1
|
Paul S, Nahire R, Mallik S, Sarkar K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. COMPUTATIONAL MECHANICS 2014; 53:413-435. [PMID: 26097272 PMCID: PMC4470369 DOI: 10.1007/s00466-013-0962-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies.
Collapse
Affiliation(s)
- Shirshendu Paul
- Department of Mechanical Engineering, University of Delaware, Newark DE 19716, USA
| | - Rahul Nahire
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo ND 58108, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo ND 58108, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
2
|
Kuenen MPJ, Saidov TA, Wijkstra H, de la Rosette JJMCH, Mischi M. Spatiotemporal correlation of ultrasound contrast agent dilution curves for angiogenesis localization by dispersion imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2665-2669. [PMID: 24297031 DOI: 10.1109/tuffc.2013.2865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The major role of angiogenesis in cancer development has driven many researchers to investigate the prospects of noninvasive cancer imaging based on assessment of microvascular perfusion. The limited results so far may be caused by the complex and contradictory effects of angiogenesis on perfusion. Alternatively, assessment of ultrasound contrast agent dispersion kinetics, resulting from features such as density and tortuosity, has shown a promising potential to characterize angiogenic effects on the microvascular structure. This method, referred to as contrast-ultrasound dispersion imaging (CUDI), is based on contrast-enhanced ultrasound imaging after an intravenous contrast agent bolus injection. In this paper, we propose a new spatiotemporal correlation analysis to perform CUDI. We provide the rationale for indirect estimation of local dispersion by deriving the analytical relation between dispersion and the correlation coefficient among neighboring time-intensity curves obtained at each pixel. This robust analysis is inherently normalized and does not require curve-fitting. In a preliminary validation of the method for localization of prostate cancer, the results of this analysis show superior cancer localization performance (receiver operating characteristic curve area of 0.89) compared with those of previously reported CUDI implementations and perfusion estimation methods.
Collapse
|
3
|
Paul S, Russakow D, Rodgers T, Sarkar K, Cochran M, Wheatley M. Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1277-91. [PMID: 23643050 PMCID: PMC3674163 DOI: 10.1016/j.ultrasmedbio.2013.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 05/22/2023]
Abstract
The stabilizing encapsulation of a microbubble-based ultrasound contrast agent (UCA) critically affects its acoustic properties. Polymers, which behave differently from materials commonly used (i.e., lipids or proteins) for monolayer encapsulation, have the potential for better stability and improved control of encapsulation properties. Air-filled microbubbles coated with poly(DL-lactic acid) (PLA) are characterized here using in vitro acoustic experiments and several models of encapsulation. The interfacial rheological properties of the encapsulation are determined according to each model using attenuation of ultrasound through a suspension of microbubbles. Then the model predictions are compared with scattered non-linear (sub- and second harmonic) responses. For this microbubble population (average diameter, 1.9 μm), the peak in attenuation measurement indicates a weighted-average resonance frequency of 2.5-3 MHz, which, in contrast to other encapsulated microbubbles, is lower than the resonance frequency of a free bubble of similar size (diameter, 1.9 μm). This apparently contradictory result stems from the extremely low surface dilational elasticity (around 0.01-0.07 N/m) and the reduced surface tension of the poly(DL-lactic acid) encapsulation, as well as the polydispersity of the bubble population. All models considered here are shown to behave similarly even in the non-linear regime because of the low surface dilational elasticity value. Pressure-dependent scattering measurements at two different excitation frequencies (2.25 and 3 MHz) revealed strongly non-linear behavior with 25-30 dB and 5-20 dB enhancements in fundamental and second-harmonic responses, respectively, for a contrast agent concentration of 1.33 μg/mL in the suspension. Sub-harmonic responses are registered above a relatively low generation threshold of 100-150 kPa, with up to 20 dB enhancement beyond that pressure. Numerical predictions from all models show good agreement with the experimentally measured fundamental response, but not with the experimental second-harmonic response. The characteristic features of sub-harmonic responses and the steady response beyond the threshold are matched well by model predictions. However, prediction of the threshold value depends on estimated properties and size distribution. The variation in size distribution from sample to sample leads to variation in estimates of encapsulation properties: the lowest estimated value for surface dilational viscosity better predicts the sub-harmonic threshold.
