAM-1 was key, mediating the increased adhesion after cytokine stimulation. We also conducted coculture experiments with U937 and PCC and measured the release of pig and human cytokines. Stimulated PCC secreted IL-6 and IL-8, whereas U937 secreted IL-8 in response to PCC. Finally, coculture of PCC with Jurkat in the presence of PHA led to a marked Jurkat activation as determined by the increase in IL-2 secretion. This process was dramatically reduced by blocking pig CD86. In summary, CD86 and VCAM-1 on pig chondrocytes may be important triggers of the xenogeneic cellular immune response. These molecules together with TNF could be considered potential targets for intervention in order to develop xenogeneic therapies for cartilage repair.
Collapse
Affiliation(s)
- Roberta Sommaggio
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Máñez
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
47
|
Blanke M, Carl HD, Klinger P, Swoboda B, Hennig F, Gelse K. Transplanted chondrocytes inhibit endochondral ossification within cartilage repair tissue. Calcif Tissue Int 2009; 85:421-33. [PMID: 19763370 DOI: 10.1007/s00223-009-9288-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the effect of transplanted chondrocytes on endochondral bone formation in cartilage repair tissue. In the knee joint of miniature pigs, cartilage lesions were treated by microfracturing and were then either left empty, covered with a collagen membrane, or treated by matrix-associated autologous chondrocyte transplantation. In control lesions, the subchondral bone plate was left intact (partial-thickness lesion). The repair tissues were analyzed after 12 weeks by histological methods focusing on bone formation and vascularization. The effect of chondrocytes on angiogenesis was assessed by in vitro assays. The presence of antiangiogenic proteins in cartilage repair tissue, including thrombospondin-1 (TSP-1) and chondromodulin-I (ChM-I), was detected immunohistochemically and their expression in chondrocytes and bone marrow stromal cells was measured by quantitative RT-PCR. Significant outgrowths of subchondral bone and excessive endochondral ossification within the repair tissue were regularly observed in lesions with an exposed or microfractured subchondral bone plate. In contrast, such excessive bone formation was significantly inhibited by the additional transplantation of chondrocytes. Cartilaginous repair tissue that resisted ossification was strongly positive for the antiangiogenic proteins, TSP-1 and ChM-I, which were, however, not detectable in vascularized osseous outgrowths. Chondrocytes were identified to be the major source of TSP-1- and ChM-I expression and were shown to counteract the angiogenic activity of endothelial cells. These data suggest that the resistance of cartilaginous repair tissue against endochondral ossification following the transplantation of chondrocytes is associated with the presence of antiangiogenic proteins whose individual relevance has yet to be further explored.
Collapse
Affiliation(s)
- M Blanke
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Jung Y, Kim SH, Kim YH, Kim SH. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater 2009; 4:055009. [DOI: 10.1088/1748-6041/4/5/055009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Jayasuriya AC, Bhat A. Optimization of scaled-up chitosan microparticles for bone regeneration. Biomed Mater 2009; 4:055006. [PMID: 19779252 DOI: 10.1088/1748-6041/4/5/055006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to scale-up and optimize the chitosan (CS) microparticles (MPs) from 1x batch (41-85 mg) to 4x batch (270-567 mg) to be used in bone regeneration. The MPs used in the present study were prepared by double emulsification technique using CS as a base material under physiologically friendly conditions throughout the process. Structural integrity of MPs was improved creating cross-links between amine groups in CS and phosphate groups in tripolyphosphate (TPP) which has been used as an ionic cross-linking agent. The cross-linking density was varied using different amounts of TPP to CS such as 0%, 8%, 32%, 64% and 110% (w/w). The CS MPs were approximately spherical in shape with a size of 30-50 microm according to scanning electron microscopy results. X-ray diffraction data revealed having TPP in the CS MPs. The evidence of ionic cross-links in the CS MPs was analyzed using Fourier Transform Infra Red. When we scaled-up the yield of MPs, we investigated that 64% TPP cross-linking density provided the best quality MPs. In addition, those MPs provided the yield from 75 mg to 310 mg when scaled up from 1x to 4x batch, respectively. The MPs developed have a great potential to be used as an injectable scaffold for bone regeneration including orthopedic and craniofacial applications using minimally invasive conditions compared with conventional three-dimensional scaffolds.
Collapse
|
50
|
Gelse K, Brem M, Klinger P, Hess A, Swoboda B, Hennig F, Olk A. Paracrine effect of transplanted rib chondrocyte spheroids supports formation of secondary cartilage repair tissue. J Orthop Res 2009; 27:1216-25. [PMID: 19274742 DOI: 10.1002/jor.20874] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study's objective was to investigate if transplanted chondrocyte or periosteal cell spheroids have influence on ingrowing bone marrow-derived cells in a novel cartilage repair approach in miniature pigs. Autologous rib chondrocytes or periosteal cells were cultured as spheroids and press-fitted into cavities that were milled into large, superficial chondral lesions of the patellar joint surface. Within the milled cavities, the subchondral bone plate was either penetrated or left intact (full-thickness or partial-thickness cavities). The transplantation of chondrocyte spheroids into full-thickness cavities induced the formation of additional secondary repair cartilage that exceeded the original volume of the transplanted spheroids. The resulting continuous tissue was rich in proteoglycans and stained positive for type II collagen. Cell labeling revealed that secondarily invading repair cells did not originate from transplanted spheroids, but rather from arroded bone marrow. However, secondary invasion of repair cells was less pronounced following transplantation of periosteal cells and absent in partial-thickness cavities. According to in vitro analyses, these observations could be ascribed to the ability of chondrocyte spheroids to secrete relevant amounts of bone morphogenetic protein-2, which was not detected for periosteal cells. Transplanted chondrocyte spheroids exert a dual function: they provide cells for the repair tissue and have a stimulatory paracrine activity, which promotes ingrowth and chondrogenesis of bone marrow-derived cells.
Collapse
Affiliation(s)
- Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|