1
|
Assis FR, Narasimhan B, Ziai W, Tandri H. From systemic to selective brain cooling - Methods in review. Brain Circ 2019; 5:179-186. [PMID: 31950093 PMCID: PMC6950511 DOI: 10.4103/bc.bc_23_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic hypothermia (TH) remains one of the few proven neuroprotective modalities available in clinical practice today. Although targeting lower temperatures during TH seems to benefit ischemic brain cells, systemic side effects associated with global hypothermia limit its clinical applicability. Therefore, the ability to selectively reduce the temperature of the brain while minimally impacting core temperature allows for maximizing neurological benefit over systemic complications. In that scenario, selective brain cooling (SBC) has emerged as a promising modality of TH. In this report, we reviewed the general concepts of TH, from systemic to selective brain hypothermia, and explored the different cooling strategies and respective evidence, including preclinical and clinical data. SBC has been investigated in different animal models with promising results, wherein organ-specific, rapid, and deep target brain temperature managements stand out as major advantages over systemic TH. Nevertheless, procedure-related complications and adverse events still remain a concern, limiting clinical translation. Different invasive and noninvasive methods for SBC have been clinically investigated with variable results, and although adverse effects were still reported in some studies, therapies rendered overall safe profiles. Further study is needed to define the optimal technique, timing of initiation, rate and length of cooling as well as target temperature and rewarming protocols for different indications.
Collapse
Affiliation(s)
- Fabrizio R Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bharat Narasimhan
- Department of Internal Medicine, Mount Sinai St. Lukes-Roosevelt, New York, NY, USA
| | - Wendy Ziai
- Division of Anesthesia and Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harikrishna Tandri
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Vaity C, Al-Subaie N, Cecconi M. Cooling techniques for targeted temperature management post-cardiac arrest. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:103. [PMID: 25886948 PMCID: PMC4361155 DOI: 10.1186/s13054-015-0804-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
|
3
|
Chen CW, Puvanesarajah V, Lo SFL, Cheng TJ, Cheng CY, Lim M, Lin HJ. Selective cerebral hypothermia induced via hypothermic retrograde jugular vein saline flush in a porcine model. Neurol Res 2014; 36:897-902. [PMID: 24725291 DOI: 10.1179/1743132814y.0000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Multiple methods of selective brain cooling have been used to prevent cerebral ischemia secondary to trauma and pathological or iatrogenic cerebral blood flow restriction. In this study, we tested the efficacy of hypothermic retrograde jugular vein flush (HRJVF) in eliciting selective brain hypothermia in a porcine model. METHODS Twelve swine were divided into two groups: retrograde jugular vein infusion (RJVI) with cold saline (4°C RJVI, n = 6) and with room temperature saline (24°C RJVI, n = 6). For 90 minutes, the following parameters were measured: brain parenchymal temperature, rectal temperature, intracranial pressure (ICP), mean arterial pressure, and heart rate (HR). RESULTS Swine receiving 4°C RJVI experienced a drop in mean brain parenchymal temperature of 1·1 ± 0·1°C, compared to 0·1 ± 0·1°C in swine receiving 24°C RJVI. At 90 minutes, mean brain parenchymal temperature in the 4°C RJVI treatment group was 35·5 ± 0·2°C, as compared to 37·1 ± 0·2°C in the 24°C RJVI treatment group (P < 0·001). In the 4°C RJVI group, the brain-systemic temperature gradient peaked 10 minutes after initiation of cooling and remained significantly different when comparing the two experimental groups (P < 0·001) throughout the duration of the 90 minutes experiment. Of note, ICP, mean arterial pressure, and HR remained constant without any significant changes or differences between treatment groups. DISCUSSION These results suggest that HRJVF is an effective method for selective brain hypothermia in a large animal model. Clinical application may prove effective in delaying neural ischemia.