Collapse
Affiliation(s)
- Shirshendu Paul
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Daniel Russakow
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Tyler Rodgers
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Kausik Sarkar
- Mechanical Engineering, University of Delaware, Newark, DE 19716
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052
| | - Michael Cochran
- Biomedical Engineering, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
4
|
Casciaro S. Theranostic applications: Non-ionizing cellular and molecular imaging through innovative nanosystems for early diagnosis and therapy. World J Radiol 2012; 3:249-55. [PMID: 22229079 PMCID: PMC3252558 DOI: 10.4329/wjr.v3.i10.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/12/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023] Open
Abstract
Modern medicine is expanding the possibilities of receiving "personalized" diagnosis and therapies, providing minimal invasiveness, technological solutions based on non-ionizing radiation, early detection of pathologies with the main objectives of being operator independent and with low cost to society. Our research activities aim to strongly contribute to these trends by improving the capabilities of current diagnostic imaging systems, which are of key importance in possibly providing both optimal diagnosis and therapies to patients. In medical diagnostics, cellular imaging aims to develop new methods and technologies for the detection of specific metabolic processes in living organisms, in order to accurately identify and discriminate normal from pathological tissues. In fact, most diseases have a "molecular basis" that detected through these new diagnostic methodologies can provide enormous benefits to medicine. Nowadays, this possibility is mainly related to the use of Positron Emission Tomography, with an exposure to ionizing radiation for patients and operators and with extremely high medical diagnostics costs. The future possible development of non-ionizing cellular imaging based on techniques such as Nuclear Magnetic Resonance or Ultrasound, would represent an important step towards modern and personalized therapies. During the last decade, the field of nanotechnology has made important progress and a wide range of organic and inorganic nanomaterials are now available with an incredible number of further combinations with other compounds for cellular targeting. The availability of these new advanced nanosystems allows new scenarios in diagnostic methodologies which are potentially capable of providing morphological and functional information together with metabolic and cellular indications.
Collapse
Affiliation(s)
- Sergio Casciaro
- Sergio Casciaro, National Council of Research, Institute of Clinical Physiology, Bioengineering Division, Campus Universitario Ecotekne, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Gauthier M, Pitre-Champagnat S, Tabarout F, Leguerney I, Polrot M, Lassau N. Impact of the arterial input function on microvascularization parameter measurements using dynamic contrast-enhanced ultrasonography. World J Radiol 2012; 4:291-301. [PMID: 22900130 PMCID: PMC3419865 DOI: 10.4329/wjr.v4.i7.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the sources of variation influencing the microvascularization parameters measured by dynamic contrast-enhanced ultrasonography (DCE-US).
METHODS: Firstly, we evaluated, in vitro, the impact of the manual repositioning of the ultrasound probe and the variations in flow rates. Experiments were conducted using a custom-made phantom setup simulating a tumor and its associated arterial input. Secondly, we evaluated, in vivo, the impact of multiple contrast agent injections and of examination day, as well as the influence of the size of region of interest (ROI) associated with the arterial input function (AIF). Experiments were conducted on xenografted B16F10 female nude mice. For all of the experiments, an ultrasound scanner along with a linear transducer was used to perform pulse inversion imaging based on linear raw data throughout the experiments. Semi-quantitative and quantitative analyses were performed using two signal-processing methods.
