1
|
Zhang C, Luo J, Liao Y, Cao H, Wu X, Huang X, Lan H, Lin Y, Chen H, Guan X. Respiratory depression in women receiving propofol/esketamine versus propofol/fentanyl for abortion surgery or curettage: a randomized clinical trial. Ann Med 2025; 57:2483981. [PMID: 40172617 PMCID: PMC11966977 DOI: 10.1080/07853890.2025.2483981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND A combination of opioids with propofol is a popular approach to non-intubated general anaesthesia; however, this method usually results in higher incidence of respiratory depression. We compared the incidence of esketamine- and fentanyl-induced respiratory depression in women undergoing abortion surgery or curettage under propofol-based non-intubated general anaesthesia. METHODS This study included 176 women (aged 18-60 years) scheduled for abortion surgery or curettage. Patients were randomized into the fentanyl or esketamine groups. Patients in the fentanyl group received fentanyl (1 µg/kg) combined with propofol intravenously. Patients in the esketamine group received subanaesthetic doses of esketamine (0.15 mg/kg) combined with propofol intravenously. The primary outcome was the incidence of respiratory depression during anaesthesia. Secondary outcomes included respiratory rate, pulse oximetry, blood pressure, heart rate, propofol dose, duration of surgery, duration of anaesthesia, and adverse events. RESULTS The incidence of respiratory depression in the esketamine group was significantly lower than that in the fentanyl group (11% vs. 45%; p < .0001). Propofol administration was lower with esketamine than fentanyl. Respiratory rate, SpO2 and blood pressure were more stable in the esketamine group than in the fentanyl group. The incidences of hypotension, propofol-induced injection pain and chin lifting in the esketamine group were lower than those in the fentanyl group. The incidence of nightmares was higher in the esketamine than in the fentanyl group. CONCLUSIONS The incidence of respiratory depression was lower with subanaesthetic doses of esketamine than with fentanyl in women undergoing abortion surgery or curettage under propofol-based non-intubated general anaesthesia.KEY MESSAGESOpioids combined with propofol is a popular method for non-intubated general anaesthesia; however, this method usually results in higher incidence of respiratory depression.At subanaesthetic doses, esketamine provides an analgesic effect by antagonizing the N-methyl-d-aspartate receptor.In this trial, the incidence of respiratory depression was lower with subanaesthetic doses of esketamine than with fentanyl in women undergoing abortion surgery or curettage under propofol-based non-intubated general anaesthesia.
Collapse
Affiliation(s)
- Cuiwen Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiaxin Luo
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yeqing Liao
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Huiyu Cao
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xiaoshan Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xiaofang Huang
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Hongmeng Lan
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yuliu Lin
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Huihe Chen
- Department of Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xuehai Guan
- Department of Anaesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| |
Collapse
|
2
|
Baldo BA. Opioid-induced respiratory depression: clinical aspects and pathophysiology of the respiratory network effects. Am J Physiol Lung Cell Mol Physiol 2025; 328:L267-L289. [PMID: 39726397 DOI: 10.1152/ajplung.00314.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Important insights and consensus remain lacking for risk prediction of opioid-induced respiratory depression (OIRD), reversal of respiratory depression (RD), the pathophysiology of OIRD, and which sites make the most significant contribution to its induction. The ventilatory response to inhaled carbon dioxide is the most sensitive biomarker of OIRD. To accurately predict respiratory depression (RD), a multivariant RD prospective trial using continuous capnography and oximetry examining five independent variables, age ≥60, sex, opioid naivety, sleep disorders, and chronic heart failure (PRODIGY trial), were undertaken. Intermittent oximetry alone substantially underestimates the incidence of RD. Naloxone, with an elimination half-life of ∼33 min (cf. morphine 2-3 h; fentanyl and congeners only 5-15 min), has limitations for the rescue of patients with severe OIRD. Buprenorphine is potentially valuable in patients being treated long term since its high µ-receptor (MOR) affinity makes it difficult for an opioid of lower affinity (e.g., fentanyl) to displace it from the receptor. In the last decade, synthetic opioids, for example, fentanyl, its potent analogs such as carfentanil, and the benzimidazole derivative nitazene "superagonists" have contributed to the exponential growth in opioid deaths due to RD. The MOR, encoded by gene Oprm1, is widely expressed in the central and peripheral nervous systems, including centers that modulate breathing. Opioids bind to the receptors, but consensus is lacking on which site(s) makes the most significant contribution to the induction of OIRD. Both the preBötzinger complex (preBötC), the inspiratory rhythm generator, and the Kölliker-Fuse nucleus (KFN), the respiratory modulator, contribute to RD, but receptor binding is not restricted to a single site. Breathing is composed of three phases, inspiration, postinspiration, and active expiration, each generated by distinct rhythm-generating networks: the preBötC, the postinspiratory complex (PiCo), and the lateral parafacial nucleus (pFL), respectively. Somatostatin-expressing mouse cells involved in breathing regulation are not involved in opioid-induced RD.