Collapse
|
4
|
Wang CC, Chen YS, Lin BS, Chio CC, Hu CY, Kuo JR. The neuronal protective effects of local brain cooling at the craniectomy site after lateral fluid percussion injury in a rat model. J Surg Res 2013; 185:753-62. [DOI: 10.1016/j.jss.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
5
|
Ji YB, Wu YM, Ji Z, Song W, Xu SY, Wang Y, Pan SY. Interrupted intracarotid artery cold saline infusion as an alternative method for neuroprotection after ischemic stroke. Neurosurg Focus 2012; 33:E10. [DOI: 10.3171/2012.5.focus1215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intracarotid artery cold saline infusion (ICSI) is an effective method for protecting brain tissue, but its use is limited because of undesirable secondary effects, such as severe decreases in hematocrit levels, as well as its relatively brief duration. In this study, the authors describe and investigate the effects of a novel ICSI pattern (interrupted ICSI) relative to the traditional method (uninterrupted ICSI).
Methods
Ischemic strokes were induced in 85 male Sprague-Dawley rats by occluding the middle cerebral artery for 3 hours using an intraluminal filament. Uninterrupted infusion groups received an infusion at 15 ml/hour for 30 minutes continuously. The same infusion speed was used in the interrupted infusion groups, but the whole duration was divided into trisections, and there was a 20-minute interval without infusion between sections. Forty-eight hours after reperfusion, H & E and silver nitrate staining were utilized for morphological assessment. Infarct sizes and brain water contents were determined using H & E staining and the dry-wet weight method, respectively. Levels of neuron-specific enolase (NSE), S100β protein, and matrix metalloproteinase 9 (MMP-9) in the serum were determined using enzyme-linked immunosorbent assay. Neurological deficits were also evaluated.
Results
Histology showed that interrupted ICSI did not affect neurons or fibers in rat brains, which suggests that this method is safe for brain tissues with ischemia. The duration of hypothermia induced by interrupted ICSI was longer than that induced via the traditional method, and the decrease in hematocrit levels was less pronounced. There were no differences in infarct size or brain water content between uninterrupted and interrupted ICSI groups, but neuron-specific enolase and matrix metalloproteinase 9 serum levels were more reduced after interrupted ICSI than after the traditional method.
Conclusions
Interrupted ICSI is a safe method. Compared with traditional ICSI, the interrupted method has a longer duration of hypothermia and less effect on hematocrit and offers more potentially improved neuroprotection, thereby making it more attractive as an infusion technique in the clinic.
Collapse
|
6
|
Therapeutic hypothermia: a state-of-the-art emergency medicine perspective. Am J Emerg Med 2012; 30:800-10. [DOI: 10.1016/j.ajem.2011.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 03/13/2011] [Accepted: 03/15/2011] [Indexed: 01/06/2023] Open
|
7
|
Straus D, Prasad V, Munoz L. Selective therapeutic hypothermia: A review of invasive and noninvasive techniques. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:981-7. [DOI: 10.1590/s0004-282x2011000700025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 08/03/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE: Therapeutic hypothermia is a promising treatment to prevent secondary neurologic injury. Clinical utility is limited by systemic complications of global hypothermia. Selective brain cooling remains a largely uninvestigated application. We review techniques of inducing selective brain cooling. METHOD: Literature review. RESULTS: Strategies of inducing selective brain cooling were divided between non-invasive and invasive techniques. Non-invasive techniques were surface cooling and cooling via the upper airway. Invasive cooling methods include transvascular and compartmental (epidural, subdural, subarachnoid and intraventricular) cooling methods to remove heat from the brain. CONCLUSION: Selective brain cooling may offer the best strategy for achieving hypothermic neuroprotection. Non-invasive strategies have proven disappointing in human trials. There is a paucity of human experiments using invasive methods of selective brain cooling. Further application of invasive cooling strategies is needed.