RESULTS: In vitro, no microvascularization parameters, whether semi-quantitative or quantitative, were significantly correlated (P values from 0.059 to 0.860) with the repositioning of the probe. In addition, all semi-quantitative microvascularization parameters were correlated with the flow variation while only one quantitative parameter, the tumor blood flow, exhibited P value lower than 0.05 (P = 0.004). In vivo, multiple contrast agent injections had no significant impact (P values from 0.060 to 0.885) on microvascularization parameters. In addition, it was demonstrated that semi-quantitative microvascularization parameters were correlated with the tumor growth while among the quantitative parameters, only the tissue blood flow exhibited P value lower than 0.05 (P = 0.015). Based on these results, it was demonstrated that the ROI size of the AIF had significant influence on microvascularization parameters: in the context of larger arterial ROI (from 1.17 ± 0.6 mm3 to 3.65 ± 0.3 mm3), tumor blood flow and tumor blood volume were correlated with the tumor growth, exhibiting P values lower than 0.001.
CONCLUSION: AIF selection is an essential aspect of the deconvolution process to validate the quantitative DCE-US method.
Collapse
|
6
|
Gauthier M, Tabarout F, Leguerney I, Polrot M, Pitre S, Peronneau P, Lassau N. Assessment of quantitative perfusion parameters by dynamic contrast-enhanced sonography using a deconvolution method: an in vitro and in vivo study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:595-608. [PMID: 22441917 DOI: 10.7863/jum.2012.31.4.595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the impact of the arterial input on perfusion parameters measured using dynamic contrast-enhanced sonography combined with a deconvolution method after bolus injections of a contrast agent. METHODS The in vitro experiments were conducted using a custom-made setup consisting of pumping a fluid through a phantom made of 3 intertwined silicone pipes, mimicking a complex structure akin to that of vessels in a tumor, combined with their feeding pipe, mimicking the arterial input. In the in vivo experiments, B16F10 melanoma cells were xenografted to 5 nude mice. An ultrasound scanner combined with a linear transducer was used to perform pulse inversion imaging based on linear raw data throughout the experiments. A mathematical model developed by the Gustave Roussy Institute (patent WO/2008/053268) and based on the dye dilution theory was used to evaluate 7 semiquantitative perfusion parameters directly from time-intensity curves and 3 quantitative perfusion parameters from the residue function obtained after a deconvolution process developed in our laboratory based on the Tikhonov regularization method. We evaluated and compared the intraoperator variability values of perfusion parameters determined after these two signal-processing methods. RESULTS In vitro, semiquantitative perfusion parameters exhibited intraoperator variability values ranging from 3.39% to 13.60%. Quantitative parameters derived after the deconvolution process ranged from 4.46% to 11.82%. In vivo, tumors exhibited perfusion parameter intraoperator variability values ranging from 3.74% to 29.34%, whereas quantitative ones varied from 5.00% to 12.43%. CONCLUSIONS Taking into account the arterial input in evaluating perfusion parameters improves the intraoperator variability and may improve the dynamic contrast-enhanced sonographic technique.
Collapse
Affiliation(s)
- Marianne Gauthier
- Laboratoire d'Imagerie du Petit Animal, Unité Mixte de Recherche, Institut Gustave Roussy, Pavillon de Recherche I, 39 rue Camille Desmoulins, 94805 Villejuif, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Casciaro S. Theranostic applications: Non-ionizing cellular and molecular imaging through innovative nanosystems for early diagnosis and therapy. World J Radiol 2011; 3:249-255. [DOI: 10.4329/wjr.v3.i10.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modern medicine is expanding the possibilities of receiving “personalized” diagnosis and therapies, providing minimal invasiveness, technological solutions based on non-ionizing radiation, early detection of pathologies with the main objectives of being operator independent and with low cost to society. Our research activities aim to strongly contribute to these trends by improving the capabilities of current diagnostic imaging systems, which are of key importance in possibly providing both optimal diagnosis and therapies to patients. In medical diagnostics, cellular imaging aims to develop new methods and technologies for the detection of specific metabolic processes in living organisms, in order to accurately identify and discriminate normal from pathological tissues. In fact, most diseases have a “molecular basis” that detected through these new diagnostic methodologies can provide enormous benefits to medicine. Nowadays, this possibility is mainly related to the use of Positron Emission Tomography, with an exposure to ionizing radiation for patients and operators and with extremely high medical diagnostics costs. The future possible development of non-ionizing cellular imaging based on techniques such as Nuclear Magnetic Resonance or Ultrasound, would represent an important step towards modern and personalized therapies. During the last decade, the field of nanotechnology has made important progress and a wide range of organic and inorganic nanomaterials are now available with an incredible number of further combinations with other compounds for cellular targeting. The availability of these new advanced nanosystems allows new scenarios in diagnostic methodologies which are potentially capable of providing morphological and functional information together with metabolic and cellular indications.
