1
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|
2
|
Mi F, Liu F, Zhang C. Magnesium protects mouse hippocampal HT22 cells against hypoxia-induced injury by upregulation of miR-221. J Cell Biochem 2019; 121:1452-1462. [PMID: 31512791 DOI: 10.1002/jcb.29381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/28/2019] [Indexed: 11/11/2022]
Abstract
Magnesium (Mg2+ ) has been shown to exert neuroprotective effects against hypoxia. However, it still remains elusive whether Mg2+ protected mouse hippocampal HT22 cells against hypoxia-evoked damages. Therefore, we aimed to investigate the function of Mg2+ and mechanisms associated with microRNA-221 (miR-221). HT22 cells were exposed to 3% O2 for 24 hours to induce hypoxic damages with 21% as a normoxic culture condition. The damages were monitored by viability, migration, and apoptosis of HT22 cells with or without Mg2+ pretreatment. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to examine the alteration of miR-221, miR-210, and miR-17-5p. Transduction was carried out to artificially alter the expression of miR-221 and nerve growth factor (NGF), which was confirmed by qRT-PCR or Western blot assays. To blunt phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor κB (NF-κB), LY294002 (10 µM) and BAY 11-7082 (10 µM) were used. We observed Mg2+ protected HT22 cells against hypoxia-induced damages by upregulating miR-221. Further, miR-221 positively regulated NGF expression. Overexpression of NGF alleviated cell injury, while suppression of NGF aggravated cell injury. Moreover, miR-221 elevated NGF by inducing phosphorylation of regulators in PI3K/AKT and NF-κB transduction cascades and then alleviated cell injury. In conclusion, Mg2+ protected HT22 cells against hypoxia-induced damages by upregulation of miR-221 and NGF. These findings provided insights into the development of improved strategies for clinical application.
Collapse
Affiliation(s)
- Fuli Mi
- Department of Gastrointestinal Endoscopy Center, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Fuyu Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| | - Chuanzhu Zhang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
3
|
Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10:317. [PMID: 30962427 PMCID: PMC6453953 DOI: 10.1038/s41419-019-1556-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Melatonin, more commonly known as the sleep hormone, is mainly secreted by the pineal gland in dark conditions and regulates the circadian rhythm of the organism. Its intrinsic properties, including high cell permeability, the ability to easily cross both the blood–brain and placenta barriers, and its role as an endogenous reservoir of free radical scavengers (with indirect extra activities), confer it beneficial uses as an adjuvant in the biomedical field. Melatonin can exert its effects by acting through specific cellular receptors on the plasma membrane, similar to other hormones, or through receptor-independent mechanisms that involve complex molecular cross talk with other players. There is increasing evidence regarding the extraordinary beneficial effects of melatonin, also via exogenous administration. Here, we summarize molecular pathways in which melatonin is considered a master regulator, with attention to cell death and inflammation mechanisms from basic, translational and clinical points of view in the context of newborn care.
Collapse
|
4
|
Short-, Mid-, and Long-Term Effect of Granulocyte Colony-Stimulating Factor/Stem Cell Factor and Fms-Related Tyrosine Kinase 3 Ligand Evaluated in an In Vivo Model of Hypoxic-Hyperoxic Ischemic Neonatal Brain Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5935279. [PMID: 31001556 PMCID: PMC6436372 DOI: 10.1155/2019/5935279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
Abstract
Hematopoietic growth factors are considered to bear neuroprotective potential. We have previously shown that delayed treatment with granulocyte colony-stimulating factor (G-CSF)/stem cell factor (SCF) and Fms-related tyrosine kinase 3 ligand (FL) ameliorates excitotoxic neonatal brain injury. The effect of these substances in combined-stressor neonatal brain injury models more closely mimicking clinical conditions has not been investigated. The aim of this study was to assess the short-, mid-, and long-term neuroprotective potential of G-CSF/SCF and FL in a neonatal model of hypoxic-hyperoxic ischemic brain injury. Five-day-old (P5) CD-1 mice were subjected to unilateral common carotid artery ligation and subsequent alternating periods of hypoxia and hyperoxia for 65 minutes. Sixty hours after injury, pups were randomly assigned to intraperitoneal treatment with (i) G-CSF (200 μg/kg)/SCF (50 μg/kg), (ii) FL (100 μg/kg), or (iii) vehicle every 24 hours for three or five consecutive days. Histopathological and functional outcomes were evaluated on P10, P18, and P90. Baseline outcome parameters were established in sham-treated and healthy control animals. Gross brain injury did not significantly differ between treatment groups at any time point. On P10, caspase-3 activation and caspase-independent apoptosis were similar between treatment groups; cell proliferation and the number of BrdU-positive vessels did not differ on P18 or P90. Neurobehavioral assessment did not reveal significant differences between treatment groups in accelerod performance, open field behavior, or novel object recognition capacity on P90. Turning behavior was more frequently observed in G-CSF/SCF- and FL-treated animals. No sex-specific differences were detected in any outcome parameter evaluated. In hypoxic-hyperoxic ischemic neonatal brain injury, G-CSF/SCF and FL treatment does not convey neuroprotection. Prior to potential clinical use, meticulous assessment of these hematopoietic growth factors is mandated.