Collapse
|
8
|
Attenuation of brain nitrostative and oxidative damage by brain cooling during experimental traumatic brain injury. J Biomed Biotechnol 2011; 2011:145214. [PMID: 21318143 PMCID: PMC3034961 DOI: 10.1155/2011/145214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to ascertain whether brain cooling causes attenuation of traumatic brain injury by reducing brain nitrostative and oxidative damage. Brain cooling was accomplished by infusion of 5 mL of 4°C saline over 5 minutes via the external jugular vein. Immediately after the onset of traumatic brain injury, rats were randomized into two groups and given 37°C or 4°C normal saline. Another group of rats were used as sham operated controls. Behavioral and biochemical assessments were conducted on 72 hours after brain injury or sham operation. As compared to those of the sham-operated controls, the 37°C saline-treated brain injured animals displayed motor deficits, higher cerebral contusion volume and incidence, higher oxidative damage (e.g., lower values of cerebral superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, but higher values of cerebral malondialdehyde), and higher nitrostative damage (e.g., higher values of neuronal nitric oxide synthase and 3-nitrotyrosine). All the motor deficits and brain nitrostative and oxidative damage were significantly reduced by retrograde perfusion of 4°C saline via the jugular vein. Our data suggest that brain cooling may improve the outcomes of traumatic brain injury in rats by reducing brain nitrostative and oxidative damage.
Collapse
|
9
|
Hsi-Hsing Y, Ching-Ping C, Juei-Tang C, Lin MT. Inhibition of acute lung inflammation and injury is a target of brain cooling after heatstroke injury. ACTA ACUST UNITED AC 2010; 69:805-12. [PMID: 20400921 DOI: 10.1097/ta.0b013e3181cb43fd] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although brain cooling has recently been reported as effective in improving the survival after heatstroke generation in rats, the mechanisms underlying the therapeutic effects of brain cooling are not fully elucidated. This study was conducted to test whether the acute lung inflammation and damage that might occur during heatstroke could be affected by brain cooling. METHODS Anesthetized rats were randomized into four groups as follows: (a) normothermic controls (n = 8); (b) heatstroke rats without saline delivery (n = 8); (c) heatstroke rats treated with 36°C saline via retrograde jugular vein (n = 8); and (d) heatstroke rats treated with 4°C saline via retrograde jugular vein (n = 8). Heatstroke was induced by putting the animals in a folded heating pad of 42°C for 68 minutes controlled by circulating hot water. The core temperatures of normothermic groups were maintained at about 36°C. The cardiovascular parameters and core temperatures were monitored for all experiments. Bronchoalveolar lavage (BAL) was done in the left lung 20 minutes after termination of heat stress for determination of cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), proinflammatory cytokines (interleukin-1, tumor necrosis factor-alpha), and nitric oxide metabolites. Parts of the right lung were excised for meloperoxidase measurement, whereas the rest was collected for lung damage score assessments. RESULTS When compared with those of normothermic controls, untreated or 36°C saline-treated heatstroke rats had higher values of BAL fluid levels of cellular ischemia markers, proinflammatory cytokines, nitric oxide metabolites, lung meroperoxidase activity, lung damage score, and neutrophil infiltration. Brain cooling causes by 4°C saline infusion significantly reduced the heat-induced increased BAL levels of cellular ischemia markers, proinflammatory cytokines, and nitric oxide metabolites, and reduced lung damage score and neutrophil infiltration. CONCLUSIONS These experimental data indicate that acute lung inflammation and damage is a target of brain cooling after heatstroke injury.
Collapse
Affiliation(s)
- Yang Hsi-Hsing
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
10
|
King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CEM. Brain Temperature Profiles during Epidural Cooling with the ChillerPad in a Monkey Model of Traumatic Brain Injury. J Neurotrauma 2010; 27:1895-903. [DOI: 10.1089/neu.2009.1178] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christopher King
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - C. Edward Dixon
- Neurosurgery University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gutti R. Rao
- Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - C. Edwin M. Nemoto
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
11
|
Abstract
The use of therapeutic hypothermia (TH) in acute care medicine has evolved over the past 2 centuries, and its use over the past decade has increased in emergency departments, intensive care units, and operating rooms. Therapeutic hypothermia has several potential clinical applications based on its putative mechanisms of action. It appears to improve oxygen supply to ischemic areas of the brain and decreases intracranial pressure. Mild-to-moderate TH (33 degrees C +/- 1 degrees C) after resuscitation from cardiac arrest is neuroprotective, and also acts on the cardiovascular system with evidence of a decrease in heart rate and increase in systemic vascular resistance. Therapeutic hypothermia decreases cardiac output by 7% for each 1 degrees C decrease in core body temperature, but maintains the stroke volume and the mean arterial pressure. Despite a growing amount of data, this life-saving technique is underutilized in hospitals worldwide. The purpose of this comprehensive review is to show the evolution and the clinical use of TH as it pertains to acute care practitioners.
