1
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chen C, Bu L, Liu H, Rang Y, Huang H, Xiao X, Ou G, Liu C. Learning and memory impairment induced by 1,4-butanediol is regulated by ERK1/2-CREB-BDNF signaling pathways in PC12 cells. Metab Brain Dis 2022; 37:1451-1463. [PMID: 35348994 DOI: 10.1007/s11011-022-00963-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/14/2022] [Indexed: 01/03/2023]
Abstract
1,4-butanediol (1,4-BD) is a known γ-hydroxybutyric acid (GHB) precursor which affects the nervous system after ingestion, leading to uncontrolled behavioral consequences. In the present study, we investigated whether 1,4-BD induces oxidative stress and inflammation in PC12 cells and evaluated the toxic effects of 1,4-BD associates with learning and memory. CCK-8 results revealed a dose-effect relationship between the cell viability of PC12 cells and 1,4-BD when the duration of action was 2 h or 4 h. Assay kits results showed that 1,4-BD decreased the levels of Glutathione (GSH), Glutathione peroxidase (GSH-px), Superoxide dismutase (SOD), Acetylcholine (Ach) and increased the levels of Malondialdehyde (MDA), Nitric oxide (NO) and Acetylcholinesterase (AchE). Elisa kits results indicated that 1,4-BD decreased the levels of synaptophysin I (SYN-1), Postsynaptic density protein-95 (PSD-95), Growth associated protein-43 (GAP-43) and increased the levels of Tumor necrosis factor alpha (TNF-α) and Interleukin- 6 (IL-6). RT-PCR results showed that the mRNA levels of PSD-95, SYN-1 and GAP-43 were significantly decreased. The expression of phosphorylation extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), phosphorylation cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) proteins were significantly decreased in PC12 cells by protein blotting. Overall, these results suggest that 1,4-BD may affect synaptic plasticity via the ERK1/2-CREB-BDNF pathway, leading to Ach release reduction and ultimately to learning and memory impairment. Furthermore, oxidative stress and inflammation induced by 1,4-BD may also result in learning and memory deficits. These findings will enrich the toxicity data of 1.4-BD associated with learning and memory impairment.
Collapse
Affiliation(s)
- Congying Chen
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Lingling Bu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China.
| |
Collapse
|
3
|
Datta S, Chakrabarti N. Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice. Neurochem Int 2018; 118:23-33. [PMID: 29678731 DOI: 10.1016/j.neuint.2018.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/11/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing.
Collapse
Affiliation(s)
- Siddhartha Datta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India.
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Orhan N, Ugur Yilmaz C, Ekizoglu O, Ahishali B, Kucuk M, Arican N, Elmas I, Gürses C, Kaya M. Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury. Brain Res 2015; 1631:113-26. [PMID: 26656066 DOI: 10.1016/j.brainres.2015.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/29/2015] [Accepted: 11/23/2015] [Indexed: 12/16/2022]
Abstract
This study investigates the effect of beta-hydroxybutyrate (BHB) on blood-brain barrier (BBB) integrity during traumatic brain injury (TBI) in rats. Evans blue (EB) and horseradish peroxidase (HRP) were used as determinants of BBB permeability. Glutathione (GSH) and malondialdehyde (MDA) levels were estimated in the right (injury side) cerebral cortex of animals. The gene expression levels for occludin, glucose transporter (Glut)-1, aquaporin4 (AQP4) and nuclear factor-kappaB (NF-κB) were performed, and Glut-1 and NF-κB activities were analyzed. BHB treatment decreased GSH and MDA levels in intact animals and in those exposed to TBI (P<0.05). Glut-1 protein levels decreased in sham, BHB and TBI plus BHB groups (P<0.05). NF-κB protein levels increased in animals treated with BHB and/or exposed to TBI (P<0.05). The expression levels of occludin and AQP4 did not significantly change among experimental groups. Glut-1 expression levels increased in BHB treated and untreated animals exposed to TBI (P<0.05). While NF-κB expression levels increased in animals in TBI (P<0.01), a decrease was noticed in these animals upon BHB treatment (P<0.01). In animals exposed to TBI, EB extravasation was observed in the ipsilateral cortex regardless of BHB treatment. Ultrastructurally, BHB attenuated but did not prevent the presence of HRP in brain capillary endothelial cells of animals with TBI; moreover, the drug also led to the observation of the tracer when used in intact rats (P<0.01). Altogether, these results showed that BHB not only failed to provide overall protective effects on BBB in TBI but also led to BBB disruption in healthy animals.
