1
|
Wang X, Niu X, Wang Y, Liu Y, Yang C, Chen X, Qi Z. C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury. Neural Regen Res 2025; 20:2231-2244. [PMID: 39104168 PMCID: PMC11759034 DOI: 10.4103/nrr.nrr-d-24-00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 08/07/2024] Open
Abstract
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage. The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury. Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury, suggesting that this axis is a novel target and regulatory control point for treatment. This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis, along with the regenerative and repair mechanisms linking the axis to spinal cord injury. Additionally, we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs, along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs. Nevertheless, there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis. This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
Collapse
Affiliation(s)
- Xiangzi Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingkai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Liu
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Yang
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People’s Armed Police Forces, Tianjin, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Wu Q, Ford NC, He S, Zhang C, Cui X, Liu J, Chen X, Cao X, Guan Y, Zang L. Characterizing a new rat model of chronic pain after spine surgery. Bone Res 2025; 13:34. [PMID: 40074742 PMCID: PMC11904174 DOI: 10.1038/s41413-025-00408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic pain after spine surgery (CPSS) is a complex disorder characterized by multifactorial pathogenesis that occurs in 8%-40% of patients undergoing lumbar spine surgery. We aimed to develop a rat model that mimics clinical CPSS conditions by taking two sequential surgical procedures. Step 1: A plastic rod was inserted into the left L5 intervertebral foramen to produce a steady compression on the dorsal root ganglion (DRG) and the spinal nerve, a common cause of low back pain (LBP). Step 2: The rod was removed after 7 days when rats exhibited mechanical and heat hypersensitivity in the ipsilateral hindpaw, followed by a full L5 laminectomy to mimic spine decompression surgery in LBP patients. The retention of the rod induced a prolonged LBP-like behavior but was quickly resolved after rod removal without laminectomy. However, rats that received laminectomy after rod removal developed heightened mechanical and heat sensitivity in the hindpaw, impaired gait, and reduced spontaneous exploration activity, indicating CPSS. Patch clamp recording revealed a significant augmentation in the intrinsic excitability of small-diameter DRG neurons in CPSS rats. Administration of Dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA, 5 mg /kg, i.p.), a peripherally acting mu-opioid receptor (MOR)-preferred agonist, attenuated pain hypersensitivity, capsaicin-induced [Ca2+]i rising and the increased intrinsic excitability of DRG neurons from CPSS rats. Our findings suggest that this new model, which mirrors the nature of CPSS developed in patients, may be useful for future studies of the underlying mechanisms.
Collapse
Affiliation(s)
- Qichao Wu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Neil C Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xueming Chen
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xu Cao
- Department of Orthopedics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Lei Zang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Liu T, Ji X, Zang H, Li Z, Yao W, Wan L, Zhang C, Zhang Y. Endoplasmic reticulum stress: The underlying mechanism of chronic pain. Neurobiol Dis 2024; 202:106697. [PMID: 39389155 DOI: 10.1016/j.nbd.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuofan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Xia Y, Xue M, Sun Y, Wang Y, Huang Z, Huang C. Electroacupuncture inhibits TLR4/NF-κB signaling in the dorsal root ganglion of rats with spared nerve injury. Acupunct Med 2024; 42:275-284. [PMID: 39340148 DOI: 10.1177/09645284241279874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Neuropathic pain can be provoked by high mobility group box 1 (HMGB1) activation of toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling in the dorsal root ganglion (DRG). Electroacupuncture (EA) has been reported to effectively alleviate neuropathic pain with few side effects, but its precise mechanism of action remains unknown. The aim of this study was to explore whether 2 Hz EA stimulation suppresses TLR4/NF-κB signaling in the DRG following spared nerve injury (SNI) in a rat model. METHODS In this experiment, SNI rats were given 2 Hz EA once every other day for a total of 21 days. Paw withdrawal threshold (PWT) was measured to assess SNI-induced mechanical hypersensitivity, and western blotting and immunofluorescence staining were used to determine the levels of pain-related signaling molecules and pro-inflammatory mediators in the DRG. RESULTS SNI up-regulated HMGB1, TLR4, myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB p65 protein expression in the DRG. In addition, immunofluorescence staining demonstrated that SNI induced higher levels of TLR4 and MyD88 in the DRG. We also demonstrated co-localization of TLR4 and MyD88 with both calcitonin gene-related peptide (CGRP) and isolectin GS-IB4 in the DRG of SNI rats, respectively. Meanwhile, 2 Hz EA stimulation effectively reversed the elevations of HMGB1, TLR4, MyD88 and NF-κB p65 induced by SNI in the DRG, which was coupled with amelioration of SNI-induced mechanical hypersensitivity. CONCLUSIONS The results of this study suggested that inhibition of the TLR4/NF-κB signaling pathway in the DRG by 2 Hz EA might be exploited as a therapeutic option for neuropathic pain.
Collapse
Affiliation(s)
- Yangyang Xia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Yalan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
5
|
Demartini L, Abbott DM, Bonezzi C, Natoli S. Radiofrequency stimulation of the dorsal root ganglion as a diagnostic tool for radicular pain syndromes: six representative cases. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:60. [PMID: 39227919 PMCID: PMC11370105 DOI: 10.1186/s44158-024-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND We discuss the diagnostic benefit of pulsed radiofrequency (PRF) of the dorsal root ganglion (DRG) in a case series of patients with different pathologies. We expand the diagnostic potential of DRG stimulation beyond paresthesia mapping by using DRG stimulation to help determine the role of the DRG in the patient's pain and narrow down the etiology. In some cases, DRG stimulation was also part of the treatment plan. METHODS Six patients underwent DRG radiofrequency as a diagnostic/therapeutic step before considering implantation of a DRG neurostimulator. First, patients underwent a basic bedside neurological evaluation. Next, an electrode was placed in the epidural space through the sacral hiatus or between vertebral laminae. Then, sensory stimulation was applied at 50 Hz and gradually increased from 0.1 V until the patient reported paresthesia or until a maximum intensity of 2 V was reached. Patients were asked to describe where the stimulation was felt and outline the anatomical area the paresthesia covered. Then a motor stimulation was applied at 2 Hz until muscle twitching was reported by the patient or observed by the physician. RESULTS The information obtained helped diagnose the type of lesion as principally preganglionic, ganglionic, or postganglionic. This information guided patient management. CONCLUSION PRF of the DRG can provide valuable diagnostic information and is a useful step before ganglionic electrode implantation. In all cases, PRF of the DRG provided valuable diagnostic information and guided management options.
Collapse
Affiliation(s)
| | - David Michael Abbott
- Department of Surgical, Pediatric and Diagnostic Sciences, University of Pavia, 27100, Pavia, PV, Italy.
- Resident of Anesthesia, Intensive Care and Pain Medicine, University of Pavia, Pavia, Italy.
| | | | - Silvia Natoli
- Department of Surgical, Pediatric and Diagnostic Sciences, University of Pavia, 27100, Pavia, PV, Italy
- Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, PV, Italy
| |
Collapse
|
6
|
Wang H, Zhang D, Wang S, Wang H, Nie H. Comparison of the efficacy of pulsed radiofrequency in treating acute herpetic neuralgia and postherpetic neuralgia in the thoracic segment. Front Neurol 2024; 15:1425796. [PMID: 39268063 PMCID: PMC11390386 DOI: 10.3389/fneur.2024.1425796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Objectives This study aimed to compare the efficacy of pulsed radiofrequency (PRF) to dorsal root ganglia (DRG) in treating acute herpetic neuralgia (AHN) and postherpetic neuralgia (PHN) in the thoracic segment. Methods A total of 243 patients with thoracic herpes zoster-related pain (AHN or PHN) from January 2020 to September 2022 were retrospectively analyzed. They were divided into two groups based on the timing of PRF after herpes zoster onset: an acute herpetic neuralgia group (within 90 days) and a postherpetic neuralgia group (more than 90 days). All patients were treated with PRF at the thoracic DRG. The Visual Analog Scale (VAS), the Athens Insomnia Scale (AIS), the Generalized Anxiety Disorder-7 items (GAD-7), and the Patient Health Questionnaire-9 items (PHQ-9) scores were assessed before and at 1 week, 1 month, 3 months, 6 months, and 12 months after surgery, and the results were then compared between the two groups. Results Postoperative scores of VAS, AIS, GAD-7, and PHQ-9 in both groups were significantly lower than preoperative scores (P < 0.001). From 1 month to 12 months after surgery, the AHN group showed significantly lower VAS, AIS, GAD-7, and PHQ-9 scores compared to the PHN group (P < 0.001). In the AHN group, there was a gradual improvement in these scores from 1 week to 12 months post-surgery. Conversely, the PHN group's scores began to worsen slowly from 1 week to 12 months post-surgery. Over time, the difference in scores between the two groups also increased gradually. Conclusion PRF to the DRG is an effective treatment for patients with AHN or PHN who do not respond well to conventional treatments. For AHN patients, PRF to the DRG significantly enhances early pain control, improves sleep and psychological status, and may even prevent the development of PHN.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pain Management, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Dandan Zhang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Shiyu Wang
- Department of Pain Management, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Hui Wang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Huiyong Nie
- Department of Pain Management, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| |
Collapse
|
7
|
Meier TA, Refahi MS, Hearne G, Restifo DS, Munoz-Acuna R, Rosen GL, Woloszynek S. The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain. Curr Pain Headache Rep 2024; 28:769-784. [PMID: 38822995 DOI: 10.1007/s11916-024-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the interface between artificial intelligence (AI) and chronic pain, seeking to identify areas of focus for enhancing current treatments and yielding novel therapies. RECENT FINDINGS In the United States, the prevalence of chronic pain is estimated to be upwards of 40%. Its impact extends to increased healthcare costs, reduced economic productivity, and strain on healthcare resources. Addressing this condition is particularly challenging due to its complexity and the significant variability in how patients respond to treatment. Current options often struggle to provide long-term relief, with their benefits rarely outweighing the risks, such as dependency or other side effects. Currently, AI has impacted four key areas of chronic pain treatment and research: (1) predicting outcomes based on clinical information; (2) extracting features from text, specifically clinical notes; (3) modeling 'omic data to identify meaningful patient subgroups with potential for personalized treatments and improved understanding of disease processes; and (4) disentangling complex neuronal signals responsible for pain, which current therapies attempt to modulate. As AI advances, leveraging state-of-the-art architectures will be essential for improving chronic pain treatment. Current efforts aim to extract meaningful representations from complex data, paving the way for personalized medicine. The identification of unique patient subgroups should reveal targets for tailored chronic pain treatments. Moreover, enhancing current treatment approaches is achievable by gaining a more profound understanding of patient physiology and responses. This can be realized by leveraging AI on the increasing volume of data linked to chronic pain.