Collapse
|
8
|
Experimental Investigations of Nonlinearities and Destruction Mechanisms of an Experimental Phospholipid-Based Ultrasound Contrast Agent: Erratum. Invest Radiol 2011. [DOI: 10.1097/rli.0b013e31822eca38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Gauthier M, Leguerney I, Thalmensi J, Chebil M, Parisot S, Peronneau P, Roche A, Lassau N. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US. World J Radiol 2011; 3:70-81. [PMID: 21512654 PMCID: PMC3080053 DOI: 10.4329/wjr.v3.i3.70] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue®.
METHODS: The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue® (Bracco, Milan, Italy) and using a Toshiba Aplio® ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging (“Vascular Recognition Imaging”) involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV).
RESULTS: In vitro, different volumes of SonoVue® were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%.
CONCLUSION: AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.
Collapse
|
10
|
Husseini GA, Stevenson-Abouelnasr D, Pitt WG, Assaleh KT, Farahat LO, Fahadi J. Kinetics and Thermodynamics of Acoustic Release of Doxorubicin from Non-stabilized polymeric Micelles. Colloids Surf A Physicochem Eng Asp 2010; 359:18-24. [PMID: 20495608 PMCID: PMC2872131 DOI: 10.1016/j.colsurfa.2010.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper studies the thermodynamic characteristics of ultrasound-activated release of Doxorubicin (Dox) from micelles. The release and re-encapsulation of Dox into Pluronic® P105 micelles was measured by recording the fluorescence of a solution of 10 µg/ml Dox and 10% wt P105 polymer in phosphate-buffered saline, during and after insonation by ultrasound at three temperatures, (25 °C, 37 °C and 56 °C). The experimental data were modeled using a previously-published model of the kinetics of the system. The model was simplified by the experimental measurement of one of the parameters, the maximum amount of Dox that can be loaded into the poly(propyleneoxide) cores of the micelles, which was found to be 89 mg/ml PPO and 150 mg Dox/ml PPO at 25 °C and 37 °C, respectively. From the kinetic constants and drug distribution parameters, we deduced the thermodynamic activation energy for micelle re-assembly and the residual activation energies for micelle destruction. Our model showed that the residual activation energy for destruction decreased with increasing acoustic intensity. In addition, higher temperatures were found to encourage micelle destruction and hinder micelle re-assembly.