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Lan H, Liu S, Liao Y, Xu B, Lin Y, Wu X, Chen Q, Chen H, Guan X. EC 50 and EC 95 of Remifentanil for Inhibiting Bronchoscopy Responses in Elderly Patients During Fiberoptic Bronchoscopy Under Ciprofol Sedation: An Up-and-Down Sequential Allocation Trial. Drug Des Devel Ther 2024; 18:6487-6497. [PMID: 39758227 PMCID: PMC11699851 DOI: 10.2147/dddt.s490907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Background Opioids are used to suppress cough during fiberoptic bronchoscopy (FOB). However, evidence regarding the optimal dose of remifentanil during FOB under ciprofol sedation is limited. This study aimed to investigate the effective concentration (EC) of remifentanil required to suppress bronchoscopy responses during FOB under ciprofol sedation in elderly patients. Materials and Methods Elderly patients aged 60 to 90 years with American Society of Anesthesiologists (ASA) physical status I-III, scheduled for FOB, were enrolled. Patients were assigned to either the male or the female group. Remifentanil was administered intravenously prior to ciprofol administration. The endpoints included responses to FOB, such as vocal cords movement, coughing, and body movement. The EC50 and EC95 values of remifentanil required to alleviate the responses to FOB were calculated using Dixon's up-and-down method for both male and female groups. Probit analysis was used to generate a dose-response curve. Results Thirty-nine patients (19 males and 20 females) were enrolled. The EC50 values (plasma concentration) of remifentanil for blunting FOB responses under ciprofol sedation were 3.25 (2.75 to 3.26) ng/mL and 2.25 (1.75 to 2.25) ng/mL in males and females, respectively (p = 0.0023). Probit analysis indicated that the EC50 of remifentanil required to suppress responses to FOB under ciprofol sedation was 3.102 [95% confidence interval (CI):2.694 to 3.749] ng/mL and 2.052 [95% CI: 1.345 to 2.750] ng/mL in males and females, respectively. The EC95 of remifentanil required to suppress responses to FOB under ciprofol sedation was 3.741 [95% CI: 3.366 to 7.699] ng/mL and 2.943 [95% CI: 2.456 to 9.533] ng/mL in males and females, respectively. Conclusion The results indicate differences between males and females in the EC50 and EC95 of remifentanil needed to suppress responses to FOB under ciprofol sedation while preserving spontaneous breathing in elderly patients. Trial Registration The study was registered with chictr.org.cn (ChiCTR2300077720; 17 th November 2023).
Collapse
Affiliation(s)
- Hongmeng Lan
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Susu Liu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yeqing Liao
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Bing Xu
- Department of Rehabilitation, the People`s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Yuliu Lin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiaoshan Wu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Qiuling Chen
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Huihe Chen
- Department of Rehabilitation, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xuehai Guan
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
4
|
Jansen S, Dahan A. Opioid-induced respiratory depression. BJA Educ 2024; 24:100-106. [PMID: 38375496 PMCID: PMC10874713 DOI: 10.1016/j.bjae.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- S.C. Jansen
- Leiden University Medical Centre, Leiden, The Netherlands
| | - A. Dahan
- Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
5
|
Oliveira LM, Moreira TS, Takakura AC. Interaction between Kölliker-Fuse/A7 and the parafacial respiratory region on the control of respiratory regulation. Respir Physiol Neurobiol 2024; 320:104201. [PMID: 38043841 DOI: 10.1016/j.resp.2023.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
6
|
Stucke AG, Levitt ES, Montandon G. Editorial: Opioid-induced respiratory depression: neural circuits and cellular pathways. Front Physiol 2023; 14:1348910. [PMID: 38179143 PMCID: PMC10766328 DOI: 10.3389/fphys.2023.1348910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Erica S. Levitt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gaspard Montandon