Collapse
Affiliation(s)
- Nurcan Orhan
- Department of Neuroscience, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ugur Yilmaz
- Department of Laboratory Animals Science, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Oguzhan Ekizoglu
- Department of Forensic Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Bulent Ahishali
- Department of Histology and Embryology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mutlu Kucuk
- Department of Laboratory Animals Science, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nadir Arican
- Department of Forensic Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Imdat Elmas
- Department of Forensic Medicine, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Candan Gürses
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Kaya
- Department of Physiology, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Luca G, Vienne J, Vaucher A, Jimenez S, Tafti M. Central and peripheral metabolic changes induced by gamma-hydroxybutyrate. Sleep 2015; 38:305-13. [PMID: 25515097 DOI: 10.5665/sleep.4420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/29/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Gamma-hydroxybutyrate (GHB) was originally introduced as an anesthetic but was first abused by bodybuilders and then became a recreational or club drug.1 Sodium salt of GHB is currently used for the treatment of cataplexy in patients with narcolepsy. The mode of action and metabolism of GHB is not well understood. GHB stimulates growth hormone release in humans and induces weight loss in treated patients, suggesting an unexplored metabolic effect. In different experiments the effect of GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism, were evaluated in mice. DESIGN C57BL/6J, gamma-aminobutyric acid B (GABAB) knockout and obese (ob/ob) mice were acutely or chronically treated with GHB at 300 mg/kg. MEASUREMENTS AND RESULTS Respiratory ratio decreased under GHB treatment, independent of food intake, suggesting a shift in energy substrate from carbohydrates to lipids. GHB-treated C57BL/6J and GABAB null mice but not ob/ob mice gained less weight than matched controls. GHB dramatically increased the corticosterone level but did not affect growth hormone or prolactin. Metabolome profiling showed that an acute high dose of GHB did not increase the brain GABA level. In the brain and the liver, GHB was metabolized into succinic semialdehyde by hydroxyacid-oxoacid transhydrogenase. Chronic administration decreased glutamate, s-adenosylhomocysteine, and oxidized gluthathione, and increased omega-3 fatty acids. CONCLUSIONS Our findings indicate large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use.
Collapse
Affiliation(s)
- Gianina Luca
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland
| | - Julie Vienne
- Department of Biology, Brandeis University, Waltham, MA
| | - Angélique Vaucher
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland
| | - Sonia Jimenez
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland
| | - Mehdi Tafti
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Lignac D, Gonzva J, Boursier A, Provins A. Utilisation du gamma-OH en médecine de catastrophe. ANNALES FRANCAISES DE MEDECINE D URGENCE 2014. [DOI: 10.1007/s13341-014-0412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Nava F, Premi S, Manzato E, Lucchini A. Comparing Treatments of Alcoholism on Craving and Biochemical Measures of Alcohol Consumptions. J Psychoactive Drugs 2011; 38:211-7. [PMID: 17165363 DOI: 10.1080/02791072.2006.10399846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An open randomized study was conducted to compare different treatments of alcoholism on ethanol intake, craving, and on biochemical measures of alcohol consumptions. Eighty-six alcoholics were abstinent for a mean of two weeks prior to random assignment to g-hydroxybutyrate (GHB, 50 mg/kg of body weight t.i.d), naltrexone (NTX, 50 mg/day) or disulfiram (DSF, 200 mg/ day) treatment for 12 months. All treatments were equally effective in reducing alcohol intake and in maintaining abstinence. In all patients, the treatments were able to reduce both craving and the altered biological markers of alcohol abuse. The maximum effects were observed in GHB-treated patients. The results of the present study suggest that GHB might act both as anticraving and cellular protector agent.
Collapse
Affiliation(s)
- Felice Nava
- Department of Addiction Medicine, Drug Abuse Unit (Ser.T.), Hospital of Castelfranco Veneto, Via Ospedale, 18, 31033 Castelfranco Veneto-Treviso, Italy.
| | | | | | | |
Collapse
|
8
|
Aslan A, Gurelik M, Cemek M, Goksel HM, Buyukokuroglu ME. Nimodipine can improve cerebral metabolism and outcome in patients with severe head trauma. Pharmacol Res 2009; 59:120-4. [PMID: 18996202 DOI: 10.1016/j.phrs.2008.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/09/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Affiliation(s)
- Adem Aslan
- Afyon Kocatepe University, Faculty of Medicine, Department of Neurosurgery, Ali Cetinkaya Kampusu, TR-03200 Afyonkarahisar, Turkey.