Collapse
Affiliation(s)
- Ghaleb A. Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | | | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602
| | - Khaled T. Assaleh
- Electrical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Lujein O. Farahat
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Fahadi
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y. Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:973-82. [PMID: 19739710 DOI: 10.1121/1.3179677] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Influence of the bubble-bubble interaction on the pulsation of encapsulated microbubbles has been studied by numerical simulations under the condition of the experiment reported by Chang et al. [IEEE Trans. Ultrason Ferroelectr. Freq. Control 48, 161 (2001)]. It has been shown that the natural (resonance) frequency of a microbubble decreases considerably as the microbubble concentration increases to relatively high concentrations. At some concentration, the natural frequency may coincide with the driving frequency. Microbubble pulsation becomes milder as the microbubble concentration increases except at around the resonance condition due to the stronger bubble-bubble interaction. This may be one of the reasons why the threshold of acoustic pressure for destruction of an encapsulated microbubble increases as the microbubble concentration increases. A theoretical model for destruction has been proposed.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Casciaro S, Conversano F, Musio S, Casciaro E, Demitri C, Sannino A. Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:983-989. [PMID: 19052848 DOI: 10.1007/s10856-008-3644-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/03/2008] [Indexed: 05/27/2023]
Abstract
Tissue mimicking phantoms have been widely reported to be an important tool for development, optimisation and performance testing of ultrasound-based diagnostic techniques. In particular, modern applications of tissue mimicking phantoms often include characterisation of the nonlinear behaviour of experimental ultrasound contrast agents. In such cases, the tissue-mimicking materials should be chosen not only based on the values of their density, speed of sound and attenuation coefficient, but also considering their effect on the appearance of "native harmonics" due to nonlinear distortion of ultrasound signal during propagation. In a previous paper it was demonstrated that a cellulose-based hydrogel is suitable to simulate nonlinear acoustical behaviour of liver tissue for thicknesses up to 8 cm. In this paper we present the experimental characterisation of the nonlinear acoustical behaviour of a different polyethylene glycol diacrylate (PEGDA)-based hydrogel, in order to assess whether and how it can improve the performances and overcome some limitations of the cellulose-based hydrogel as liver tissue-mimicking material. Samples of pig liver tissue, cellulose-based hydrogel and PEGDA-based hydrogel were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values. Second harmonic and first harmonic amplitudes were extracted from the spectra of received signals and their difference was then used to compare sample behaviours. Obtained results show how a new more accurate and combined experimental model of linear and nonlinear acoustical behaviour of liver tissue is feasible. In fact, a further confirmation of the cellulose-based hydrogel effectiveness to precisely simulate the liver tissue for penetration depths up to 8 cm was provided, and it was also shown that the employment of the PEGDA-based hydrogel can extend the range of useful tissue-mimicking material thicknesses up to 11 cm, moreover allowing a considerable improvement of the time stability and behaviour reliability of the corresponding manufactured phantoms.
Collapse
Affiliation(s)
- Sergio Casciaro
- Institute of Clinical Physiology, National Council of Research (IFC-CNR), c/o Campus Ecotekne, via per Monteroni, 73100, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Optical microscopic findings of the behavior of perflubutane microbubbles outside and inside Kupffer cells during diagnostic ultrasound examination. Invest Radiol 2009; 43:829-36. [PMID: 19002054 DOI: 10.1097/rli.0b013e3181852719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the behavior of perflubutane microbubbles outside and inside Kupffer cells during diagnostic ultrasound (US) examination, and to determine the thresholds of the acoustic pressure of different kinds of behavior. METHODS Acoustic behavior of perflubutane microbubbles inside and outside Kupffer cells in an acoustic field induced by a clinical US transducer and equipment was optically observed in vitro. The acoustic pressure was measured simultaneously by a calibrated hydrophone and an oscilloscope. RESULTS The acoustic behavior of microbubbles was optically categorized as stabilization, oscillation, transposition, shrinkage, and destruction. The mechanical index (MI) displayed on the US equipment correlated well with the acoustic pressure at the level of microbubbles measured hydrophonically. At a frame rate of 15 Hz with a frequency of 3.5 MHz and pulse repetition frequency of 3 KHz, the thresholds in term of MI for free microbubbles to begin oscillation, reach best oscillation, transposition, shrinkage, and destruction were 0.21, 0.44, 0.53, 0.75, and 1.03, respectively. Although adherent and phagocytosed microbubbles showed more stability enduring insonation compared with free microbubbles, the thresholds of shrinkage and destruction were MI 1.03 and 1.18 for adherent microbubbles, and 1.18 and 1.37 for phagocytosed microbubbles, respectively. Neither oscillation nor transposition of microbubbles inside Kupffer cells was observed microscopically. No cell damage because of microbubbles destruction was found in the present study. CONCLUSION Perflubutane microbubbles outside and inside Kupffer cells respond to external US insonation with same parameters of a clinical contrast-enhanced US study according to the acoustic pressure. Free microbubbles behave as stabilization, oscillation, transposition, shrinkage, and destruction under insonation. The adherent and phagocytosed microbubbles are more stable under insonation than free microbubbles, but still respond showing shrinkage and destruction when MI is over 1.03.