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Diao S, Wang D, Chang Y, Ni C, Fu D, Liu J, Gao S, Jia X, Wang T, Nan X, Cao H, Liu Z, Zhang X. Clinical study of the combined use of dexmedetomidine and remifentanil in patients with coronary heart disease undergoing 3D laparoscopic surgery with EEG bispectral index monitoring. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:378-385. [PMID: 38188350 PMCID: PMC10767478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study sought to investigate the safety and clinical outcomes associated with the combined administration of dexmedetomidine (Dex) and remifentanil (Rem) in patients with coronary heart disease undergoing three-dimensional (3D) laparoscopic surgery, with concurrent monitoring of the electroencephalography (EEG) bispectral index. METHODS This study is of a retrospective nature and involved a total of 60 patients with coronary heart disease who underwent 3D laparoscopic surgery at our hospital between June 2020 and September 2021. In a double-blind manner, these patients were randomly assigned to two groups: the control group (Group I), which consisted of 30 patients, and the treatment group (Group II) receiving a combination of Dex and Rem, also comprising 30 patients. The study's primary objective was to compare and assess the treatment outcomes in these two patient groups. RESULTS Patients in Group II who developed postoperative coronary heart disease experienced a significant reduction in blood pressure, heart rate, and electrocardiogram values (P<0.05). Additionally, Group II exhibited lower bispectral index (BIS) and visual analog scale (VAS) values (P<0.05). CONCLUSION In patients with coronary heart disease undergoing 3D laparoscopic surgery, the intraoperative use of Dex combined with Rem anesthesia offers several advantages. It helps stabilize hemodynamics, reducing the risk of myocardial ischemia, and significantly alleviates postoperative pain, all without increasing the likelihood of adverse postoperative reactions. Furthermore, this approach effectively dampens the intraoperative and postoperative stress response, facilitating enhanced recovery after surgery (ERAS). Overall, the clinical impact is positive, safe, and reliable.
Collapse
Affiliation(s)
- Shiqi Diao
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Ying Chang
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Chunyan Ni
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Dongmei Fu
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Jixin Liu
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Song Gao
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Xiunan Jia
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Tongrao Wang
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Xi Nan
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Hongling Cao
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Zongming Liu
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| | - Xitong Zhang
- Department of Anesthesiology, Jilin Cancer Hospital Changchun 130000, Jilin, P. R. China
| |
Collapse
|
8
|
van Lemmen M, Florian J, Li Z, van Velzen M, van Dorp E, Niesters M, Sarton E, Olofsen E, van der Schrier R, Strauss DG, Dahan A. Opioid Overdose: Limitations in Naloxone Reversal of Respiratory Depression and Prevention of Cardiac Arrest. Anesthesiology 2023; 139:342-353. [PMID: 37402248 DOI: 10.1097/aln.0000000000004622] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Opioids are effective analgesics, but they can have harmful adverse effects, such as addiction and potentially fatal respiratory depression. Naloxone is currently the only available treatment for reversing the negative effects of opioids, including respiratory depression. However, the effectiveness of naloxone, particularly after an opioid overdose, varies depending on the pharmacokinetics and the pharmacodynamics of the opioid that was overdosed. Long-acting opioids, and those with a high affinity at the µ-opioid receptor and/or slow receptor dissociation kinetics, are particularly resistant to the effects of naloxone. In this review, the authors examine the pharmacology of naloxone and its safety and limitations in reversing opioid-induced respiratory depression under different circumstances, including its ability to prevent cardiac arrest.
Collapse
Affiliation(s)
- Maarten van Lemmen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffrey Florian
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Zhihua Li
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eveline van Dorp
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elise Sarton
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - David G Strauss
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Malcolm NJ, Palkovic B, Sprague DJ, Calkins MM, Lanham JK, Halberstadt AL, Stucke AG, McCorvy JD. Mu-opioid receptor selective superagonists produce prolonged respiratory depression. iScience 2023; 26:107121. [PMID: 37416459 PMCID: PMC10320493 DOI: 10.1016/j.isci.2023.107121] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Synthetic opioids are increasingly challenging to combat the opioid epidemic and act primarily at opioid receptors, chiefly the G protein-coupled receptor (GPCR) μ-opioid receptor (MOR), which signals through G protein-dependent and β-arrestin pathways. Using a bioluminescence resonance energy transfer (BRET) system, we investigate GPCR-signaling profiles by synthetic nitazenes, which are known to cause overdose and death due to respiratory depression. We show that isotonitazene and its metabolite, N-desethyl isotonitazene, are very potent MOR-selective superagonists, surpassing both DAMGO G protein and β-arrestin recruitment activity, which are properties distinct from other conventional opioids. Both isotonitazene and N-desethyl isotonitazene show high potency in mouse analgesia tail-flick assays, but N-desethyl isotonitazene shows longer-lasting respiratory depression compared to fentanyl. Overall, our results suggest that potent MOR-selective superagonists may be a pharmacological property predictive of prolonged respiratory depression resulting in fatal consequences and should be examined for future opioid analgesics.