Collapse
Affiliation(s)
- Joseph Varon
- The University of Texas Health Science Center at Houston, 2219 Dorrington St., Houston, TX 77030, USA.
| |
Collapse
|
12
|
Doll H, Truebel H, Kipfmueller F, Schaefer U, Neugebauer EAM, Wirth S, Maegele M. Pharyngeal selective brain cooling improves neurofunctional and neurocognitive outcome after fluid percussion brain injury in rats. J Neurotrauma 2009; 26:235-42. [PMID: 19196073 DOI: 10.1089/neu.2008.0741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia (TH) after cardiac arrest reduces mortality and improves neurological outcome. Experimental TH after traumatic brain injury (TBI) indicated similar effects, but benefits were not reproducible in large clinical trials. Therefore, a novel approach of pharyngeal selective brain cooling (pSBC) was tested in respect to neurological outcome in a model of experimental TBI. Male Sprague-Dawley rats were subjected to lateral fluid percussion (LFP) brain injury and received pSBC for 3h post-injury. All animals were examined for neuromotor and sensorimotor dysfunction and coordination: before and after injury, and during recovery on day post-injury (DPI) 7 and 14 using (i) the standardized Composite Neuroscore (NS) test and (ii) the Rotarod test. Recovery of cognitive function was assessed on days 10-14 using (iii) the Barnes Circular Maze (BCM). In pSBC-animals, brain temperature was selectively lowered to 33 +/- 0.5 degrees C at 15 min post-injury, keeping rectal temperature at a physiologic level. All animals subjected to TBI via LFP showed an identical pattern of severe neurofunctional impairment at 24 h after injury. In the time course of the experiment, pSBC-animals showed superior neurofunctional recovery on DPI 7 (p = 0.03) and 14 (p = 0.002). Similarly, distance, time, and maximum speed on the Rota-Rod were significantly increased in pSBC-animals on DPI 7 (p < 0.01) and 14 (p < 0.01), as well as latency, distance, and mean number of errors in the BCM on DPI 14 (p < 0.01). The novel approach of pSBC was associated with improved neuromotor, sensormotor, and neurocognitive outcome after experimental TBI.
Collapse
Affiliation(s)
- Hinnerk Doll
- Institute for Research in Operative Medicine (IFOM), University of Witten-Herdecke, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Kimberger O, Kurz A. Thermoregulatory management for mild therapeutic hypothermia. Best Pract Res Clin Anaesthesiol 2009; 22:729-44. [PMID: 19137813 DOI: 10.1016/j.bpa.2007.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent years the use of mild therapeutic hypothermia as a means of neuroprotection has become an important concept for treatment after cerebral ischemic hypoxic injury. Mild therapeutic hypothermia has been shown to improve outcome after out-of-hospital cardiac arrest, and many studies suggest a beneficial effect of mild therapeutic hypothermia on patient outcome after traumatic brain injury, cerebrovascular damage and neonatal asphyxia. This review article explores the numerous possibilities and methods for the induction of mild therapeutic hypothermia, reviews thermoregulatory management during maintenance and discusses associated risks and complications.
Collapse
Affiliation(s)
- Oliver Kimberger
- Department of Anaesthesiology, General Intensive Core and Pain Medicine, Medical University of Vienna, Austria.
| | | |
Collapse
|
14
|
Christian E, Zada G, Sung G, Giannotta SL. A review of selective hypothermia in the management of traumatic brain injury. Neurosurg Focus 2008; 25:E9. [DOI: 10.3171/foc.2008.25.10.e9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Traumatic brain injury (TBI) remains a significant cause of morbidity and death in the US and worldwide. Resuscitative systemic hypothermia following TBI has been established as an effective neuroprotective treatment in multiple studies in animals and humans, although this intervention carries with it a significant risk profile as well. Selective, or preferential, methods of inducing cerebral hypothermia have taken precedence over the past few years in order to minimize systemic adverse effects. In this report, the authors explore the current methods available for inducing selective cerebral hypothermia following TBI and review the literature regarding the results of animal and human trials in which these methods have been implemented.