Collapse
|
5
|
Paprocka J, Kijonka M, Rzepka B, Sokół M. Melatonin in Hypoxic-Ischemic Brain Injury in Term and Preterm Babies. Int J Endocrinol 2019; 2019:9626715. [PMID: 30915118 PMCID: PMC6402213 DOI: 10.1155/2019/9626715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/05/2022] Open
Abstract
Melatonin may serve as a potential therapeutic free radical scavenger and broad-spectrum antioxidant. It shows neuroprotective properties against hypoxic-ischemic brain injury in animal models. The authors review the studies focusing on the neuroprotective potential of melatonin and its possibility of treatment after perinatal asphyxia. Melatonin efficacy, low toxicity, and ability to readily cross through the blood-brain barrier make it a promising molecule. A very interesting thing is the difference between the half-life of melatonin in preterm neonates (15 hours) and adults (45-60 minutes). Probably, the use of synergic strategies-hypothermia coupled with melatonin treatment-may be promising in improving antioxidant action. The authors discuss and try to summarize the evidence surrounding the use of melatonin in hypoxic-ischemic events in term and preterm babies.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| | - Beata Rzepka
- Students' Scientific Society, Department Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| |
Collapse
|
6
|
Baud O. [Prematurity, progress and challenges]. SOINS. PÉDIATRIE, PUÉRICULTURE 2017; 38:10-14. [PMID: 29162252 DOI: 10.1016/j.spp.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prematurity is one of the main causes of neonatal mortality and comorbidities, and longer term sequalae. The survival rate and quality of life of premature babies has however progressed significantly and infants benefit from improved monitoring and long-term follow-up. Notable advances have been made in the area of developmental care, although their implementation in units needs to be improved. Innovations in perinatology should emerge in the years ahead.
Collapse
Affiliation(s)
- Olivier Baud
- Inserm U1141,Université Paris-Diderot, Sorbonne Paris Cité,Service de réanimation et pédiatrie néonatales, Hôpital universitaire Robert-Debré, AP-HP, 48 boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
7
|
Erythropoietin improves hypoxic-ischemic encephalopathy in neonatal rats after short-term anoxia by enhancing angiogenesis. Brain Res 2016; 1651:104-113. [DOI: 10.1016/j.brainres.2016.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 01/05/2023]
|
8
|
Itoh K, Maki T, Shindo A, Egawa N, Liang AC, Itoh N, Lo EH, Lok J, Arai K. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury. Neurosci Res 2015; 106:66-9. [PMID: 26699082 DOI: 10.1016/j.neures.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 01/02/2023]
Abstract
Hypoxic-ischemic (HI) brain injury in newborns results in serious damage. Magnesium sulfate has been clinically used as a cyto-protective agent against HI brain injury in newborns in some countries, including Japan. However, it is not clear how magnesium exerts this effect and how it acts on the individual types of cells within the newborn brain. In this study, we exposed cultured rat oligodendrocyte precursor cells to magnesium sulfate during the period when they differentiate into oligodendrocytes, and showed that magnesium-exposed oligodendrocytes exhibited more resistance to HI injury. Our data may support the use of magnesium sulfate in the clinical setting.
Collapse
Affiliation(s)
- Kanako Itoh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Naohiro Egawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Naoki Itoh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
9
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|