Collapse
Affiliation(s)
- Nicholas J. Malcolm
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel J. Sprague
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Janelle K. Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92108, USA
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
van Lemmen M, van der Schrier R, Dahan A, van Velzen M, Sarton E, Niesters M. Pharmacology of viable mechanism agnostic respiratory stimulants for the reversal of drug-induced respiratory depression in humans. Expert Opin Drug Metab Toxicol 2023; 19:671-679. [PMID: 37795596 DOI: 10.1080/17425255.2023.2262386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Drug-induced respiratory depression is potentially fatal and can be caused by various drugs such as synthetic opioids and tranquilizers. The only class of respiratory depressants that has a specific reversal agent are opioids, such as naloxone. These reversal agents have limited utility in situations of polysubstance ingestion with agents from multiple respiratory depressant classes. Hence, there is an unmet need for drugs that stimulate breathing irrespective of the underlying cause of respiratory depression, i.e. mechanism agnostic respiratory stimulants. AREAS COVERED In this review, we discuss agnostic respiratory stimulants, tested in humans with promising results, i.e. ampakines, drugs that act at the carotid bodies, N-methyl-D-aspartate receptor antagonist ketamine, and orexin receptor-2-agonist danavorexton, and others that demonstrated positive effects in animals but not yet in humans. EXPERT OPINION Rapid, effective rescuing of individuals who overdosed on respiratory depressants saves lives. While naloxone is the preferred drug for reversing opioid-induced respiratory depression, its effectiveness is limited in cases involving non-opioids. While several agnostic respiratory stimulants showed promise in humans, further research is needed to optimize dosing, evaluate safety and efficacy in deeper respiratory depression (apnea). Additionally, future studies should combine agnostic stimulants with naloxone, to improve rapid, effective rescue from drug overdoses.
Collapse
Affiliation(s)
- Maarten van Lemmen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
- PainLess Foundation, Leiden, the Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elise Sarton
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
- PainLess Foundation, Leiden, the Netherlands
| |
Collapse
|
11
|
Palkovic B, Mustapic S, Saric I, Stuth EAE, Stucke AG, Zuperku EJ. Changes in pontine and preBötzinger/Bötzinger complex neuronal activity during remifentanil-induced respiratory depression in decerebrate dogs. Front Physiol 2023; 14:1156076. [PMID: 37362432 PMCID: PMC10285059 DOI: 10.3389/fphys.2023.1156076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: In vivo studies using selective, localized opioid antagonist injections or localized opioid receptor deletion have identified that systemic opioids dose-dependently depress respiratory output through effects in multiple respiratory-related brainstem areas. Methods: With approval of the subcommittee on animal studies of the Zablocki VA Medical Center, experiments were performed in 53 decerebrate, vagotomized, mechanically ventilated dogs of either sex during isocapnic hyperoxia. We performed single neuron recordings in the Pontine Respiratory Group (PRG, n = 432) and preBötzinger/Bötzinger complex region (preBötC/BötC, n = 213) before and during intravenous remifentanil infusion (0.1-1 mcg/kg/min) and then until complete recovery of phrenic nerve activity. A generalized linear mixed model was used to determine changes in Fn with remifentanil and the statistical association between remifentanil-induced changes in Fn and changes in inspiratory and expiratory duration and peak phrenic activity. Analysis was controlled via random effects for animal, run, and neuron type. Results: Remifentanil decreased Fn in most neuron subtypes in the preBötC/BötC as well as in inspiratory (I), inspiratory-expiratory, expiratory (E) decrementing and non-respiratory modulated neurons in the PRG. The decrease in PRG inspiratory and non-respiratory modulated neuronal activity was associated with an increase in inspiratory duration. In the preBötC, the decrease in I-decrementing neuron activity was associated with an increase in expiratory and of E-decrementing activity with an increase in inspiratory duration. In contrast, decreased activity of I-augmenting neurons was associated with a decrease in inspiratory duration. Discussion: While statistical associations do not necessarily imply a causal relationship, our data suggest mechanisms for the opioid-induced increase in expiratory duration in the PRG and preBötC/BötC and how inspiratory failure at high opioid doses may result from a decrease in activity and decrease in slope of the pre-inspiratory ramp-like activity in preBötC/BötC pre-inspiratory neurons combined with a depression of preBötC/BötC I-augmenting neurons. Additional studies must clarify whether the observed changes in neuronal activity are due to direct neuronal inhibition or decreased excitatory inputs.