Methods
A search of the PubMed archive (National Library of Medicine) and the reference lists of all relevant articles was conducted to identify all animal and human studies pertaining to the use of selective brain cooling, selective hypothermia, preferential hypothermia, or regional hypothermia following TBI.
Results
Multiple methods of inducing selective cerebral hypothermia are currently in the experimental phases, including surface cooling, intranasal selective hypothermia, transarterial or transvenous endovascular cooling, extraluminal vascular cooling, and epidural cerebral cooling.
Conclusions
Several methods of conferring preferential neuroprotection via selective hypothermia currently are being tested. Class I prospective clinical trials are required to assess the safety and efficacy of these methods.
Collapse
Affiliation(s)
| | | | - Gene Sung
- 2Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | |
Collapse
|
15
|
Abstract
Cardiac arrest causes devastating neurologic morbidity and mortality. The preservation of the brain function is the final goal of resuscitation. Therapeutic hypothermia (TH) has been considered as an effective method for reducing ischemic injury of the brain. The therapeutic use of hypothermia has been utilized for millennia, and over the last 50 years has been routinely employed in the operating room. TH gained recognition in the past 6 years as a neuroprotective agent in victims of cardiac arrest after two large, randomized, prospective clinical trials demonstrated its benefits in the postresuscitation setting. Extensive research has been done at the cellular and molecular levels and in animal models. There are a number of proposed applications of TH, including traumatic brain injury, acute encephalitis, stroke, neonatal hypoxemia, and near-drowning, among others. Several devices are being designed with the purpose of decreasing temperature at a fast and steady rate, and trying to avoid potential complications. This article reviews the historical development of TH, and its current indications, methods of induction, and potential future.
Collapse
Affiliation(s)
- Joseph Varon
- University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | | |
Collapse
|
16
|
Wei G, Hartings JA, Yang X, Tortella FC, Lu XCM. Extraluminal Cooling of Bilateral Common Carotid Arteries as a Method to Achieve Selective Brain Cooling for Neuroprotection. J Neurotrauma 2008; 25:549-59. [DOI: 10.1089/neu.2007.0498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guo Wei
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jed A. Hartings
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Xiaofang Yang
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Frank C. Tortella
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Xi-Chun M. Lu
- Department of Applied Neurobiology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
17
|
Chio CC, Kuo JR, Hsiao SH, Chang CP, Lin MT. EFFECT OF BRAIN COOLING ON BRAIN ISCHEMIA AND DAMAGE MARKERS AFTER FLUID PERCUSSION BRAIN INJURY IN RATS. Shock 2007; 28:284-90. [PMID: 17529907 DOI: 10.1097/shk.0b013e3180311e60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although systemic cooling had recently been reported as effective in improving the neurological outcome after traumatic brain injury, several problems are associated with whole-body cooling. The present study was conducted to test the effectiveness of brain cooling without interference with the core temperature in rats after fluid percussion traumatic brain injury (TBI). Brain dialysates ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and injury (e.g., glycerol) markers before and after TBI were measured in rats with mild brain cooling (33 degrees C) and in the sham control group. Brain cooling was accomplished by infusion of 5 mL cold saline via the external jugular vein under general anesthesia. The weight loss was determined by the difference between the first and third day of body weight after TBI. The maximum grip angle in an inclined plane was measured to determine motor performance, whereas the percentage of maximal possible effect was used to measure blockade of proprioception. The triphenyltetrazolium chloride staining procedures were used for cerebral infarction assay. As compared with those of the sham-operated controls, the animals with TBI had higher values of extracellular levels of glutamate, lactate-to-pyruvate ratio, and glycerol in brain and intracranial pressure, but lower values of cerebral perfusion pressure. Brain cooling adopted immediately after TBI significantly attenuated the TBI-induced increased cerebral ischemia and injury markers, intracranial hypertension, and cerebral hypoperfusion. In addition, the TBI-induced cerebral infarction, motor and proprioception deficits, and body weight loss evaluated 3 days after TBI were significantly attenuated by brain cooling. We successfully demonstrate that brain cooling causes attenuation of TBI in rats by reducing cerebral ischemia and injury resulting from intracranial hypertension and cerebral hypoperfusion. Because jugular venipuncture is an easy procedure frequently used in the emergency department, for preservation of brain function, jugular infusion of cold saline may be useful in resuscitation for trauma patients.