Collapse
Affiliation(s)
| | - Mohammad S Refahi
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Gavin Hearne
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | | | - Ricardo Munoz-Acuna
- Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics (EESI) Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Stephen Woloszynek
- Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
8
|
Elahi M, Ebrahim Soltani Z, Afrooghe A, Ahmadi E, Dehpour AR. Sex Dimorphism in Pain Threshold and Neuroinflammatory Response: The Protective Effect of Female Sexual Hormones on Behavior and Seizures in an Allergic Rhinitis Model. J Neuroimmune Pharmacol 2024; 19:16. [PMID: 38652402 DOI: 10.1007/s11481-024-10114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.
Collapse
Affiliation(s)
- Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Elham Ahmadi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
9
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
10
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
11
|
Estivill-Torrús G, Martínez-Padilla AB, Sánchez-Salido L, Evercooren ABV, García-Díaz B. The dorsal root ganglion as a target for neurorestoration in neuropathic pain. Neural Regen Res 2024; 19:296-301. [PMID: 37488881 PMCID: PMC10503598 DOI: 10.4103/1673-5374.374655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 07/26/2023] Open
Abstract
Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Beatriz García-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
12
|
Wahezi SE, Caparo MA, Malhotra R, Sundaram L, Batti K, Ejindu P, Veeramachaneni R, Anitescu M, Hunter CW, Naeimi T, Farah F, Kohan L. Current Waveforms in Spinal Cord Stimulation and Their Impact on the Future of Neuromodulation: A Scoping Review. Neuromodulation 2024; 27:47-58. [PMID: 38184341 DOI: 10.1016/j.neurom.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Neuromodulation is a standard and well-accepted treatment for chronic refractory neuropathic pain. There has been progressive innovation in the field over the last decade, particularly in areas of spinal cord stimulation (SCS) and dorsal root ganglion stimulation. Improved outcomes using proprietary waveforms have become customary in the field, leading to an unprecedented expansion of these products and a plethora of options for the management of pain. Although advances in waveform technology have improved our fundamental understanding of neuromodulation, a scoping review describing new energy platforms and their associated clinical effects and outcomes is needed. The authors submit that understanding electrophysiological neuromodulation may be important for clinical decision-making and programming selection for personalized patient care. OBJECTIVE This review aims to characterize ways differences in mechanism of action and clinical outcomes of current spinal neuromodulation products may affect contemporary clinical decision-making while outlining a possible path for the future SCS. STUDY DESIGN The study is a scoping review of the literature about newer generation SCS waveforms. MATERIALS AND METHODS A literature report was performed on PubMed and chapters to include articles on spine neuromodulation mechanism of action and efficacy. RESULTS A total of 8469 studies were identified, 75 of which were included for the scoping review after keywords defining recent waveform technology were added. CONCLUSIONS Clinical data suggest that neuromodulation remains a promising tool in the treatment of chronic pain. The evidence for SCS for treating chronic pain seems compelling; however, more long-term and comparative data are needed for a comparison of waveforms when it comes to the etiology of pain. In addition, an exploration into combination waveform therapy and waveform cycling may be paramount for future clinical studies and the development of new technologies.
Collapse
Affiliation(s)
- Sayed E Wahezi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA.
| | - Moorice A Caparo
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Ria Malhotra
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lakshman Sundaram
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Kevin Batti
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Prince Ejindu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | | | - Magdalena Anitescu
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Corey W Hunter
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Tahereh Naeimi
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Fadi Farah
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| | - Lynn Kohan
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
13
|
Kao HL, Huang GS, Tang CT, Yang FC, Chao KH, Huang HB, Hsu YC. Usefulness of cone-beam computed tomography-reformatted epidurography in percutaneous epidural adhesiolysis: A pilot study. J Chin Med Assoc 2024; 87:131-137. [PMID: 37967463 DOI: 10.1097/jcma.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Conventional epidurography (CE) is thought to have insufficient usefulness on percutaneous epidural adhesiolysis (PEA). We aimed to evaluate the association between the outcome of PEA and cone-beam computed tomography-reformatted epidurography (CBCT-RE). METHODS After ethics board approval and written informed consent were obtained, we performed 30 PEA in 26 participants, and evaluated their post-PEA image findings. Two independent radiologists categorized and recorded the occurrence of contrast in the intracanal ventral and extraforaminal regions on CE, and in the dorsal canal (DC), ventral canal (VC), dorsal foramen (DF), and ventral foramen (VF) on CBCT-RE. Reproducibility was assessed using intraclass correlation coefficients (ICCs). Baseline characteristics along with contrast distribution patterns of CE and CBCT-RE were analyzed in terms of their association with symptom relief at 1 month after PEA. RESULTS The rate of patients with symptoms relief >50% after PEA was 63.3%. The inter-reader agreement was higher for CBCT-RE (ICC = 0.955) than for CE (ICC = 0.793). Participants with contrast coexisting in VC and DF adjacent to the irritated nerve root on CBCT-RE ( p = 0.015) had a significantly better response after PEA than those without contrast at these locations on CBCT-RE, independent of baseline characteristics (adjusted odds ratio: 11.414 [ p = 0.012]). CONCLUSION CBCT-RE with identifying contrast distribution patterns is useful for predicting outcome of PEA.
Collapse
Affiliation(s)
- Hao-Lun Kao
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Tun Tang
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Hua Chao
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Homs M, Milà R, Valdés R, Blay D, Borràs RM, Parés D. Efficacy of conditioned autologous serum therapy (Orthokine®) on the dorsal root ganglion in patients with chronic radiculalgia: study protocol for a prospective randomized placebo-controlled double-blind clinical trial (RADISAC trial). Trials 2023; 24:755. [PMID: 38007491 PMCID: PMC10676602 DOI: 10.1186/s13063-023-07787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Pulsed radiofrequency (PRF) treatment on the dorsal root ganglion (DRG) has been proposed as a good option for the treatment of persistent radicular pain based on its effect of neuromodulation on neuropathic pain. Autologous conditioned serum (ACS) therapy is a conservative treatment based on the patient's own blood. The aim of this manuscript is to develop a study protocol using ACS on the DRG as a target for its molecular modulation. METHODS We plan to conduct a randomized controlled study to compare the efficacy of PRF therapy plus ACS versus PRF therapy plus physiological saline 0.9% (PhS) on the DRG to reduce neuropathic pain in patients with persistent lower limb radiculalgia (LLR) and to contribute to the functional improvement and quality of life of these patients. Study participants will include patients who meet study the inclusion/exclusion criteria. Eligible patients will be randomized in a 1:1 ratio to one of treatment with PRF plus ACS (experimental group) or PRF plus PhS (placebo group). The study group will consist of 70 patients (35 per group) who have experienced radicular pain symptoms for ≥ 6 months' duration who have failed to respond to any therapy. Both groups will receive PRF on the DRG treatment before the injection of the sample (control or placebo). Patient assessments will occur at baseline, 1 month, 3 months, 6 months, and 12 months after therapy. The primary efficacy outcome measure is Numeric Pain Rating Scale (NPRS) responders from baseline to 12 months of follow-up using validated minimal important change (MIC) thresholds. A reduction of ≥ 2 points in NPRS is considered a clinically significant pain relief. The secondary efficacy outcome measure is the proportion of Oswestry Low Back Pain Disability Scale (ODS) responders from baseline to 12 months of follow-up in the experimental group (PRF plus ACS) versus the placebo group (PRF plus PhS). ODS responders are defined as those patients achieving the validated MIC of ≥ 10-point improvement in ODS from baseline to 12 months of follow-up as a clinically significant efficacy threshold. DISCUSSION This prospective, double-blind, randomized placebo-controlled study will provide level I evidence of the safety and effectiveness of ACS on neuropathic symptoms in LLR patients. TRIAL REGISTRATION {2A}{2B}: EUDRACT number: 2021-005124-38. Validation date: 13 November 2021. Protocol version {3}: This manuscript presents the 2nd protocol version.
Collapse
Affiliation(s)
- Marta Homs
- Dexeus University Hospital, Sabino Arana 5-19, 08028, Barcelona, Spain.
| | - Raimon Milà
- Ramon Llull University, Pg St Gerbasi 43, 08022, Barcelona, Spain
| | - Ricard Valdés
- Dexeus University Hospital, Sabino Arana 5-19, 08028, Barcelona, Spain
| | | | - Rosa Maria Borràs
- Dexeus University Hospital, Sabino Arana 5-19, 08028, Barcelona, Spain
| | - David Parés
- Hospital Germans Trias I Pujol, Carretera del Canyet S/N, 08916, Badalona, Spain
| |
Collapse
|
15
|
Wang Q, Han R, Hu R, Liu Q, Huang D, Zhou H. A new dual function dorsal root ganglion stimulation in pain management: a technical note and case report. Ther Adv Chronic Dis 2023; 14:20406223231206224. [PMID: 37854457 PMCID: PMC10580718 DOI: 10.1177/20406223231206224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Sensitization of dorsal horn ganglion sensory neuron plays a crucial role in the maintenance of chronic pain disorder. Multiple interventions targeting dorsal horn ganglion can provide considerable relief of pain, including selective nerve root block, pulsed radiofrequency, and electrical nerve stimulation technique. It remains controversial about the superiority of neuromodulation mentioned above due to distinct pattern of analgesic mechanism. Here, we reported one 71-year-old male presenting at our pain clinic with severe, unilateral lower limb pain caused by postherpetic neuralgia. An implantable stimulator with dual neuromodulation mode, combining pulsed radiofrequency with electrical nerve stimulation, was then placed into the lateral epidural space adjacent to dorsal root ganglion at L4 level. Standard stimulation programing was performed with technicians to achieve satisfactory control of pain, with numerical rating scale decreasing from 8 to 2 postoperatively. This novel dual function neuromodulation strategy may provide an alternative option for pain management for those with intractable neuropathic pain.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Rui Han
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Qianxi Liu
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
| | - Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, 183 Tongzipo Rd, Changsha 410013, Hunan, China
| |
Collapse
|
16
|
Sousa JM, Silva JL, Gamelas J, Guimarães Consciência J. Transiliac Endoscopic-Assisted L5S1 Intraforaminal Lumbar Interbody Fusion: Technical Considerations and Potential Complications. World Neurosurg 2023; 178:e741-e749. [PMID: 37544596 DOI: 10.1016/j.wneu.2023.07.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE We sought to determine the clinical outcomes, complications, and fusion rates in transiliac endoscopic-assisted L5S1 intraforaminal lumbar interbody fusion (iLIF). METHODS Between September 2020 and September 2021, patients with L5S1 degenerative disk disease were enrolled in a prospective study on transiliac L5S1 iLIF and followed for a minimum of 12 months. Conflict of the preoperative planned approach with the ilium was mandatory. The primary outcome measures were the Oswestry Disability Index, the visual analog scale (VAS) score for low back pain (VAS back) and leg pain (VAS leg), and the modified MacNab criteria. The secondary outcomes were complications and fusion rates. RESULTS Five consecutive patients were enrolled: 2 males and 3 females with a mean age of 50 ± 12.9. All had 12 months' follow-up. The mean improvement in the Oswestry Disability Index, VAS back, and VAS leg (44 ± 11.75, 6.6 ± 1.7, and 4.7 ± 4.2, respectively) was more than 3 times the minimum clinically important difference. The modified MacNab criteria were good or excellent in 80% of cases at all endpoints. Three patients had ipsilateral lower limb dysesthesia. One patient had revision surgery for foraminal bone fragment removal. All patients achieved fusion. CONCLUSIONS The transiliac iLIF is a feasible but demanding surgical technique that allows overcoming cases in which the ilium prevents endoscopic transforaminal access to L5S1. Our preliminary results had good clinical outcomes and high fusion rates. The main complication was late-onset dysesthesia of the ipsilateral lower limb, 10 to 14 days after surgery. Special care must be taken to prevent L5 dorsal root ganglion injury.