Collapse
Affiliation(s)
- Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Dubrava, Zagreb, Croatia
| | - Ivana Saric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Split, Split, Croatia
| | - Eckehard A. E. Stuth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Edward J. Zuperku
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
12
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Getsy PM, Baby SM, May WJ, Bates JN, Ellis CR, Feasel MG, Wilson CG, Lewis THJ, Gaston B, Hsieh YH, Lewis SJ. L-cysteine methyl ester overcomes the deleterious effects of morphine on ventilatory parameters and arterial blood-gas chemistry in unanesthetized rats. Front Pharmacol 2022; 13:968378. [PMID: 36249760 PMCID: PMC9554613 DOI: 10.3389/fphar.2022.968378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
We are developing a series of thiolesters that produce an immediate and sustained reversal of the deleterious effects of opioids, such as morphine and fentanyl, on ventilation without diminishing the antinociceptive effects of these opioids. We report here the effects of systemic injections of L-cysteine methyl ester (L-CYSme) on morphine-induced changes in ventilatory parameters, arterial-blood gas (ABG) chemistry (pH, pCO2, pO2, sO2), Alveolar-arterial (A-a) gradient (i.e., the index of alveolar gas-exchange within the lungs), and antinociception in unanesthetized Sprague Dawley rats. The administration of morphine (10 mg/kg, IV) produced a series of deleterious effects on ventilatory parameters, including sustained decreases in tidal volume, minute ventilation, inspiratory drive and peak inspiratory flow that were accompanied by a sustained increase in end inspiratory pause. A single injection of L-CYSme (500 μmol/kg, IV) produced a rapid and long-lasting reversal of the deleterious effects of morphine on ventilatory parameters, and a second injection of L-CYSme (500 μmol/kg, IV) elicited pronounced increases in ventilatory parameters, such as minute ventilation, to values well above pre-morphine levels. L-CYSme (250 or 500 μmol/kg, IV) also produced an immediate and sustained reversal of the deleterious effects of morphine (10 mg/kg, IV) on arterial blood pH, pCO2, pO2, sO2 and A-a gradient, whereas L-cysteine (500 μmol/kg, IV) itself was inactive. L-CYSme (500 μmol/kg, IV) did not appear to modulate the sedative effects of morphine as measured by righting reflex times, but did diminish the duration, however, not the magnitude of the antinociceptive actions of morphine (5 or 10 mg/kg, IV) as determined in tail-flick latency and hindpaw-withdrawal latency assays. These findings provide evidence that L-CYSme can powerfully overcome the deleterious effects of morphine on breathing and gas-exchange in Sprague Dawley rats while not affecting the sedative or early stage antinociceptive effects of the opioid. The mechanisms by which L-CYSme interferes with the OR-induced signaling pathways that mediate the deleterious effects of morphine on ventilatory performance, and by which L-CYSme diminishes the late stage antinociceptive action of morphine remain to be determined.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Paulina M. Getsy,
| | | | - Walter J. May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Christopher R. Ellis
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Michael G. Feasel
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Algera H, van der Schrier R, Cavalla D, van Velzen M, Roozekrans M, McMorn A, Snape M, Horrigan JP, Evans S, Kiernan B, Sarton E, Olofsen E, Niesters M, Dahan A. Respiratory effects of the atypical tricyclic antidepressant tianeptine in human models of opioid-induced respiratory depression. Anesthesiology 2022; 137:446-458. [PMID: 35867853 DOI: 10.1097/aln.0000000000004324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Animal data suggest that the antidepressant and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor modulator tianeptine is able to prevent opioid-induced respiratory depression. We hypothesize that oral or intravenous tianeptine can effectively prevent or counteract opioid-induced respiratory depression in humans. METHODS Healthy male and female volunteers participated in two studies that had a randomized, double blind, placebo-controlled, crossover design. We first tested oral tianeptine (37.5, 50 and 100 mg, 8 subjects/group) pretreatment followed by induction of alfentanil-induced respiratory depression (alfentanil target concentration 100 ng/mL). Primary endpoint was ventilation at an extrapolated end-tidal carbon dioxide concentration of 55 mmHg (V̇E55). We next determined the ability of four subsequent and increasing infusions of intravenous tianeptine (target tianeptine plasma concentrations 400, 1,000, 1,500 and 2,000 ng/mL, each given over 15 min), to counteract remifentanil-induced respiratory depression in 15 volunteers. Ventilation was measured at isohypercpania (baseline ventilation 20 ± 2 L/min). Primary endpoint was minute ventilation during the 60 min of tianeptine versus placebo infusion. RESULTS Alfentanil reduced V̇E55 to 13.7 (95% CI 8.6-18.8) L/min following placebo pretreatment and to 17.9 (10.2-25.7) L/min following 50 mg tianeptine pretreatment (mean difference between treatments 4.2 (-11.5-3.0) L/min, p = 0.070). Intravenous tianeptine in the measured concentration range of 500 to 2,000 ng/ml did not stimulate ventilation but instead worsened remifentanil-induced respiratory depression: tianeptine 9.6 ± 0.8 L/min versus placebo 15.0 ± 0.9 L/min, mean difference 5.3 L/min, 95% CI 2.5-8.2 L/min; p = 0.001, after 1 hour of treatment. CONCLUSIONS Neither oral nor intravenous tianeptine were respiratory stimulants. Intravenous tianeptine over the concentration range of 500-2000 ng/mL worsened respiratory depression induced by remifentanil.
