1
|
McGuigan S, Marie DJ, O'Bryan LJ, Flores FJ, Evered L, Silbert B, Scott DA. The cellular mechanisms associated with the anesthetic and neuroprotective properties of xenon: a systematic review of the preclinical literature. Front Neurosci 2023; 17:1225191. [PMID: 37521706 PMCID: PMC10380949 DOI: 10.3389/fnins.2023.1225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Xenon exhibits significant neuroprotection against a wide range of neurological insults in animal models. However, clinical evidence that xenon improves outcomes in human studies of neurological injury remains elusive. Previous reviews of xenon's method of action have not been performed in a systematic manner. The aim of this review is to provide a comprehensive summary of the evidence underlying the cellular interactions responsible for two phenomena associated with xenon administration: anesthesia and neuroprotection. Methods A systematic review of the preclinical literature was carried out according to the PRISMA guidelines and a review protocol was registered with PROSPERO. The review included both in vitro models of the central nervous system and mammalian in vivo studies. The search was performed on 27th May 2022 in the following databases: Ovid Medline, Ovid Embase, Ovid Emcare, APA PsycInfo, and Web of Science. A risk of bias assessment was performed utilizing the Office of Health Assessment and Translation tool. Given the heterogeneity of the outcome data, a narrative synthesis was performed. Results The review identified 69 articles describing 638 individual experiments in which a hypothesis was tested regarding the interaction of xenon with cellular targets including: membrane bound proteins, intracellular signaling cascades and transcription factors. Xenon has both common and subtype specific interactions with ionotropic glutamate receptors. Xenon also influences the release of inhibitory neurotransmitters and influences multiple other ligand gated and non-ligand gated membrane bound proteins. The review identified several intracellular signaling pathways and gene transcription factors that are influenced by xenon administration and might contribute to anesthesia and neuroprotection. Discussion The nature of xenon NMDA receptor antagonism, and its range of additional cellular targets, distinguishes it from other NMDA antagonists such as ketamine and nitrous oxide. This is reflected in the distinct behavioral and electrophysiological characteristics of xenon. Xenon influences multiple overlapping cellular processes, both at the cell membrane and within the cell, that promote cell survival. It is hoped that identification of the underlying cellular targets of xenon might aid the development of potential therapeutics for neurological injury and improve the clinical utilization of xenon. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: 336871.
Collapse
Affiliation(s)
- Steven McGuigan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
| | - Daniel J. Marie
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Liam J. O'Bryan
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Francisco J. Flores
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, United States
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lisbeth Evered
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Brendan Silbert
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| | - David A. Scott
- Department of Anesthesia and Acute Pain Medicine, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Kassab NED, Mehlfeld V, Kass J, Biel M, Schneider G, Rammes G. Xenon's Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice. Int J Mol Sci 2023; 24:ijms24108613. [PMID: 37239964 DOI: 10.3390/ijms24108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: -97.09 [-99.56--95.04] mV compared to control -85.67 [-94.47--82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only -92.56 [-93.16- -89.68] mV with xenon compared to -90.03 [-98.99--84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2-10] while in HCN2EA mice it remained at 30 [15-42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties.
Collapse
Affiliation(s)
- Nour El Dine Kassab
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Verena Mehlfeld
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Jennifer Kass
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
3
|
Bürge M, Kratzer S, Mattusch C, Hofmann C, Kreuzer M, Parsons CG, Rammes G. The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology 2019; 151:21-32. [PMID: 30940537 DOI: 10.1016/j.neuropharm.2019.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is controversially discussed whether general anaesthesia increases the risk of Alzheimer's disease (AD) or accelerates its progression. One important factor in AD pathogenesis is the accumulation of soluble amyloid beta (Aβ) oligomers which affect N-methyl-d-aspartate (NMDA) receptor function and abolish hippocampal long-term potentiation (LTP). NMDA receptor antagonists, at concentrations allowing physiological activation, can prevent Aβ-induced deficits in LTP. The anaesthetics xenon and S-ketamine both act as NMDA receptor antagonists and have been reported to be neuroprotective. In this study, we investigated the effects of subanaesthetic concentrations of these drugs on LTP deficits induced by different Aβ oligomers and compared them to the effects of radiprodil, a NMDA subunit 2B (GluN2B)-selective antagonist. METHODS We applied different Aβ oligomers to murine brain slices and recorded excitatory postsynaptic field potentials before and after high-frequency stimulation in the CA1 region of hippocampus. Radiprodil, xenon and S-ketamine were added and recordings evoked from a second input were measured. RESULTS Xenon and radiprodil, applied at low concentrations, partially restored the LTP deficit induced by pre-incubated Aβ1-42. S-ketamine showed no effect. None of the drugs tested were able to ameliorate Aβ1-40-induced LTP-deficits. CONCLUSIONS Xenon administered at subanaesthetic concentrations partially restored Aβ1-42-induced impairment of LTP, presumably via its weak NMDA receptor antagonism. The effects were in a similar range than those obtained with the NMDA-GluN2B antagonist radiprodil. Our results point to protective properties of xenon in the context of pathological distorted synaptic physiology which might be a meaningful alternative for anaesthesia in AD patients.
Collapse
Affiliation(s)
- Martina Bürge
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Department of Perioperative Medicine, Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom.
| | - Stephan Kratzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Corinna Mattusch
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Hexal AG, Industriestr. 25, 83607 Holzkirchen, Germany
| | - Carolin Hofmann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Matthias Kreuzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|