Collapse
Affiliation(s)
- José Miguel Sousa
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal.
| | - João Luís Silva
- Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal
| | - João Gamelas
- Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal
| | - José Guimarães Consciência
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Centro Hospitalar Lisboa Ocidental, Orthopaedics Department, Lisbon, Portugal
| |
Collapse
|
17
|
Li L, Guo L, Gao R, Yao M, Qu X, Sun G, Fu Q, Hu C, Han G. Ferroptosis: a new regulatory mechanism in neuropathic pain. Front Aging Neurosci 2023; 15:1206851. [PMID: 37810619 PMCID: PMC10556472 DOI: 10.3389/fnagi.2023.1206851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by damage to the somatosensory system. It is a common progressive neurodegenerative disease that usually presents with clinical features such as spontaneous pain, touch-evoked pain, nociceptive hyperalgesia, and sensory abnormalities. Due to the complexity of the mechanism, NP often persists. In addition to the traditionally recognized mechanisms of peripheral nerve damage and central sensitization, excessive iron accumulation, oxidative stress, neuronal inflammation, and lipid peroxidation damage are distinctive features of NP in pathophysiology. However, the mechanisms linking these pathological features to NP are not fully understood. The complexity of the pathogenesis of NP greatly limits the development of therapeutic approaches for NP. Ferroptosis is a novel form of cell death discovered in recent years, in which cell death is usually accompanied by massive iron accumulation and lipid peroxidation. Ferroptosis-inducing factors can affect glutathione peroxidase directly or indirectly through different pathways, leading to decreased antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. It has been shown that ferroptosis is closely related to the pathophysiological process of many neurological disorders such as NP. Possible mechanisms involved are changes in intracellular iron ion levels, alteration of glutamate excitability, and the onset of oxidative stress. However, the functional changes and specific molecular mechanisms of ferroptosis during this process still need to be further explored. How to intervene in the development of NP by regulating cellular ferroptosis has become a hot issue in etiological research and treatment. In this review, we systematically summarize the recent progress of ferroptosis research in NP, to provide a reference for further understanding of its pathogenesis and propose new targets for treatment.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingling Guo
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengwen Yao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuntao Hu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Wu Q, Cui X, Guan LC, Zhang C, Liu J, Ford NC, He S, Chen X, Cao X, Zang L, Guan Y. Chronic pain after spine surgery: Insights into pathogenesis, new treatment, and preventive therapy. J Orthop Translat 2023; 42:147-159. [PMID: 37823035 PMCID: PMC10562770 DOI: 10.1016/j.jot.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic pain after spine surgery (CPSS) is often characterized by intractable low back pain and/or radiating leg pain, and has been reported in 8-40% of patients that received lumbar spine surgery. We conducted a literature search of PubMed, MEDLINE/OVID with a focus on studies about the etiology and treatments of CPSS and low back pain. Our aim was to provide a narrative review that would help us better understand the pathogenesis and current treatment options for CPSS. This knowledge will aid in the development of optimal strategies for managing postoperative pain symptoms and potentially curing the underlying etiologies. Firstly, we reviewed recent advances in the mechanistic study of CPSS, illustrated both structural (e.g., fibrosis and scaring) and non-structural factors (e.g., inflammation, neuronal sensitization, glial activation, psychological factor) causing CPSS, and highlighted those having not been given sufficient attention as the etiology of CPSS. Secondly, we summarized clinical evidence and therapeutic perspectives of CPSS. We also presented new insights about the treatments and etiology of CPSS, in order to raise awareness of medical staff in the identification and management of this complex painful disease. Finally, we discussed potential new targets for clinical interventions of CPSS and future perspectives of mechanistic and translational research. CPSS patients often have a mixed etiology. By reviewing recent findings, the authors advocate that clinicians shall comprehensively evaluate each case to formulate a patient-specific and multi-modal pain treatment, and importantly, consider an early intraoperative intervention that may decrease the risk or even prevent the onset of CPSS. Translational potential statement CPSS remains difficult to treat. This review broadens our understanding of clinical therapies and underlying mechanisms of CPSS, and provides new insights which will aid in the development of novel mechanism-based therapies for not only managing the established pain symptoms but also preventing the development of CPSS.
Collapse
Affiliation(s)
- Qichao Wu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100149, China
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Leo C. Guan
- McDonogh School, Owing Mills, Maryland, 21117, USA
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Xueming Chen
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 100149, China
| | - Xu Cao
- Department of Orthopedics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Lei Zang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100149, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
19
|
Cui X, Zhang Z, Xi H, Liu K, Zhu B, Gao X. Sympathetic-Sensory Coupling as a Potential Mechanism for Acupoints Sensitization. J Pain Res 2023; 16:2997-3004. [PMID: 37667684 PMCID: PMC10475306 DOI: 10.2147/jpr.s424841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
A series of studies have demonstrated acupoint sensitization, in which acupoints can be activated in combination with sensory hypersensitivity and functional plasticity during visceral disorders. However, the mechanisms of acupoint sensitization remain unclear. Neuroanatomy evidence showed nociceptors innervated in acupoints contribute to the mechanism of acupoint sensitization. Increasing studies suggested sympathetic nerve plays a key role in modulating sensory transmission by sprouting or coupling with sensory neuron/nociceptor in the peripheral, forming the functional structure of the sympathetic-sensory coupling. Notably, the sensory inputs of the disease-induced sensitized acupoint contribute to the homeostatic regulation and also involve in delivering therapeutic information under acupuncture, hence, the role of sprouted sympathetic in acupoint function should be given attention. We herein reviewed the current knowledge of sympathetic and its sprouting in pain modulation, then discussed and highlighted the potential value of sympathetic-sensory coupling in acupoint functional plasticity.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Ziyi Zhang
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, People’s Republic of China
| | - Hanqing Xi
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| |
Collapse
|
20
|
Liu S, Lan XB, Tian MM, Zhu CH, Ma L, Yang JM, Du J, Zheng P, Yu JQ, Liu N. Targeting the chemokine ligand 2-chemokine receptor 2 axis provides the possibility of immunotherapy in chronic pain. Eur J Pharmacol 2023; 947:175646. [PMID: 36907261 DOI: 10.1016/j.ejphar.2023.175646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Chronic pain affects patients' physical and psychological health and quality of life, entailing a tremendous public health challenge. Currently, drugs for chronic pain are usually associated with a large number of side effects and poor efficacy. Chemokines in the neuroimmune interface combine with their receptors to regulate inflammation or mediate neuroinflammation in the peripheral and central nervous system. Targeting chemokines and their receptor-mediated neuroinflammation is an effective means to treat chronic pain. In recent years, growing evidence has shown that the expression of chemokine ligand 2 (CCL2) and its main chemokine receptor 2 (CCR2) is involved in its occurrence, development and maintenance of chronic pain. This paper summarises the relationship between the chemokine system, CCL2/CCR2 axis, and chronic pain, and the CCL2/CCR2 axis changes under different chronic pain conditions. Targeting chemokine CCL2 and its chemokine receptor CCR2 through siRNA, blocking antibodies, or small molecule antagonists may provide new therapeutic possibilities for managing chronic pain.
Collapse
Affiliation(s)
- Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
21
|
Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90:104499. [PMID: 36870200 PMCID: PMC10009451 DOI: 10.1016/j.ebiom.2023.104499] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.
Collapse
|
22
|
Li LM, Zhang ZL, Zheng BS, Jia LL, Yu WL, Du HY. Effective treatment of high-voltage pulsed radiofrequency combined with oxygen–ozone injection in acute zoster neuralgia. Clin Neurol Neurosurg 2022; 223:107496. [DOI: 10.1016/j.clineuro.2022.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/28/2022]
|
23
|
Xiong W, Wei M, Zhang L, Wang J, Liu F, Wang Z. Chronic constriction injury-induced changes in circular RNA expression profiling of the dorsal root ganglion in a rat model of neuropathic pain. BMC Neurosci 2022; 23:64. [PMID: 36376788 PMCID: PMC9664791 DOI: 10.1186/s12868-022-00745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background The pathogenesis of neuropathic pain (NP) has not been fully elucidated. Gene changes in dorsal root ganglia (DRG) may contribute to the development of NP. Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed loop structures and are crucial for genetic and epigenetic regulation. However, little is known about circRNA changes in DRG neurons after peripheral nerve injury. Methods A sciatic nerve chronic constriction injury (CCI) model was established to induce neuropathic pain. We performed genome-wide circRNA analysis of four paired dorsal root ganglion (DRG) samples (L4–L5) from CCI and negative control (NC) rats using next-generation sequencing technology. The differentially expressed circRNAs (DEcircRNAs) were identified by differential expression analysis, and the expression profile of circRNAs was validated by quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the function of DEcircRNAs. Results A total of 374 DEcircRNAs were identified between CCI and NC rats using circRNA high-throughput sequencing. Among them, 290 were upregulated and 84 were downregulated in the CCI group. The expression levels of nine DEcircRNAs were validated by qPCR. Functional annotation analysis showed that the DEcircRNAs were mainly enriched in pathways and functions, including ‘dopaminergic synapse,’ ‘renin secretion,’ ‘mitogen-activated protein kinase signaling pathway,’ and ‘neurogenesis.’ Competing endogenous RNA analysis showed that the top 50 circRNAs exhibited interactions with four pain-related microRNAs (miRNAs). Circ:chr2:33950934–33955969 was the largest node in the circRNA–miRNA interaction network. Conclusions Peripheral nerve injury-induced neuropathic pain led to changes in the comprehensive expression profile of circRNAs in the DRG of rats. DEcircRNAs may advance our understanding of the molecular mechanisms underlying neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00745-5.