Collapse
Affiliation(s)
- Hyke Algera
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Margot Roozekrans
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Anesthesiology, Noordwest Ziekenhuisgroep, location Alkmaar, Alkmaar, the Netherlands
| | | | | | | | | | | | - Elise Sarton
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands.,PainLess Foundation, Leiden, the Netherlands
| |
Collapse
|
15
|
Gumnit MG, Watters JJ, Baker TL, Johnson SM, Johnson SM. Mu-opioid receptor-dependent transformation of respiratory motor pattern in neonates in vitro. Front Physiol 2022; 13:921466. [PMID: 35936900 PMCID: PMC9353126 DOI: 10.3389/fphys.2022.921466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Endogenous opioid peptides activating mu-opioid receptors (MORs) are part of an intricate neuromodulatory system that coordinates and optimizes respiratory motor output to maintain blood-gas homeostasis. MOR activation is typically associated with respiratory depression but also has excitatory effects on breathing and respiratory neurons. We hypothesized that low level MOR activation induces excitatory effects on the respiratory motor pattern. Thus, low concentrations of an MOR agonist drug (DAMGO, 10–200 nM) were bath-applied to neonatal rat brainstem-spinal cord preparations while recording inspiratory-related motor output on cervical spinal roots (C4-C5). Bath-applied DAMGO (50–200 nM) increased inspiratory motor burst amplitude by 40–60% during (and shortly following) drug application with decreased burst frequency and minute activity. Reciprocal changes in inspiratory burst amplitude and frequency were balanced such that 20 min after DAMGO (50–200 nM) application, minute activity was unaltered compared to pre-DAMGO levels. The DAMGO-induced inspiratory burst amplitude increase did not require crossed cervical spinal pathways, was expressed on thoracic ventral spinal roots (T4-T8) and remained unaltered by riluzole pretreatment (blocks persistent sodium currents associated with gasping). Split-bath experiments showed that the inspiratory burst amplitude increase was induced only when DAMGO was bath-applied to the brainstem and not the spinal cord. Thus, MOR activation in neonates induces a respiratory burst amplitude increase via brainstem-specific mechanisms. The burst amplitude increase counteracts the expected MOR-dependent frequency depression and may represent a new mechanism by which MOR activation influences respiratory motor output.
Collapse
|
16
|
Baldo BA. Current research in pathophysiology of opioid-induced respiratory depression, neonatal opioid withdrawal syndrome, and neonatal antidepressant exposure syndrome. Curr Res Toxicol 2022; 3:100078. [PMID: 35734228 PMCID: PMC9207297 DOI: 10.1016/j.crtox.2022.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.
