1
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
2
|
Hemmings HC, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019; 40:464-481. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in the 21st century towards a comprehensive understanding of the mechanisms of action of general anesthetics, coincident with progress in structural biology and molecular, cellular, and systems neuroscience. This review summarizes important new findings that include target identification through structural determination of anesthetic binding sites, details of receptors and ion channels involved in neurotransmission, and the critical roles of neuronal networks in anesthetic effects on memory and consciousness. These recent developments provide a comprehensive basis for conceptualizing pharmacological control of amnesia, unconsciousness, and immobility.
Collapse
Affiliation(s)
- Hugh C Hemmings
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Paul M Riegelhaupt
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Ken Solt
- Department of Anaesthesia, Harvard Medical School, GRB 444, 55 Fruit St., Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Beverley A Orser
- Departments of Anesthesia and Physiology, Room 3318 Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter A Goldstein
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|