Collapse
|
24
|
Lingegowda H, Williams BJ, Spiess KG, Sisnett DJ, Lomax AE, Koti M, Tayade C. Role of the endocannabinoid system in the pathophysiology of endometriosis and therapeutic implications. J Cannabis Res 2022; 4:54. [PMID: 36207747 PMCID: PMC9540712 DOI: 10.1186/s42238-022-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis patients experience debilitating chronic pain, and the first-line treatment is ineffective at managing symptoms. Although surgical removal of the lesions provides temporary relief, more than 50% of the patients experience disease recurrence. Despite being a leading cause of hysterectomy, endometriosis lacks satisfactory treatments and a cure. Another challenge is the poor understanding of disease pathophysiology which adds to the delays in diagnosis and overall compromised quality of life. Endometriosis patients are in dire need of an effective therapeutic strategy that is both economical and effective in managing symptoms, while fertility is unaffected. Endocannabinoids and phytocannabinoids possess anti-inflammatory, anti-nociceptive, and anti-proliferative properties that may prove beneficial for endometriosis management, given that inflammation, vascularization, and pain are hallmark features of endometriosis. Endocannabinoids are a complex network of molecules that play a central role in physiological processes including homeostasis and tissue repair, but endocannabinoids have also been associated in the pathophysiology of several chronic inflammatory diseases including endometriosis and cancers. The lack of satisfactory treatment options combined with the recent legalization of recreational cannabinoids in some parts of the world has led to a rise in self-management strategies including the use of cannabinoids for endometriosis-related pain and other symptoms. In this review, we provide a comprehensive overview of endocannabinoids with a focus on their potential roles in the pathophysiology of endometriosis. We further provide evidence-driven perspectives on the current state of knowledge on endometriosis-associated pain, inflammation, and therapeutic avenues exploiting the endocannabinoid system for its management.
Collapse
Affiliation(s)
- Harshavardhan Lingegowda
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bailey J Williams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katherine G Spiess
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, ON, Canada
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
25
|
Chu XL, Song XZ, Li Q, Li YR, He F, Gu XS, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res 2022; 17:2185-2193. [PMID: 35259827 PMCID: PMC9083151 DOI: 10.4103/1673-5374.335823] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the pathophysiological changes within a single injury site. However, recent studies have indicated that within the central nervous system, PNI can lead to changes in both injury sites and target organs at the cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively understood. Although electrical stimulation was found to promote axonal regeneration and functional rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain signal transmission. The injured site of the peripheral nerve is also an important factor affecting post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and muscle at the injured site. From the perspective of target organs, long-term denervation can cause atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of denervated skeletal muscle and promote the recovery of sensory function. Findings from the included studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating dysfunction.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xi-Zi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University; Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Yu-Ru Li
- College of Exercise & Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Feng He
- College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine; College of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Jiang W, Tan XY, Li JM, Yu P, Dong M. DNA Methylation: A Target in Neuropathic Pain. Front Med (Lausanne) 2022; 9:879902. [PMID: 35872752 PMCID: PMC9301322 DOI: 10.3389/fmed.2022.879902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory nervous system of the central and peripheral nervous systems, has become a global health concern. Recent studies have demonstrated that epigenetic mechanisms are among those that underlie NP; thus, elucidating the molecular mechanism of DNA methylation is crucial to discovering new therapeutic methods for NP. In this review, we first briefly discuss DNA methylation, demethylation, and the associated key enzymes, such as methylases and demethylases. We then discuss the relationship between NP and DNA methylation, focusing on DNA methyltransferases including methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET) enzymes. Based on experimental results of neuralgia in animal models, the mechanism of DNA methylation-related neuralgia is summarized, and useful targets for early drug intervention in NP are discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ming Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Yu
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Ming Dong
| |
Collapse
|
27
|
Cui X, Sun G, Cao H, Liu Q, Liu K, Wang S, Zhu B, Gao X. Referred Somatic Hyperalgesia Mediates Cardiac Regulation by the Activation of Sympathetic Nerves in a Rat Model of Myocardial Ischemia. Neurosci Bull 2022; 38:386-402. [PMID: 35471719 PMCID: PMC9068860 DOI: 10.1007/s12264-022-00841-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial ischemia (MI) causes somatic referred pain and sympathetic hyperactivity, and the role of sensory inputs from referred areas in cardiac function and sympathetic hyperactivity remain unclear. Here, in a rat model, we showed that MI not only led to referred mechanical hypersensitivity on the forelimbs and upper back, but also elicited sympathetic sprouting in the skin of the referred area and C8-T6 dorsal root ganglia, and increased cardiac sympathetic tone, indicating sympathetic-sensory coupling. Moreover, intensifying referred hyperalgesic inputs with noxious mechanical, thermal, and electro-stimulation (ES) of the forearm augmented sympathetic hyperactivity and regulated cardiac function, whereas deafferentation of the left brachial plexus diminished sympathoexcitation. Intradermal injection of the α2 adrenoceptor (α2AR) antagonist yohimbine and agonist dexmedetomidine in the forearm attenuated the cardiac adjustment by ES. Overall, these findings suggest that sensory inputs from the referred pain area contribute to cardiac functional adjustment via peripheral α2AR-mediated sympathetic-sensory coupling.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Sun
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Honglei Cao
- Department of Cardiology, Jining No. 1 People's Hospital, Jining, 272100, Shandong, China
| | - Qun Liu
- Department of Needling Manipulation, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kun Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuya Wang
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Zhu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xinyan Gao
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
28
|
Clinical Efficacy of Pulsed Radiofrequency Combined with Intravenous Lidocaine Infusion in the Treatment of Subacute Herpes Zoster Neuralgia. Pain Res Manag 2022; 2022:5299753. [PMID: 35450055 PMCID: PMC9017550 DOI: 10.1155/2022/5299753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Objective Under the guidance of a digital subtraction angiography (DSA) machine, via fluoroscopic imaging techniques, patients diagnosed with herpes zoster neuralgia at the subacute stage, where self-reported pain lasts between 30 and 90 days, were treated with nerve pulsed radiofrequency surgery combined with intravenous lidocaine infusion or saline infusion as control. This study explores the clinical efficacy, safety, and clinical value of the combined treatment compared with nerve pulsed radiofrequency surgery alone. Methods In this study, 72 patients diagnosed with herpes zoster neuralgia at the subacute stage were randomly divided into two groups with matched gender, age, and clinical symptoms. Both groups received pulsed radiofrequency surgery for the affected nerve segments under DSA fluoroscopy. Five days after the operation, 0.9% saline was administered daily for five consecutive days (50 ml per day, intravenous infusion) to group A (n = 36), and lidocaine was administered daily for five consecutive days (3 mg per kg per day, intravenous infusion) to group B (n = 36). Patients with poor pain control during the treatment were given 10 mg morphine tablets for pain relief to reach visual analog scale (VAS) ≤4 points. Data of the following categories were collected: VAS score, self-rating anxiety scale (SAS) score, depression self-rating scale (SDS) score, Pittsburgh sleep quality score (PSQI), 45 body area rating scale score, skin temperature measurement using infrared thermography, analgesic drug use before and after treatment at six different time points: before surgery (T0), one day after surgery (T1), three days after surgery (T2), five days after surgery (T3), one month after surgery (T4), and two months after surgery (T5). Blood was collected from all patients in the morning before surgery and right after the last intravenous infusion of lidocaine at T3. Serum inflammatory indexes including white blood cell count, lymphocyte count, neutrophils count, erythrocyte sedimentation rate count, C-reactive protein (CRP) level, calcitonin gene-related peptide (CGRP) level, and interleukin-6(IL-6) level were determined. Lastly, the incidence of complications and adverse reactions throughout the study was recorded. Results In total, 64 out of 72 patients completed the whole study. Two patients met the exclusion criteria in group A, one patient refused to participate, and one was lost to follow-up. Two patients met the exclusion criteria in group B, and two were lost to follow-up. Three patients in group B experienced vomiting during lidocaine treatment. The adverse symptom was relieved after symptomatic treatment. No patients in the two groups had severe complications such as hematoma at the puncture site, pneumothorax, and nerve injury. Compared with before treatment, the mean of VAS score, SAS score, SDS score, PSQI score, and skin temperature of both groups at each time point after interventional surgery were all significantly reduced. Furthermore, at each time point after surgery, the above indicators of group B patients were significantly lower than those of group A patients. After treatment, the consumption of analgesics in both groups was significantly lower than before treatment. Compared with group A, the consumption of analgesics was also significantly lower in group B. In addition, serum inflammatory indexes at the T3 time point of the two groups of patients were lower than T0. Among them, the erythrocyte sedimentation rate, CRP level, CGRP level, and interleukin-6 level of group B were significantly lower than those of group A. The incidence of postherpetic neuralgia (PHN) in group B patients (6.25%) was also lower than that in group A patients (25%). Conclusion DSA-guided nerve pulse radiofrequency surgery combined with intravenous lidocaine infusion can effectively relieve pain in patients diagnosed with herpes zoster nerves at the subacute stage, reduce the number of analgesic drugs used in patients, reduce postherpetic neuralgia incidence rate, and improve sleep and quality of life.