Collapse
Key Words
- AAV, adeno-associated virus
- CDC, Centers for Disease control and prevention
- CTAP, MOR agonist (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2)
- DAMGO, synthetic specific MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin
- DRG, dorsal respiratory group
- FDA, Food and Drug Administration
- GIRK, G protein-gated inwardly-rectifying potassium (K+)
- GPCR, G protein-coupled receptor
- KCNQ, voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family
- KF, Kölliker-Fuse nucleus
- Kölliker-Fuse nucleus and opioid-induced respiratory depression
- MOR, mu opioid receptor
- NADES, neonatal antidepressant exposure syndrome
- NAS, neonatal abstinence syndrome
- NIH, National Institutes of Health
- NK-1R, neurokinin-1 receptor
- NOWES, neonatal opioid withdrawal syndrome
- Neonatal opioid withdrawal syndrome
- Neural mediation of opioid-induced respiratory depression
- OAD, opioid analgesic drug
- OIRD, opioid-induced respiratory depression
- PBL, lateral parabrachial
- PBN, parabrachial nucleus
- PRG, pontine respiratory group
- Pathophysiology of opioid-induced respiratory depression
- Pre-Bötzinger complex and opioid-induced respiratory depression
- RD, respiratory depression
- TACR1, tachykinin receptor 1
- VRG, ventral respiratory group
- preBötC, pre-Bötzinger complex
Collapse
Affiliation(s)
- Brian A. Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney and Department of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Algera MH, Cotten JF, van Velzen M, Niesters M, Boon M, Shoham DS, Dandrea KE, van der Schrier R, Dahan A. Are thyrotropin-releasing hormone (TRH) and analog taltirelin viable reversal agents of opioid-induced respiratory depression? Pharmacol Res Perspect 2022; 10:e00974. [PMID: 35621218 PMCID: PMC9137104 DOI: 10.1002/prp2.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Opioid-induced respiratory depression (OIRD) is a potentially life-threatening complication of opioid consumption. Apart from naloxone, an opioid antagonist that has various disadvantages, a possible reversal strategy is treatment of OIRD with the hypothalamic hormone and neuromodulator thyrotropin-releasing hormone (TRH). In this review, we performed a search in electronic databases and retrieved 52 papers on the effect of TRH and TRH-analogs on respiration and their efficacy in the reversal of OIRD in awake and anesthetized mammals, including humans. Animal studies show that TRH and its analog taltirelin stimulate breathing via an effect at the preBötzinger complex, an important respiratory rhythm generator within the brainstem respiratory network. An additional respiratory excitatory effect may be related to TRH's analeptic effect. In awake and anesthetized rodents, TRH and taltirelin improved morphine- and sufentanil-induced respiratory depression, by causing rapid shallow breathing. This pattern of breathing increases the work of breathing, dead space ventilation, atelectasis, and hypoxia. In awake and anesthetized humans, a continuous infusion of intravenous TRH with doses up to 8 mg, did not reverse sufentanil- or remifentanil-induced respiratory depression. This is related to poor penetration of TRH into the brain compartment but also other causes are discussed. No human data on taltirelin are available. In conclusion, data from animals and human indicate that TRH is not a viable reversal agent of OIRD in awake or anesthetized humans. Further human studies on the efficacy and safety of TRH's more potent and longer lasting analog taltirelin are needed as this agent seems to be a more promising reversal drug.
Collapse
Affiliation(s)
- Marieke Hyke Algera
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph F. Cotten
- Department of AnesthesiaCritical Care, and Pain MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Monique van Velzen
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marieke Niesters
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Martijn Boon
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Daniel S. Shoham
- Department of AnesthesiaCritical Care, and Pain MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Kaye E. Dandrea
- Department of AnesthesiaCritical Care, and Pain MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Albert Dahan
- Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
18
|
Mechanisms of opioid-induced respiratory depression. Arch Toxicol 2022; 96:2247-2260. [PMID: 35471232 DOI: 10.1007/s00204-022-03300-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
Opioid-induced respiratory depression (OIRD), the primary cause of opioid-induced death, is the neural depression of respiratory drive which, together with a decreased level of consciousness and obstructive sleep apnea, cause ventilatory insufficiency. Variability of responses to opioids and individual differences in physiological and neurological states (e.g., anesthesia, sleep-disordered breathing, concurrent drug administration) add to the risk. Multiple sites can independently exert a depressive effect on breathing, making it unclear which sites are necessary for the induction of OIRD. The generator of inspiratory rhythm is the preBötzinger complex (preBötC) in the ventrolateral medulla. Other important brainstem respiratory centres include the pontine Kölliker-Fuse and adjacent parabrachial nuclei (KF/PBN) in the dorsal lateral pons, and the dorsal respiratory group in the medulla. Deletion of μ opioid receptors from neurons showed that the preBötC and KF/PBN contribute to OIRD with the KF as a respiratory modulator and the preBötC as inspiratory rhythm generator. Glutamatergic neurons expressing NK-1R and somatostatin involved in the autonomic function of breathing, and modulatory signal pathways involving GIRK and KCNQ potassium channels, remain poorly understood. Reversal of OIRD has relied heavily on naloxone which also reverses analgesia but mismatches between the half-lives of naloxone and opioids can make it difficult to clinically safely avoid OIRD. Maternal opioid use, which is rising, increases apneas and destabilizes neonatal breathing but opioid effects on maternal and neonatal respiratory circuits in neonatal abstinence syndrome (NAS) are not well understood. Methadone, administered to alleviate symptoms of NAS in humans, desensitizes rats to RD.