| | | | | | | | | |
Collapse
|
9
|
Sadasivan S, Maher TJ, Quang LS. Gamma-Hydroxybutyrate (GHB), gamma-butyrolactone (GBL), and 1,4-butanediol (1,4-BD) reduce the volume of cerebral infarction in rodent transient middle cerebral artery occlusion. Ann N Y Acad Sci 2007; 1074:537-44. [PMID: 17105951 DOI: 10.1196/annals.1369.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
gamma-Hydroxybutyric acid (GHB), an endogenous organic acid catabolite of gamma-aminobutyric acid (GABA), has been shown to have tissue-protective effects in various organs, including the brain. We examined the potential neuroprotective effect of GHB and its chemical precursors, gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), in the rodent ischemic stroke model by intraluminal filament middle cerebral artery occlusion (MCAO). Adult male Sprague-Dawley rats underwent transient left-sided MCAO and received intraperitoneal treatment with 300 mg/kg of GHB, GBL, 1,4-BD, or control vehicle given at 30 min before, as well as 180 and 360 min after the onset of ischemia. Infarct volumes were determined 24 h after MCAO. In transient MCAO, the mean volume of infarction for control rats was 464.4 +/- 17.9 cu.mm versus 273.6 +/- 53.1, 233.3 +/- 44.7, and 275.4 +/- 39.9 cu.mm for rats treated with 1,4-BD (P < 0.05), GBL (P < 0.05), and GHB (P < 0.05), respectively. We conclude that GHB, GBL, and 1,4-BD protect against rat focal cerebral ischemia from transient MCAO.
Collapse
Affiliation(s)
- Shankar Sadasivan
- Division of Pediatric Emergency Medicine, Rainbow Babies & Children's Hospital/Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
10
|
Alzheimer' s disease, oxidative stress and gammahydroxybutyrate. Neurobiol Aging 2006; 28:1340-60. [PMID: 16837107 DOI: 10.1016/j.neurobiolaging.2006.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 05/14/2006] [Accepted: 06/12/2006] [Indexed: 12/21/2022]
Abstract
Although the cause of Alzheimer's disease is unknown, oxidative stress, energy depletion, excitotoxicity and vascular endothelial pathology are all considered to play a part in its pathogenesis. In reaction to these adverse events, the Alzheimer brain appears to deploy a highly conserved biological response to tissue stress. Oxidative metabolism is turned down, the expression of antioxidative enzymes is increased and intermediary metabolism is shifted in the direction of the pentose phosphate shunt to promote reductive detoxification, repair and biosynthesis. Gathering evidence suggests that the release of beta-amyloid and the formation of neurofibrillary tangles, the two hallmarks of Alzheimer's disease, are components of this protective response. Gammahydroxybutyrate (GHB), an endogenous short chain fatty acid, may be able to buttress this response. GHB can reduce glucose utilization, shift intermediary metabolism in the direction the pentose phosphate shunt and generate NADPH, a key cofactor in the activity of many antioxidative and reductive enzymes. GHB has been shown to spare cerebral energy utilization, block excitotoxicity and maintain vascular integrity in the face of impaired perfusion. Most important, GHB has repeatedly been shown to prevent the tissue damaging effects of oxidative stress. It may therefore be possible to utilize GHB to strengthen the brain's innate defences against the pathological processes operating in the Alzheimer brain and, in this way, stem the advance of Alzheimer's disease.
Collapse
|
11
|
Affiliation(s)
- O Carter Snead
- Department of Pediatrics, University of Toronto, and the Division of Neurology and the Brain and Behavior Research Program, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
12
|
Strickland RM, Felgate P, Caldicott DGE. Survival of massive γ-hydroxybutyrate/ 1,4-butanediol overdose. Emerg Med Australas 2005; 17:281-3. [PMID: 15953232 DOI: 10.1111/j.1742-6723.2005.00736.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-hydroxybutyrate and its metabolic precursors gamma butyrolactone and 1,4-butanediol are widely used recreational drugs known to cause short periods of deep sedation with rapid recovery. We present a case of survival with good neurological outcome following massive ingestion in which the patient remained sedated for 14 h.
Collapse
Affiliation(s)
- Richard M Strickland
- Department of Emergency Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
13
|
Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res 2005; 79:240-7. [PMID: 15562436 PMCID: PMC2570320 DOI: 10.1002/jnr.20293] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration.
Collapse
Affiliation(s)
- Erica Martin
- Department of Anesthesiology, University of Maryland School of Medicine, 684 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|