Collapse
|
29
|
Gu RR, Meng XH, Zhang Y, Xu HY, Zhan L, Gao ZB, Yang JL, Zheng YM. (-)-Naringenin 4',7-dimethyl Ether Isolated from Nardostachys jatamansi Relieves Pain through Inhibition of Multiple Channels. Molecules 2022; 27:1735. [PMID: 35268839 PMCID: PMC8911579 DOI: 10.3390/molecules27051735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
(-)-Naringenin 4',7-dimethyl ether ((-)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential analgesic activity of (-)-NRG-DM and its implicated mechanism. The analgesic activity of (-)-NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with vehicle or (-)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (-)-NRG-DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (-)-NRG-DM did not affect motor coordination in mice evaluated by the rotarod test, in which the animals were intraperitoneally injected with vehicle or (-)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each group). In acutely isolated mouse dorsal root ganglion neurons, (-)-NRG-DM (1~30 μM) potently dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition, the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa) were significantly suppressed. Consistently, (-)-NRG-DM dramatically inhibited heterologously expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous IK and INa. A pharmacokinetic study revealed the plasma concentration of (-)-NRG-DM is around 7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study showed that (-)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal channels (mediating IK and INa).
Collapse
Affiliation(s)
- Ru-Rong Gu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yin Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Hai-Yan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Zhao-Bing Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yue-Ming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| |
Collapse
|
30
|
Effect of surgical damage to spinal nerve on dorsal root ganglion genes expression: Comprehensive analysis of differentially expressed genes. Asian J Surg 2022; 45:2618-2625. [PMID: 35184964 DOI: 10.1016/j.asjsur.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Neuropathic pain can cause significant physical and economic burden, and there are no effective long-term treatments. We conducted a bioinformatics analysis to identify mechanisms to determine strategies for more effective treatments of neuropathic pain. METHOD GSE24982 and GSE63442 microarray datasets were extracted from the Gene Expression Omnibus database to analyze transcriptome differences of neuropathic pain in the dorsal root ganglions (DRGs). We filtered the differentially expressed genes (DEGs) in the two datasets and conducted Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the shared DEGs. The Protein-Protein Interaction network was used to determine the hub genes, which were verified in the GSE30691 dataset. miRDB and miRWalk Databases were used to predict potential miRNA of the selected DEGs. We made the spinal nerve ligation (SNL) rat model and qPCR was used to verify the differential expression of hub genes. RESULTS A total of 182 overlapped DEGs were found between GSE24982 and GSE63442 datasets. The GO and KEGG analysis showed that the selected DEGs were enriched in infection, transmembrane transport of ion channels, and synaptic transmission. We identified seven hub genes (Atf3, Aif1, Ctss, Gfap, Scg2, Jun, and Vgf). qPCR verified the expression differences of the hub genes in the DRGs after SNL model. Predicted miRNA targeting each selected hub genes were identified. CONCLUSIONS Seven hub genes related to the pathogenesis of neuropathic pain and potential targeting miRNA were identified, expanding understanding of the mechanism of neuropathic pain and facilitating treatment development.
Collapse
|
31
|
Bhandari R, Sharma A, Kuhad A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front Endocrinol (Lausanne) 2022; 12:790747. [PMID: 35211091 PMCID: PMC8862660 DOI: 10.3389/fendo.2021.790747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022] Open
Abstract
Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects the distal foot and toes, which then gradually approaches the lower part of the legs. Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus. Long-term diabetes leads to hyperglycemia, which is the utmost contributor to neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium channels in the dorsal root ganglion (DRG) was often observed in models of neuropathic pain. DRG opening frequency increases intracellular sodium ion levels, which further causes increased calcium channel opening and stimulates other pathways leading to diabetic peripheral neuropathy (DPN). Currently, pain due to diabetic neuropathy is managed via antidepressants, opioids, gamma-aminobutyric acid (GABA) analogs, and topical agents such as capsaicin. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. Many factors contribute to this condition, such as lack of specificity and adverse effects such as light-headedness, languidness, and multiple daily doses. Therefore, nanotechnology outperforms in every aspect, providing several benefits compared to traditional therapy such as site-specific and targeted drug delivery. Nanotechnology is the branch of science that deals with the development of nanoscale materials and products, even smaller than 100 nm. Carriers can improve their efficacy with reduced side effects by incorporating drugs into the novel delivery systems. Thus, the utilization of nanotechnological approaches such as nanoparticles, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, gene therapy (siRNA and miRNA), and extracellular vesicles can extensively contribute to relieving neuropathic pain.
Collapse
Affiliation(s)
| | | | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Schultheis BC, Wille C, Ross-Steinhagen NE, De Ridder D, Vancamp T, Weidle PA. Alternative Dorsal Root Ganglion Neuromodulation Electrode Implantation: A Report of 2 Cases with 3 Different Techniques. J Neurol Surg A Cent Eur Neurosurg 2021. [PMID: 34897626 DOI: 10.1055/s-0041-1739219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND STUDY AIMS The traditional percutaneous placement of dorsal root ganglion (DRG) electrodes may not be eligible for every patient. In this tertiary spine surgery and interventional pain therapy center, alternative neurostimulation implantation techniques were developed and applied where standard percutaneous approaches failed or were contraindicated. CASE PRESENTATION Three alternative implantation techniques can be used: (1) open surgical placement of DRG leads, (2) two-lead insertion via a lateral to medial transforaminal approach (level L3), and (3) percutaneous approach with two leads close to the spinal nerves L4 (peripheral nerve stimulation). RESULTS The placement of the leads occurred without complications and resulted in similar expected outcomes as with the common percutaneous technique with long-term stable pain suppression at 7 months and 1 year. CONCLUSIONS In patients in whom the DRG cannot be approached by the standard percutaneous approach, at least three alternatives may be used in experienced hands resulting in stable pain suppression of similar magnitude.
Collapse
Affiliation(s)
- Björn Carsten Schultheis
- Krankenhaus Neuwerk "Maria von den Aposteln," Muskulo-Skeletales Zentrum, interventionelle Schmerztherapie, Mönchengladbach, Germany
| | - Christian Wille
- Department of Neurosurgery, NCN Neurochirurgische Praxis Neuss, Neuss, Neuss, Germany
| | - Nikolas Eugenio Ross-Steinhagen
- Krankenhaus Neuwerk "Maria von den Aposteln," Muskulo-Skeletales Zentrum, interventionelle Schmerztherapie, Mönchengladbach, Germany
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Patrick A Weidle
- Krankenhaus Neuwerk "Maria von den Aposteln," Muskulo-Skeletales Zentrum, interventionelle Schmerztherapie, Mönchengladbach, Germany
| |
Collapse
|
33
|
Yang F, Zou YQ, Li M, Luo WJ, Chen GZ, Wu XZ. Intervertebral foramen injection of plerixafor attenuates neuropathic pain after chronic compression of the dorsal root ganglion: Possible involvement of the down-regulation of Nav1.8 and Nav1.9. Eur J Pharmacol 2021; 908:174322. [PMID: 34256084 DOI: 10.1016/j.ejphar.2021.174322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Neuropathic pain is a common chronic pain condition with major impact on quality of life. However, its physiopathologic mechanism remains unknown and pain management is still a challenge. Accumulating evidence indicated that C-X-C chemokine receptor type 4 (CXCR4) played a critical role in the process of pain. Thus, the present study aimed to investigate whether intervertebral foramen injection of CXCR4 antagonist, plerixafor, was able to relieve neuropathic pain and explore the possible underlying mechanism. Chronic compression of the dorsal root ganglion (CCD) was established as a typical model of neuropathic pain. The results indicated that CCD induced multiple pain-related behaviors and the expression of CXCR4, Nav1.8 and Nav1.9 was significantly increased in compressed dorsal root ganglion (DRG) neurons. Knocking down CXCR4 expression could significantly reduce neuropathic pain and intervertebral foramen plerixafor injection (IVFP) dramatically decreased the up-regulation of Nav1.8 and Nav1.9 and attenuated neuropathic pain. The analgesic duration of IVFP was maintained at least for 24 h which was much longer than intervertebral foramen injection of Nav1.8 blocker and local anesthetics. Therefore, our study provided evidence that IVFP could reduce the expression of Nav1.8 and Nav1.9 in DRG neurons which might contribute to, at least in part, the analgesic effect of plerixafor on CCD-induced neuropathic pain. It is concluded that IVFP was an effective and applicable treatment approach for neuropathic pain.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China; Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, PR China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China
| | - Min Li
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China
| | - Wen-Jun Luo
- Department of Anesthesiology, Chinese PLA General Hospital of Central Theater Command, Wuhan 430070, Hubei, PR China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China.
| |
Collapse
|
34
|
Dai Z, Xu X, Chen Y, Lin C, Lin F, Liu R. Effects of High-Voltage Pulsed Radiofrequency on the Ultrastructure and Nav1.7 Level of the Dorsal Root Ganglion in Rats With Spared Nerve Injury. Neuromodulation 2021; 25:980-988. [PMID: 34487572 DOI: 10.1111/ner.13527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the analgesic effect of high-voltage pulsed radiofrequency (HV-PRF) on the dorsal root ganglion (DRG) for neuropathic pain induced by spared nerve injury (SNI) in rats, especially the influence of this treatment on the DRG ultrastructure and voltage-gated sodium channel 1.7 (Nav1.7) level in the DRG. MATERIALS AND METHODS One hundred fifty adult male Sprague-Dawley rats were randomly divided into five groups: Sham, SNI, Free-PRF, standard-voltage PRF (SV-PRF), and HV-PRF. The 45V-PRF and 85V-PRF procedures applied to the left L5 DRG were performed in SV-PRF group and the HV-PRF group respectively on day 7 after SNI, whereas no PRF was concurrently delivered in Free-PRF group. The paw mechanical withdrawal threshold (PMWT) was detected before SNI (baseline) and on days 1, 3, 7, 8, 10, 14, and 21. The changes of left L5 DRG ultrastructure were analyzed with transmission electron microscopy on days 14 and 21. The expression levels of Nav1.7 in left L5 DRG were detected by immunofluorescence and Western blot. RESULTS Compared with the Free-PRF group, PMWT in the SV-PRF group and HV-PRF group were both significantly increased after PRF (all p < 0.05). Meanwhile, the PMWT was significantly higher in the HV-PRF group than that in the SV-PRF group on days 14 and 21 all (p < 0.05). There were statistically significant differences between the SV-PRF and Free-PRF groups (p < 0.05). Similarly, statistically significant difference was found between the HV-PRF and Free-PRF groups (p < 0.05). Especially, comparison of the SV-PRF group and the HV-PRF group revealed statistically significant difference (p < 0.05). The Nav1.7 levels were significantly down-regulated in the SV-PRF group and HV-PRF groups compared to that in the Free-PRF group (all p < 0.01). A significantly lower Nav1.7 level was also found in the HV-PRF group compared to that in the SV-PRF group (p < 0.05). CONCLUSIONS The HV-PRF produces a better analgesic effect than SV-PRF applied to the DRG in SNI rats. The underlying mechanisms may be associated with improving the histopathological prognosis and the downregulation of Nav1.7 levels in the DRG.