Collapse
|
19
|
Palkovic B, Cook-Snyder D, Callison JJ, Langer TM, Nugent R, Stuth EA, Zuperku EJ, Stucke AG. Contribution of the caudal medullary raphe to opioid induced respiratory depression. Respir Physiol Neurobiol 2022; 299:103855. [PMID: 35124284 PMCID: PMC8897277 DOI: 10.1016/j.resp.2022.103855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Opioid-induced respiratory depression can be partially antagonized in the preBötzinger Complex and Parabrachial Nucleus/Kölliker-Fuse Complex. We hypothesized that additional opioid antagonism in the caudal medullary raphe completely reverses the opioid effect. METHODS In adult ventilated, vagotomized, decerebrate rabbits, we administrated remifentanil intravenously at "analgesic", "apneic", and "very high" doses and determined the reversal with sequential naloxone microinjections into the bilateral Parabrachial Nucleus/Kölliker-Fuse Complex, preBötzinger Complex, and caudal medullary raphe. In separate animals, we injected opioid antagonists into the raphe without intravenous remifentanil. RESULTS Sequential naloxone microinjections completely reversed respiratory rate depression from "analgesic" and "apneic" remifentanil, but not "very high" remifentanil concentrations. Antagonist injection into the caudal medullary raphe without remifentanil independently increased respiratory rate. CONCLUSIONS Opioid-induced respiratory depression results from a combined effect on the respiratory rhythm generator and respiratory drive. The effect in the caudal medullary raphe is complex as we also observed local antagonism of endogenous opioid receptor activation, which has not been described before.
Collapse
|
20
|
Abstract
Opioids may produce life-threatening respiratory depression and death from their actions at the opioid receptors within the brainstem respiratory neuronal network. Since there is an increasing number of conditions where the administration of the opioid receptor antagonist naloxone is inadequate or undesired, there is an increased interest in the development of novel reversal and prevention strategies aimed at providing efficacy close to that of the opioid receptor antagonist naloxone but with fewer of its drawbacks such as its short duration of action and lesser ability to reverse high-affinity opioids, such as carfentanil, or drug combinations. To give an overview of this highly relevant topic, the authors systematically discuss predominantly experimental pharmacotherapies, published in the last 5 yr, aimed at reversal of opioid-induced respiratory depression as alternatives to naloxone. The respiratory stimulants are discussed based on their characteristics and mechanism of action: nonopioid controlled substances (e.g., amphetamine, cannabinoids, ketamine), hormones (thyrotropin releasing hormone, oxytocin), nicotinic acetylcholine receptor agonists, ampakines, serotonin receptor agonists, antioxidants, miscellaneous peptides, potassium channel blockers acting at the carotid bodies (doxapram, ENA001), sequestration techniques (scrubber molecules, immunopharmacotherapy), and opioids (partial agonists/antagonists). The authors argue that none of these often still experimental therapies are sufficiently tested with respect to efficacy and safety, and many of the agents presented have a lesser efficacy at deeper levels of respiratory depression, i.e., inability to overcome apnea, or have ample side effects. The authors suggest development of reversal strategies that combine respiratory stimulants with naloxone. Furthermore, they encourage collaborations between research groups to expedite development of viable reversal strategies of potent synthetic opioid-induced respiratory depression.
Collapse
|
21
|
Zhuang J, Xu F. Systemic 8-OH-DPAT challenge causes hyperventilation largely via activating pre-botzinger complex 5-HT 1A receptors. Respir Physiol Neurobiol 2021; 296:103810. [PMID: 34728431 DOI: 10.1016/j.resp.2021.103810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Systemic 8-OH-DPAT (a 5-HT1A receptor agonist) challenge evokes hyperventilation independent of peripheral 5-HT1A receptors. Though the pre-Botzinger Complex (PBC) is critical in generating respiratory rhythm and activation of local 5-HT1A receptors induces tachypnea via disinhibition of local GABAA neurons, its role in the respiratory response to systemic 8-OH-DPAT challenge is still unclear. In anesthetized rats, 8-OH-DPAT (100 μg/kg, iv) was injected twice to confirm the reproducibility of the evoked responses. The same challenges were performed after bilateral microinjections of (S)-WAY-100135 (a 5-HT1A receptor antagonist) or gabazine (a GABAA receptor antagonist) into the PBC. Our results showed that: 1) 8-OH-DPAT caused reproducible hyperventilation associated with hypotension and bradycardia; 2) microinjections of (S)-WAY-100135 into the PBC attenuated the hyperventilation by ˜60 % without effect on the evoked hypotension and bradycardia; and 3) the same hyperventilatory attenuation was also observed after microinjections of gabazine into the PBC. Our data suggest that PBC 5-HT1A receptors play a key role in the respiratory response to systemic 8-OH-DPAT challenge likely via disinhibiting local GABAergic neurons.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, United States
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, United States.
| |
Collapse
|