1
|
Wen Z, Zou X, Xie X, Zheng S, Chen X, Zhu K, Dong S, Liang J, Huang X, Liu D, Wang Y, Liu Y, Wu J, Ying Y, Liu K, Lu C, Zhang B, Yang G, Jing C, Nie L. Association of Polymorphisms in miRNA Processing Genes With Type 2 Diabetes Mellitus and Its Vascular Complications in a Southern Chinese Population. Front Endocrinol (Lausanne) 2019; 10:461. [PMID: 31354628 PMCID: PMC6639830 DOI: 10.3389/fendo.2019.00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/25/2019] [Indexed: 01/12/2023] Open
Abstract
Objective: To evaluate the potential association between the genetic variants in miRNA processing genes (RAN, XPO5, DICER1, and TARBP2) and susceptibility to type 2 diabetes mellitus (T2DM) and its vascular complications, as well as to further investigate their interaction with environmental factors in type 2 diabetes. Methods: We conducted a case-control study in genotyping of five polymorphic loci, including RAN rs14035, XPO5 rs11077, DICER1 rs13078, DICER1 rs3742330, and TARBP2 rs784567, in miRNA processing genes to explore the risk factors for T2DM and diabetic vascular complications. Haplotype analyses, interactions of gene-gene and interactions of gene-environment were performed too. Results: We identified a 36% decreased risk of developing T2DM in individuals with the minor A allele in DICER1 rs13078 (OR: 0.64; 95%CI: 0.42-0.95; P: 0.026). The AA haplotype in DICER1 was also associated with a protective effect on T2DM compared with the AT haplotype (OR: 0.63; 95%CI: 0.42-0.94; P-value: 0.023). T2DM patients with the TT+TC genotype at RAN rs14035 had a 1.89-fold higher risk of developing macrovascular complications than patients with the CC genotype (OR: 1.89; 95%CI: 1.04-3.45; P-value: 0.037). We also identified two three-factor interaction models. One is a three-factor [DICER1 rs13078, body mass index (BMI), and triglyceride (TG)] interaction model for T2DM (OR: 5.93; 95%CI: 1.25-28.26; P = 0.025). Another three-factor [RAN rs14035, hypertension (HP), and duration of T2DM (DOD)] interaction model was found for macrovascular complications of T2DM (OR = 41.60, 95%CI = 11.75-147.35, P < 0.001). Conclusion: Our study provides new evidence that two single nucleotide polymorphisms (SNPs) of the miRNA processing genes, DICER1 and RAN, and their interactions with certain environmental factors might contribute to the risk of T2DM and its vascular complications in the southern Chinese population.
Collapse
Affiliation(s)
- Zihao Wen
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaoqian Zou
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xin Xie
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaojing Chen
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kehui Zhu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shirui Dong
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiayu Liang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuxia Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Dandan Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yao Wang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yumei Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jing Wu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuting Ying
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kailiang Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Congying Lu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Baohuan Zhang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- *Correspondence: Guang Yang
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- Chunxia Jing
| | - Lihong Nie
- Department of Endocrine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lihong Nie
| |
Collapse
|
2
|
Hirsch IB, Amiel SA, Blumer IR, Bode BW, Edelman SV, Seley JJ, Verderese CA, Kilpatrick ES. Using multiple measures of glycemia to support individualized diabetes management: recommendations for clinicians, patients, and payers. Diabetes Technol Ther 2012; 14:973-83; quiz 983. [PMID: 23066850 DOI: 10.1089/dia.2012.0132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
By the year 2030, the diabetes pandemic will likely affect more than 10% of the world's population. The personal, public health, and economic crises implicit in this trend call for decisive action. Yet, escalating dilemmas thwart full realization of current therapies. First, controversial studies, such as the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial, have amplified calls to individualize glycated hemoglobin (A1C) targets in the absence of adequate infrastructures for supporting personalized care. Second, costlier medications and technologies addressing more nuanced aspects of metabolic dysfunction are expanding options for diabetes management amidst growing disparities between "affordable" and "best" care. Third, common clinical quandaries, such as discrepancies between A1C and self-monitoring of blood glucose data, as well as misconceptions about long-term glycemic assessment, compound entrenched cycles of inadequate self-care, delayed intervention, and suboptimal glycemic outcomes. Because individual, clinical, and public policy responses to these conflicting forces are based largely on methodologies for glucose measurement, a panel of clinical experts from Europe and North America was convened to reexamine our glucose measuring tools and determine ways in which they can be better applied toward more purposeful processes of glycemic management. Among the main issues addressed were the need for caution in interpreting A1C for individual patients, the role of alternative biomarkers in identifying aspects of glycemic dysregulation not captured by A1C, and the value of using patients' own glucose data to consolidate therapeutic, educational, and behavior-change objectives.
Collapse
Affiliation(s)
- Irl B Hirsch
- University of Washington School of Medicine, Seattle, Washington 98105, USA.
| | | | | | | | | | | | | | | |
Collapse
|