Collapse
|
18
|
Abstract
Therapeutic hypothermia for cardiac arrest survivors has emerged as a highly effective means of improving neurologic outcome. There are a number of purported mechanisms by which it is felt to be effective, but the exact mechanism is unknown. This article reviews the biochemical mechanisms of injury occurring in cardiac arrest, as well as the avenues that hypothermia takes to combat this injury. It also reviews the animal model data in support of this, as well as the newer animal studies that may help to improve the field. Several human studies of hypothermia in cardiac arrest have been performed, and this article reviews these for their methods and shortcomings. Our currently recommended guidelines for performing therapeutic hypothermia are presented. With therapeutic hypothermia comes potential risks to the patient, primarily affecting cardiac, metabolic, and hematologic systems, and these risks and their management are discussed. Multiple methods of cooling exist, including selective cranial as well as systemic cooling by internal or external approaches. Finally, the article discusses the current research in the field of hypothermia for cardiac arrest and implications for future practice.
Collapse
Affiliation(s)
- David M Greer
- Massachusetts General Hospital, ACC 835, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Alzaga AG, Cerdan M, Varon J. Therapeutic hypothermia. Resuscitation 2006; 70:369-80. [PMID: 16930801 DOI: 10.1016/j.resuscitation.2006.01.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/22/2006] [Accepted: 01/22/2006] [Indexed: 10/24/2022]
Abstract
Therapeutic hypothermia has been used for millennia, but in recent years was not in much clinical use due to an apparent high risk of complications. More recently, the benefits of induced therapeutic hypothermia have been rediscovered, mainly with the improvement in neurological outcome in out-of-hospital cardiac arrest victims. In addition, therapeutic hypothermia has been suggested to improve outcome in other neurological conditions such as traumatic brain injury, neonatal asphyxia, cerebrovascular accidents and intracranial hypertension. This article reviews the history of the discovery of therapeutic hypothermia, as well as the current therapeutic applications and ways to deliver this treatment. Cooling techniques and recovery processes, as well as potential complications are also reviewed. Clinicians caring for a wide variety of critically ill patients should be familiar with the use of therapeutic hypothermia.
Collapse
Affiliation(s)
- Ana G Alzaga
- Universidad Autónoma de Tamaulipas, Tampico, Mexico
| | | | | |
Collapse
|
20
|
Liu WG, Qiu WS, Zhang Y, Wang WM, Lu F, Yang XF. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res 2006; 34:58-64. [PMID: 16604824 DOI: 10.1177/147323000603400107] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We prospectively investigated non-invasive selective brain cooling (SBC) in patients with severe traumatic brain injury. Sixty-six in-patients were randomized into three groups. In one group, brain temperature was maintained at 33 - 35 degrees C by cooling the head and neck (SBC); in a second group, mild systemic hypothermia (MSH; rectal temperature 33 - 35 degrees C) was produced with a cooling blanket; and a control group was not exposed to hypothermia. Natural rewarming began after 3 days. Mean intracranial pressure 24, 48 or 72 h after injury was significantly lower in the SBC group than in the control group. Mean serum superoxide dismutase levels on Days 3 and 7 after injury in the SBC and MSH groups were significantly higher than in the control group. The percentage of patients with a good neurological outcome 2 years after injury was 72.7%, 57.1% and 34.8% in the SBC, MSH and control groups, respectively. Complications were managed without severe sequelae. Non-invasive SBC was safe and effective.
Collapse
Affiliation(s)
- W G Liu
- Department of Neurosurgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, China
| | | | | | | | | | | |
Collapse
|