Collapse
Affiliation(s)
- Zhisen Dai
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xueru Xu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanqin Chen
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Fujian Key Laboratory of Geriatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongguo Liu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Fanous SN, Saleh EG, Abd Elghafar EM, Ghobrial HZ. Randomized controlled trials between dorsal root ganglion thermal radiofrequency, pulsed radiofrequency and steroids for the management of intractable metastatic back pain in thoracic vertebral body. Br J Pain 2021; 15:270-281. [PMID: 34381612 PMCID: PMC8339942 DOI: 10.1177/2049463720942538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Bone metastasis is a complication of various cancers causing severe pain. The current modalities for the treatment of metastatic axial pain include pharmacological, surgical and vertebral augmentation techniques, each of which has its own challenges. OBJECTIVES To evaluate the effectiveness of pulsed radiofrequency (PRF), thermal radiofrequency (RF) and steroids on dorsal root ganglion (DRG) in patients with thoracic axial pain due to vertebral metastasis. METHODS In this randomized controlled prospective study, 140 patients were assessed for eligibility, of which only 69 fulfilled the criteria. Patients were randomly divided into three equal groups, PRF, RF and steroid. RESULTS During the assessment of pain using Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), Opioid consumption using oral Morphine Equivalence (OME) and Analgesic Quantification Algorithm (AQA) - at baseline, 1 week, 1 month and 3 months - 81 patients were assessed for final eligibility, of which 12 were excluded before intervention due to drop-out. The remaining 69 were randomized (mean age: 53.87 ± 10.55, 55.78 ± 7.34 and 59.39 ± 13.72) for PRF, RF and steroid, respectively with no statistical difference. VAS% and ODI% decreased significantly at 3 months in RF group (p <0.001, 0.014, respectively), as did the AQA (p <0.027). Steroid group was the worst. DISCUSSION RF on DRG is the main stay for controlling intractable metastatic pain. PRF is a good alternative.
Collapse
Affiliation(s)
- Sherry Nabil Fanous
- Department of Anaesthesia, ICU and Pain
Management, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Emad Gerges Saleh
- Department of Anaesthesia, ICU and Pain
Management, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ekramy Mansour Abd Elghafar
- Department of Anaesthesia, ICU and Pain
Management, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hossam Zarif Ghobrial
- Department of Anaesthesia, ICU and Pain
Management, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Murray I, Bhanot G, Bhargava A. Neuron-Glia-Immune Triad and Cortico-Limbic System in Pathology of Pain. Cells 2021; 10:cells10061553. [PMID: 34205372 PMCID: PMC8234386 DOI: 10.3390/cells10061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Pain is an unpleasant sensation that alerts one to the presence of obnoxious stimuli or sensations. These stimuli are transferred by sensory neurons to the dorsal root ganglia-spinal cord and finally to the brain. Glial cells in the peripheral nervous system, astrocytes in the brain, dorsal root ganglia, and immune cells all contribute to the development, maintenance, and resolution of pain. Both innate and adaptive immune responses modulate pain perception and behavior. Neutrophils, microglial, and T cell activation, essential components of the innate and adaptive immune responses, can play both excitatory and inhibitory roles and are involved in the transition from acute to chronic pain. Immune responses may also exacerbate pain perception by modulating the function of the cortical-limbic brain regions involved in behavioral and emotional responses. The link between an emotional state and pain perception is larger than what is widely acknowledged. In positive psychological states, perception of pain along with other somatic symptoms decreases, whereas in negative psychological states, these symptoms may worsen. Sex differences in mechanisms of pain perception are not well studied. In this review, we highlight what is known, controversies, and the gaps in this field.
Collapse
Affiliation(s)
- Isabella Murray
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
| | - Gayatri Bhanot
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Eleanor Roosevelt College, University of California San Diego, San Diego, CA 92122, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA; (I.M.); (G.B.)
- Correspondence: ; Tel.: +1-415-502-8453
| |
Collapse
|
37
|
Wang SM, Goguadze N, Kimura Y, Yasui Y, Pan B, Wang TY, Nakamura Y, Lin YT, Hogan QH, Wilson KL, Su TP, Wu HE. Genomic Action of Sigma-1 Receptor Chaperone Relates to Neuropathic Pain. Mol Neurobiol 2021; 58:2523-2541. [PMID: 33459966 PMCID: PMC8128747 DOI: 10.1007/s12035-020-02276-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER) chaperones implicated in neuropathic pain. Here we examine if the Sig-1R may relate to neuropathic pain at the level of dorsal root ganglia (DRG). We focus on the neuronal excitability of DRG in a "spare nerve injury" (SNI) model of neuropathic pain in rats and find that Sig-1Rs likely contribute to the genesis of DRG neuronal excitability by decreasing the protein level of voltage-gated Cav2.2 as a translational inhibitor of mRNA. Specifically, during SNI, Sig-1Rs translocate from ER to the nuclear envelope via a trafficking protein Sec61β. At the nucleus, the Sig-1R interacts with cFos and binds to the promoter of 4E-BP1, leading to an upregulation of 4E-BP1 that binds and prevents eIF4E from initiating the mRNA translation for Cav2.2. Interestingly, in Sig-1R knockout HEK cells, Cav2.2 is upregulated. In accordance with those findings, we find that intra-DRG injection of Sig-1R agonist (+)pentazocine increases frequency of action potentials via regulation of voltage-gated Ca2+ channels. Conversely, intra-DRG injection of Sig-1R antagonist BD1047 attenuates neuropathic pain. Hence, we discover that the Sig-1R chaperone causes neuropathic pain indirectly as a translational inhibitor.
Collapse
MESH Headings
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Endoplasmic Reticulum/metabolism
- Eukaryotic Initiation Factor-4E/metabolism
- Ganglia, Spinal/metabolism
- Gene Expression Regulation
- Genome
- HEK293 Cells
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Nerve Tissue/injuries
- Nerve Tissue/pathology
- Neuralgia/genetics
- Nuclear Envelope/metabolism
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Caps/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, sigma/agonists
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- SEC Translocation Channels/metabolism
- Transcription, Genetic
- Sigma-1 Receptor
- Rats
Collapse
Affiliation(s)
- Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Nino Goguadze
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuriko Kimura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tzu-Yun Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Pharmacology, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yu-Ting Lin
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
38
|
Franken G, Douven P, Debets J, Joosten EAJ. Conventional Dorsal Root Ganglion Stimulation in an Experimental Model of Painful Diabetic Peripheral Neuropathy: A Quantitative Immunocytochemical Analysis of Intracellular γ-Aminobutyric Acid in Dorsal Root Ganglion Neurons. Neuromodulation 2021; 24:639-645. [PMID: 33942947 PMCID: PMC8360133 DOI: 10.1111/ner.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Background and Objective The sensory cell somata in the DRG contain all equipment necessary for extensive GABAergic signaling and are able to release GABA upon depolarization. With this study, we hypothesize that pain relief induced by conventional dorsal root ganglion stimulation (Con‐DRGS) in animals with experimental painful diabetic peripheral neuropathy is related to the release of GABA from DRG neurons. With use of quantitative immunocytochemistry, we hypothesize DRGS to result in a decreased intensity of intracellular GABA‐immunostaining in DRG somata. Materials and Methods Female Sprague‐Dawley rats (n = 31) were injected with streptozotocin (STZ) in order to induce Diabetes Mellitus. Animals that developed neuropathic pain after four weeks (Von Frey) were implanted with a unilateral DRGS device at L4 (n = 14). Animals were then stimulated for 30 min with Con‐DRGS (20 Hz, pulse width = 0.2 msec, amplitude = 67% of motor threshold, n = 8) or Sham‐DRGS (n = 6), while pain behavior (von Frey) was measured. DRGs were then collected and immunostained for GABA, and a relation to size of sensory cell soma diameter (small: 12–26 μm, assumed to be C‐fiber related sensory neurons; medium: 26–40 μm, assumed to be Aδ related sensory neurons; and large: 40–54 μm, assumed to be Aβ related sensory neurons) was made. Results DRGS treated animals showed significant reductions in STZ‐induced mechanical hypersensitivity. No significant differences in GABA immunostaining intensity per sensory neuron cell soma type (small‐, medium‐, or large‐sized) were noted in DRGs of stimulated (Con‐DRGS) animals versus Sham animals. No differences in GABA immunostaining intensity per sensory cell soma type in ipsi‐ as compared to contralateral DRGs were observed. Conclusion Con‐DRGS does not affect the average intracellular GABA immunofluorescence staining intensity in DRG sensory neurons of those animals which showed significant pain reduction. Similarly, no soma size related changes in intracellular GABA immunofluorescence were observed following Con‐DRGS.
Collapse
Affiliation(s)
- Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Perla Douven
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jacques Debets
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
39
|
Berger AA, Liu Y, Possoit H, Rogers AC, Moore W, Gress K, Cornett EM, Kaye AD, Imani F, Sadegi K, Varrassi G, Viswanath O, Urits I. Dorsal Root Ganglion (DRG) and Chronic Pain. Anesth Pain Med 2021; 11:e113020. [PMID: 34336621 PMCID: PMC8314073 DOI: 10.5812/aapm.113020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Chronic neuropathic pain is a common condition, and up to 11.9% of the population have been reported to suffer from uncontrolled neuropathic pain. Chronic pain leads to significant morbidity, lowered quality of life, and loss of workdays, and thus carries a significant price tag in healthcare costs and lost productivity. dorsal root ganglia (DRG) stimulation has been recently increasingly reported and shows promising results in the alleviation of chronic pain. This paper reviews the background of DRG stimulation, anatomical, and clinical consideration and reviews the clinical evidence to support its use. EVIDENCE ACQUISITION The DRG span the length of the spinal cord and house the neurons responsible for sensation from the periphery. They may become irritated by direct compression or local inflammation. Glial cells in the DRG respond to nerve injury, producing inflammatory markers and contribute to the development of chronic pain, even after the resolution of the original insult. While the underlying mechanism is still being explored, recent studies explored the efficacy of DRG stimulation and neuromodulation for chronic pain treatment. RESULTS Several reported cases and a small number of randomized trials were published in recent years, describing different methods of DRG stimulation and neuromodulation with promising results. Though evidence quality is mostly low, these results provide evidence to support the utilization of this technique. CONCLUSIONS Chronic neuropathic pain is a common condition and carries significant morbidity and impact on the quality of life. Recent evidence supports the use of DRG neuromodulation as an effective technique to control chronic pain. Though studies are still emerging, the evidence appears to support this technique. Further studies, including large randomized trials evaluating DRG modulation versus other interventional and non-interventional techniques, are needed to further elucidate the efficacy of this method. These studies are also likely to inform the patient selection and the course of treatment.