Collapse
|
14
|
Demitri C, Sannino A, Conversano F, Casciaro S, Distante A, Maffezzoli A. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies. J Biomed Mater Res B Appl Biomater 2009; 87:338-45. [PMID: 18536040 DOI: 10.1002/jbm.b.31108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).
Collapse
Affiliation(s)
- Christian Demitri
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Emmer M, Vos HJ, Goertz DE, van Wamel A, Versluis M, de Jong N. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:102-111. [PMID: 18829153 DOI: 10.1016/j.ultrasmedbio.2008.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/18/2008] [Accepted: 07/16/2008] [Indexed: 05/26/2023]
Abstract
Previous optical studies have shown threshold behavior of single-contrast agent microbubbles. Below the acoustic pressure threshold, phospholipid-coated microbubbles with sizes <5.0 mum in diameter oscillate significantly less than above the threshold pressure. Previous studies also revealed an acoustic pressure-dependent attenuation of ultrasound by microbubble contrast agents. In this study, we investigated whether pressure-dependent acoustic behavior may be explained by threshold behavior. For this purpose, pressure-dependent attenuation and scattering of a phospholipid-coated contrast agent were measured. Transmit frequencies between 1.5 and 6.0 MHz and acoustic pressures between 5 and 200 kPa were applied. Unlike the galactose-based contrast agent Levovist, the phospholipid-coated contrast agent BR14 showed a pressure-dependent attenuation. In addition, it was found that filtered suspensions with only microbubbles <3.0 mum in diameter show more pressure-dependent attenuation behavior than native suspensions of phospholipid-coated microbubbles. For the scattering measurements conducted at 3.0 MHz, the native suspension did not show any pressure-dependent behavior. However, the filtered suspension responded highly nonlinearly. Between 30 and 150 kPa, 16 dB additional scattered power was obtained. We concluded that threshold behavior of phospholipid-coated microbubbles results in pressure-dependent attenuation and scattering.
Collapse
Affiliation(s)
- Marcia Emmer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Acoustic attenuation by contrast agent microbubbles in superficial tissue markedly diminishes petechiae bioeffects in deep tissue. Invest Radiol 2008; 43:322-9. [PMID: 18424953 DOI: 10.1097/rli.0b013e318168c715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To measure how ultrasound attenuation by contrast agent microbubbles (MBs) in superficial tissue affects petechiae creation in underlying deep tissue. MATERIALS AND METHODS Studies using Sprague-Dawley rats were approved by the Animal Care and Use Committee. MBs were injected intravenously, and 12 ultrasound pulses (100 sinusoids of 1 MHz ultrasound per pulse) were applied through the skin overlying the hindlimb adductors at intervals of 10 or 60 seconds. In some groups, the skin was resected and immediately returned without re-establishing vascular connections. Muscle petechiae were counted. RESULTS Applying ultrasound through unperfused skin after bolus and continuous intravenous MB injection yielded, respectively, 30-fold and 3.5-fold more petechiae than for perfused skin. Surprisingly, petechiae/mm2 decreased with a higher MB dosage [0.12 +/- 0.05 (1 x 10 MBs/g) vs. 0.04 +/- 0.02 (3 x 10 MBs/g)] when ultrasound was applied through perfused skin. In contrast, petechiae/mm2 was approximately proportional to MB dosage for unperfused skin [0.17 +/- 0.10(5) (1 x 10 MBs/g) vs. 0.42 + 0.14 (3 x 10(5) MBs/g)]. In comparison to MB-free controls, MB solutions in this concentration range reduced the peak-negative pressure of ultrasound by 65% to 85%. CONCLUSIONS Acoustic attenuation by MBs in skin markedly reduces petechiae creation in deep muscle. Petechiae inhibition is dependent on [MB]2.1 and, therefore, dominates the otherwise proportional relationship between petechiae and [MB] in muscle. The drop of peak-negative pressure below a critical microvessel rupturing threshold is the probable mechanism for petechiae inhibition. These results indicate that high MB doses could, paradoxically, reduce the potential for petechiae creation and may have important bearing on the design of contrast ultrasound-based therapeutics.