Collapse
Affiliation(s)
- Amnon A. Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Yao Liu
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - HarLee Possoit
- LSU Health Shreveport, School of Medicine, Shreveport, LA, USA
| | - Anna C. Rogers
- LSU Health Shreveport, School of Medicine, Shreveport, LA, USA
| | - Warner Moore
- LSU Health Shreveport, School of Medicine, Shreveport, LA, USA
| | - Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | - Elyse M. Cornett
- LSU Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Alan David Kaye
- LSU Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kambiz Sadegi
- Department of Anesthesiology, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Omar Viswanath
- Georgetown University School of Medicine, Washington, DC, USA
- University of Arizona College of Medicine - Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
- Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
- Valley Anesthesiology and Pain Consultants – Envision Physician Services, Phoenix, AZ, USA
| | - Ivan Urits
- Georgetown University School of Medicine, Washington, DC, USA
- Southcoast Health, Southcoast Health Physicians Group Pain Medicine, Wareham, MA, USA
| |
Collapse
|
40
|
Prasad Md A, Chakravarthy Md K. Review of complex regional pain syndrome and the role of the neuroimmune axis. Mol Pain 2021; 17:17448069211006617. [PMID: 33788654 PMCID: PMC8020088 DOI: 10.1177/17448069211006617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Complex regional pain syndrome (CRPS) is a progressive and painful disease of
the extremities that is characterized by continuous pain inconsistent with
the initial trauma. CRPS is caused by a multi-mechanism process that
involves both the peripheral and central nervous system, with a prominent
role of inflammation in CRPS pathophysiology. This review examines what is
currently known about the CRPS inflammatory and pain mechanisms, as well as
the possible impact of neurostimulation therapies on the neuroimmune axis of
CRPS. Study design A narrative review of preclinical and clinical studies provided an overview
of the pain and inflammatory mechanisms in CRPS and addressed the effect of
neurostimulation on immunomodulation. Methods A systematic literature search was conducted based on the PRISMA guidelines
between September 2015 to September 2020. Data sources included relevant
literature identified through searches of PubMed, Embase and the Cochrane
Database of Systematic Reviews. Results Sixteen preclinical and eight clinical studies were reviewed. Preclinical
studies identified different mechanisms of pain development in the acute and
chronic CRPS phases. Several preclinical and clinical studies investigating
inflammatory mechanisms, autoimmunity, and genetic profiles in CRPS,
supported a role of neuroinflammation in the pathophysiology of CRPS. The
immunomodulatory effects of neurostimulation therapy is still unclear,
despite clinical improvement in the CRPS patients. Conclusions Increasing evidence supports a role for inflammation and neuroinflammation in
CRPS pathophysiology. Preliminary neurostimulation findings, together with
the role of (neuro)inflammation in CRPS, seems to provide a compelling
rationale for its use in CRPS pain treatment. The possible immunomodulatory
effects of neurostimulation opens new therapeutic possibilities, however
further research is needed to gain a better understanding of the working
mechanisms.
Collapse
Affiliation(s)
- Amrita Prasad Md
- Axxon Pain, Brisbane Private Hospital, 259 Wickham Terrace, Brisbane, Queensland 4000, Australia
| | - Krishnan Chakravarthy Md
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Department of Anesthesiology and Pain Medicine, VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
41
|
Effects of Curcumin Treatment in a Diabetic Neuropathic Pain Model of Rats: Involvement of c-Jun N-Terminal Kinase Located in the Astrocytes and Neurons of the Dorsal Root Ganglion. Pain Res Manag 2021; 2021:8787231. [PMID: 33532012 PMCID: PMC7837777 DOI: 10.1155/2021/8787231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/06/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022]
Abstract
Curcumin (diferuloylmethane) is a major component of turmeric, which is isolated from the rhizomes of Curcuma longa L. from the family Zingiberaceae. It is used as a dietary pigment for curry and in traditional Indian medicine for its anti-inflammatory and attenuating pain effects. This study aimed to evaluate the beneficial effects of curcumin in a rat model of diabetic neuropathic pain. Additionally, we investigated the involvement of the phosphorylated form of c-Jun N-terminal kinase (pJNK) located in the neurons and astrocytes of the dorsal root ganglion (DRG). To induce diabetic neuropathic pain in rats, 50 mg/kg of streptozotocin (STZ) was intraperitoneally injected. After 4 weeks, rats were administered the vehicle, 10 mg/kg/day curcumin, or 50 mg/kg/day curcumin orally for 4 consecutive weeks. One day after the final drug administration, we performed behavioral tests to measure responses of rats to mechanical, heat, cold, and acetone-induced cold stimuli. After behavioral tests, pJNK expression in the DRG was evaluated using western blot assay and immunohistochemistry. Curcumin treatment for 4 consecutive weeks in STZ-induced diabetic neuropathic pain rats improved behavioral responses to mechanical, cold, and thermal stimuli. Increased pJNK expression in the astrocytes and neurons of the DRG in STZ-induced diabetic neuropathic pain rats was reduced by curcumin treatment for 4 consecutive weeks. We suggest that curcumin can be an option for the treatment of diabetes-related neuropathic pain, and one of the mechanisms that underlie the action of curcumin may involve pJNK expression in the astrocytes and neurons of the DRG.
Collapse
|
42
|
Stelter B, Karri J, Marathe A, Abd-Elsayed A. Dorsal Root Ganglion Stimulation for the Treatment of Non-Complex Regional Pain Syndrome Related Chronic Pain Syndromes: A Systematic Review. Neuromodulation 2021; 24:622-633. [PMID: 33501749 DOI: 10.1111/ner.13361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND While the majority of indications and approvals for dorsal root ganglion stimulation (DRGS) are for the refractory management of complex regional pain syndrome (CRPS), emerging evidence has suggested that DRGS may be favorably used for a plethora of other chronic pain phenomena. Consequently, we aimed to characterize the use and efficacy of DRGS for these non-CRPS-related chronic pain syndromes. MATERIALS AND METHODS A systematic review of clinical studies demonstrating the use of DRGS for non-CRPS-related chronic pain syndromes. The literature search was performed using PubMed, Cochrane Library, and CINAHL plus across August and September 2020. RESULTS A total of 28 reports comprising 354 total patients were included in the analysis. Of the chronic pain syndromes presented, axial low back pain, chronic pelvic and groin pain, other peripheral neuropathies, and studies with multiple concomitant pain syndromes, a majority demonstrated >50% mean pain reduction at the time of last follow-up following DRGS. Physical function, quality of life (QOL), and lesser pain medication usage also were repeatedly reported to be significantly improved. CONCLUSIONS DRGS continues to lack supportive evidence from well designed, high level studies and recommendations from consensus committee experts. However, we present repeated and consistent evidence from lower level studies showing success with the use of DRGS for various non-CRPS chronic pain syndromes in reducing pain along with increasing function and QOL from one week to three years. Due to such low-level, high bias evidence, we strongly encourage the continuation of high-level studies in order to provide a stronger foundation for the use of DRGS in non-CRPS chronic pain patients. However, it may be reasonable and appropriate to evaluate patients for DRGS candidacy on a case-by-case basis particularly if they manifest focal pain syndromes refractory to noninterventional measures and may not be ideal candidates for other forms of neuromodulation.
Collapse
Affiliation(s)
- Bradly Stelter
- Department of Anesthesia, Division of Pain Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jay Karri
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Anuj Marathe
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesia, Division of Pain Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
43
|
Ni W, Zhang Z, Zhang B, Zhang W, Cheng H, Miao Y, Chen W, Liu J, Zhu D, Bi Y. Connecting Peripheral to Central Neuropathy: Examination of Nerve Conduction Combined with Olfactory Tests in Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2021; 14:3097-3107. [PMID: 34267530 PMCID: PMC8276992 DOI: 10.2147/dmso.s312021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
AIM Few studies have investigated the associations between diabetic peripheral neuropathy (DPN) and cognitive decline. Olfactory impairment is related to neurodegenerative diseases and type 2 diabetes mellitus (T2DM); however, the cognitive alterations of patients with DPN and the role of olfactory function in DPN are not known. We explored alterations in cognition with DPN and the associations of neuropathy parameters with cognition and olfaction. METHODS Healthy controls (HCs) and patients with T2DM underwent nerve-conduction tests, detailed cognitive assessment, olfactory-behavior tests, and odor-induced functional magnetic resonance imaging (fMRI). T2DM patients were divided into two groups (non-DPN [NDPN] and DPN). Olfactory brain regions showing different activation between the two groups were selected for functional connectivity (FC) analyses. A structural equation model (SEM) was also generated to demonstrate the association among cognition, olfactory, and neuropathy parameters. RESULTS One hundred individuals (36 HCs, 36 NDPN, and 28 DPN) were matched for age, sex, and educational level. Compared with the NDPN group, the DPN group had significantly lower scores for memory and processing speed, as well as lower olfactory identification and memory scores, decreased activation of the left frontal lobe, and reduced seed-based functional connectivity in the right insula. The nerve conduction velocity in patients with T2DM was associated with cognitive functions. The association between nerve conduction and executive function was mediated by olfactory behavior. CONCLUSION Patients with DPN had worse cognition than the NDPN patients in the domains of memory and processing speed. Cognitive dysfunction could be predicted by olfactory-behavior tests and electrophysiological examination.
Collapse
Affiliation(s)
- Wenyu Ni
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haiyan Cheng
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yingwen Miao
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Wei Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jiani Liu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Correspondence: Yan Bi Department of Endocrinology, Drum Tower Hospital, Affiliated to Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, People’s Republic of ChinaTel +86 25-83304616-61431Fax +86 25-83304616-61431 Email
| |
Collapse
|
44
|
Lv C, Gu X, Li H, Zhao Y, Yang D, Yu W, Han D, Li J, Tan W. Molecular Transport through a Biomimetic DNA Channel on Live Cell Membranes. ACS NANO 2020; 14:14616-14626. [PMID: 32897687 DOI: 10.1021/acsnano.0c03105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological membrane channels, considered as molecular gatekeepers, control the transportation of molecules and ions across live cell membranes. Developing synthetic passable channels with predictable structures, high transport efficiency, and low cytotoxicity on live cells is of great interest for replicating the functions of endogenous protein channels, but remains challenging. The development of DNA nanotechnology provides possible solutions for making synthetic channels with precise structures and controllable functionalization. Therefore, in this work, we constructed a phosphorothioate-modified DNA nanopore able to structurally mimic biological channels for molecular transport across live cell membranes. With its stable structure with small hollow size (<2 nm) and the ability to interact with the lipid molecules, this DNA nanopore could show stable insertion into the plasma membrane. We further proved that this membrane-spanning channel could transport ions and antitumor drugs to neurons and cancer cells, respectively, and do so within a certain time window. We expect that this live cell membrane-spanning synthetic DNA nanopore will provide a tool for studying cellular communication, building synthetic cells, and achieving controlled transmembrane transport to cells.
Collapse
Affiliation(s)
- Cheng Lv
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiyao Gu
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haowen Li
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumeng Zhao
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juan Li
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Department of Anesthesiology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
45
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
46
|
Effect of PKC/NF- κB on the Regulation of P2X 3 Receptor in Dorsal Root Ganglion in Rats with Sciatic Nerve Injury. Pain Res Manag 2020; 2020:7104392. [PMID: 33014214 PMCID: PMC7519985 DOI: 10.1155/2020/7104392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
Background Protein kinase C (PKC), nuclear factor-kappa B p65 (NF-κB p65), and P2X3 receptor (P2X3R) play significant roles in the sensitization and transduction of nociceptive signals, which are considered as potential targets for the treatment of neuropathic pain. However, the mechanisms and relationships among them have not been clearly clarified. Methods 80 rats were randomized and divided into 10 groups (n = 8). Sciatic chronic constriction injury (CCI) rats were intrathecally administered with bisindolylmaleimide I (GF109203X), a PKC-selective antagonist once a day, or pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor twice a day. Sham-operated rats were intrathecally administered with saline. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were evaluated in all the groups before CCI operation (baseline) and on the 1st, 3rd, 7th, 10th, and 14th day after CCI operation. Protein levels of p-PKCα, p-NF-κB p65, and P2X3R were analyzed in the CCI ipsilateral L4-6 dorsal root ganglions (DRGs). Results Intrathecal injection of GF109203X or PDTC alleviated the TWL and MWT in the following 2 weeks after CCI surgery. The protein levels of p-PKCα, p-NF-κB p65, and P2X3R in the ipsilateral DRGs significantly increased after CCI operation, which could be partly reversed by intrathecal administration of GF109203X or PDTC. Conclusion The upregulation of p-PKCα, p-NF-κB p65, and P2X3R expression in the DRGs of CCI rats was involved in the occurrence and development of neuropathic pain. Phosphorylated PKCα and phosphorylated NF-κB p65 regulated with each other. Phosphorylated NF-κB p65 and PKCα have a mutual regulation relationship with P2X3R, respectively, while the specific regulatory mechanism needs further research.
Collapse
|
47
|
Ni W, Wang N, Tian S, Xu Q. Antinociceptive Effects of Emodin on CFA-Induced Inflammatory Pain in Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20942002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The effect of emodin on complete Freund’s adjuvant (CFA)-induced inflammatory pain in rats and its potential molecular mechanism was investigated. For this, a rat model of inflammatory pain induced by CFA was established and rats were treated with emodin by intraperitoneal injection. The pain threshold was evaluated by the von Frey, thermo hyperalgesia, and cold plate tests. The mRNA expression of transient receptor potential channel ankyrin type-1 ( Trpa1) and transient receptor potential vanilloid 1 ( Trpv1) was detected by quantitative reverse transcription polymerase chain reaction, and the level of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The mechanical and thermal pain thresholds of CFA-treated rats were significantly lower than those of the control rats, while the paw withdrawal responses in response to cold stimulation were higher than that of the control group. Emodin treatment significantly improved CFA-induced hyperalgesia. Further results showed that emodin inhibits the upregulation of Trpa1 and Trpv1 mRNA expression in the dorsal root ganglion (DRG) of rats with inflammatory pain compared with the control group. Emodin also significantly reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) in the serum of rats with inflammatory pain. Thus, emodin may inhibit hyperalgesia induced by inflammatory stimulation by downregulating the mRNA expression of Trpa1 and Trpv1 in DRG neurons and reducing the levels of TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Wan Ni
- Department of Pain Medicine, The second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Nianyun Wang
- Department of Pain Medicine, The second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Shenglan Tian
- Department of Anesthesiology, Tianyou Hospital, Wuhan University of Science and Technology, China
| | - Qingbang Xu
- Department of Pain Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Esposito MF, Malayil R, Hanes M, Deer T. Unique Characteristics of the Dorsal Root Ganglion as a Target for Neuromodulation. PAIN MEDICINE 2020; 20:S23-S30. [PMID: 31152179 PMCID: PMC6544557 DOI: 10.1093/pm/pnz012] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective The dorsal root ganglion (DRG) is a novel target for neuromodulation, and DRG stimulation is proving to be a viable option in the treatment of chronic intractable neuropathic pain. Although the overall principle of conventional spinal cord stimulation (SCS) and DRG stimulation—in which an electric field is applied to a neural target with the intent of affecting neural pathways to decrease pain perception—is similar, there are significant differences in the anatomy and physiology of the DRG that make it an ideal target for neuromodulation and may account for the superior outcomes observed in the treatment of certain chronic neuropathic pain states. This review highlights the anatomy of the DRG, its function in maintaining homeostasis and its role in neuropathic pain, and the unique value of DRG as a target in neuromodulation for pain. Methods A narrative literature review was performed. Results Overall, the DRG is a critical structure in sensory transduction and modulation, including pain transmission and the maintenance of persistent neuropathic pain states. Unique characteristics including selective somatic organization, specialized membrane characteristics, and accessible and consistent location make the DRG an ideal target for neuromodulation. Because DRG stimulation directly recruits the somata of primary sensory neurons and harnesses the filtering capacity of the pseudounipolar neural architecture, it is differentiated from SCS, peripheral nerve stimulation, and other neuromodulation options. Conclusions There are several advantages to targeting the DRG, including lower energy usage, more focused and posture-independent stimulation, reduced paresthesia, and improved clinical outcomes.
Collapse
Affiliation(s)
| | - Rudy Malayil
- St. Mary's Pain Relief Specialists, Huntington, West Virginia
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, West Virginia, USA
| |
Collapse
|
49
|
Fishman MA, Antony A, Esposito M, Deer T, Levy R. The Evolution of Neuromodulation in the Treatment of Chronic Pain: Forward-Looking Perspectives. PAIN MEDICINE 2020; 20:S58-S68. [PMID: 31152176 PMCID: PMC6600066 DOI: 10.1093/pm/pnz074] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background The field of neuromodulation is continually evolving, with the past decade showing significant advancement in the therapeutic efficacy of neuromodulation procedures. The continued evolution of neuromodulation technology brings with it the promise of addressing the needs of both patients and physicians, as current technology improves and clinical applications expand. Design This review highlights the current state of the art of neuromodulation for treating chronic pain, describes key areas of development including stimulation patterns and neural targets, expanding indications and applications, feedback-controlled systems, noninvasive approaches, and biomarkers for neuromodulation and technology miniaturization. Results and Conclusions The field of neuromodulation is undergoing a renaissance of technology development with potential for profoundly improving the care of chronic pain patients. New and emerging targets like the dorsal root ganglion, as well as high-frequency and patterned stimulation methodologies such as burst stimulation, are paving the way for better clinical outcomes. As we look forward to the future, neural sensing, novel target-specific stimulation patterns, and approaches combining neuromodulation therapies are likely to significantly impact how neuromodulation is used. Moreover, select biomarkers may influence and guide the use of neuromodulation and help objectively demonstrate efficacy and outcomes.
Collapse
Affiliation(s)
| | | | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, West Virginia
| | - Robert Levy
- Institute for Neuromodulation, Boca Raton, Florida, USA
| |
Collapse
|
50
|
Kim H, Son WG, Shin CW, Han H, Cha J, Kim D, Lee I. Fluoroscopy-guided approach to the lumbar dorsal root ganglion in dogs: cadaver study in Beagles. Vet Anaesth Analg 2020; 47:574-577. [PMID: 32386778 DOI: 10.1016/j.vaa.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate an approach to the canine lumbar dorsal root ganglion (DRG), a significant contributor to the pain pathway, using new methylene blue staining. STUDY DESIGN Prospective randomized study. ANIMALS A total of three Beagle dog cadavers weighing 10.4 ± 0.7 kg (mean ± standard deviation). METHODS Bilateral third to fifth lumbar DRG approaches were performed in three dog cadavers positioned in sternal recumbency. The mammillary process was palpated, and a 22 gauge spinal needle was inserted through the skin 1 cm lateral to the process and directed towards the median plane at a 45° angle to the dorsal plane. The needle was advanced along the transverse plane until touching bone, or a popping sensation was detected. Under fluoroscopic guidance, the position of the needle tip was adjusted to be in the cranioventral part of the intervertebral foramen. The location of the needle was confirmed by demarcation of the nerve roots after iohexol (0.1 mL) injection. For evaluation of the DRG approach, new methylene blue (0.1 mL) was injected. Subsequently, anatomical dissection of the area was performed. The DRG staining was scored as follows: 0, no staining; 1, partial (<50%); 2, partial (≥50%); and 3, complete staining. Comparisons among the staining scores of the third to fifth DRG were assessed with the Friedman test. RESULTS Staining score 3 was achieved in 14 of 18 (77.8%) sites. Staining scores 2, 1 and 0 were identified at two, one and one of the 18 sites, respectively. No significant difference was noted in the staining scores among the third to fifth DRGs (p = 0.78). CONCLUSIONS AND CLINICAL RELEVANCE The technique used for DRG injections achieved adequate DRG staining, supporting use of the fluoroscopy-guided approach to the canine lumbar DRG.
Collapse
Affiliation(s)
- Hyunseok Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Won-Gyun Son
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Chi Won Shin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyungjoo Han
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jeesoo Cha
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dalhae Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Inhyung Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|