Collapse
|
17
|
Palmowski M, Morgenstern B, Hauff P, Reinhardt M, Huppert J, Maurer M, Woenne EC, Doerk S, Ladewig G, Jenne JW, Delorme S, Grenacher L, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F. Pharmacodynamics of streptavidin-coated cyanoacrylate microbubbles designed for molecular ultrasound imaging. Invest Radiol 2008; 43:162-9. [PMID: 18301312 DOI: 10.1097/rli.0b013e31815a251b] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To assess the pharmacodynamic behavior of cyanoacrylate, streptavidin-coated microbubbles (MBs) and to investigate their suitability for molecular ultrasound imaging. MATERIALS AND METHODS Biodistribution of MBs was analyzed in tumor-bearing mice using gamma-counting, immunohistochemistry, flow cytometry, and ultrasound. Further, vascular endothelial growth factor receptor 2-antibody coupled MBs were used to image tumor neovasculature. RESULTS After 1 minute >90% of MBs were cleared from the blood and pooled in the lungs, liver, and spleen. Subsequently, within 1 hour a decent reincrease of MB-concentration was observed in the blood. The remaining MBs were removed by liver and spleen macrophages. About 30% of the phagocytosed MBs were intact after 48 hours. Shell fragments were found in the kidneys only. No relevant MB-accumulation was observed in tumors. In contrast, vascular endothelial growth factor receptor 2-specific MBs accumulated significantly within the tumor vasculature (P < 0.05). CONCLUSIONS The pharmacokinetic behavior of streptavidin-coated cyanoacrylate MBs has been studied. In this context, the low amount of MBs in tumors after >5 minutes is beneficial for specific targeting of angiogenesis.
Collapse
Affiliation(s)
- Moritz Palmowski
- Department of Diagnostic Radiology, Ruprecht-Karls University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Watanabe R, Matsumura M, Munemasa T, Fujimaki M, Suematsu M. Mechanism of hepatic parenchyma-specific contrast of microbubble-based contrast agent for ultrasonography: microscopic studies in rat liver. Invest Radiol 2007; 42:643-51. [PMID: 17700280 DOI: 10.1097/rli.0b013e31805f2682] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The objective of this study was to elucidate the mechanism of hepatic parenchyma-specific contrast of Sonazoid (microbubble contrast agent) using microscopic techniques. MATERIALS AND METHODS Sonazoid was intravenously injected into rats to investigate the microbubble dynamics and distribution within hepatic microcirculation in exteriorized liver using intravital microscopy and to observe dose dependency of ultrasound hepatic contrast effect. In vitro and in vivo uptake of microbubbles by Kupffer cells was examined using confocal laser scanning microscopy. RESULTS Intravital observation demonstrated freely flowing microbubbles in the sinusoid and some microbubbles co-localized with Kupffer cells. The microbubbles internalized in Kupffer cells were identified with reflected light by confocal laser scanning microscopy. The percentage of Kupffer cells taking up microbubbles was about 1% at clinical dose at which the homogeneous hepatic contrast was observed. CONCLUSIONS The hepatic parenchyma-specific contrast by Sonazoid is due to distribution of the microbubbles in Kupffer cells.
Collapse
Affiliation(s)
- Rira Watanabe
- R&D Division, Daiichi Pharmaceutical Co., Ltd, Tokyo, Japan.
| | | | | | | | | |
Collapse
|