1
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
2
|
Abstract
For a chemotherapeutic agent to be effective, it must conquer the presence of blood-brain barrier (BBB), which limits the penetration of drugs into the brain. Tumours in the brain compromise the integrity of BBB and result in a highly heterogeneous vasculature, known as blood-brain tumour barrier (BBTB). In this chapter, we firstly highlight the cellular and molecular characteristics of the BBB and BBTB as well as the challenges aroused by BBB/BBTB for drug delivery. Secondly, we discuss the current strategies overcoming the challenges in invasive and non-invasive manners. Finally, we highlight the emerging strategy using focused ultrasound (FUS) with systemic microbubbles to transiently and reversibly enhance the permeability of these barriers for drug delivery.
Collapse
|
3
|
Wu SK, Tsai CL, Huang Y, Hynynen K. Focused Ultrasound and Microbubbles-Mediated Drug Delivery to Brain Tumor. Pharmaceutics 2020; 13:pharmaceutics13010015. [PMID: 33374205 PMCID: PMC7823947 DOI: 10.3390/pharmaceutics13010015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
The presence of blood–brain barrier (BBB) and/or blood–brain–tumor barriers (BBTB) is one of the main obstacles to effectively deliver therapeutics to our central nervous system (CNS); hence, the outcomes following treatment of malignant brain tumors remain unsatisfactory. Although some approaches regarding BBB disruption or drug modifications have been explored, none of them reach the criteria of success. Convention-enhanced delivery (CED) directly infuses drugs to the brain tumor and surrounding tumor infiltrating area over a long period of time using special catheters. Focused ultrasound (FUS) now provides a non-invasive method to achieve this goal via combining with systemically circulating microbubbles to locally enhance the vascular permeability. In this review, different approaches of delivering therapeutic agents to the brain tumors will be discussed as well as the characterization of BBB and BBTB. We also highlight the mechanism of FUS-induced BBB modulation and the current progress of this technology in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Chia-Lin Tsai
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (S.-K.W.); (C.-L.T.); (Y.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Correspondence:
| |
Collapse
|
4
|
Nicolas JM, de Lange ECM. Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity. AAPS JOURNAL 2019; 21:67. [PMID: 31140038 DOI: 10.1208/s12248-019-0340-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Quantitative Pharmacology DMPK Department, UCB BioPharma, Chemin du Foriest, 1420, Braine L'Alleud, Belgium.
| | - Elizabeth C M de Lange
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Wu PE, Juurlink DN. Clinical Review: Loperamide Toxicity. Ann Emerg Med 2017; 70:245-252. [PMID: 28506439 DOI: 10.1016/j.annemergmed.2017.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/26/2017] [Accepted: 04/03/2017] [Indexed: 11/27/2022]
Abstract
Loperamide is a nonprescription opioid widely used for the treatment of diarrhea. Although it is relatively safe at therapeutic doses, increasing reports describe its misuse and abuse at very high doses either for euphoric effects or to attenuate symptoms of opioid withdrawal. Life-threatening loperamide toxicity can result from the relatively new clinical syndrome of loperamide-induced cardiac toxicity. These patients are often young and may present in cardiac arrest or with unheralded, recurrent syncope in conjunction with ECG abnormalities, including marked QT-interval prolongation, QRS-interval widening, and ventricular dysrhythmias. Features of conventional opioid toxicity may also be present. The mainstays of treatment include advanced cardiac life support and supportive care, although selected patients may be candidates for overdrive pacing, intravenous lipid emulsion, or extracorporeal membrane oxygenation. In patients who survive loperamide toxicity, consideration should be given to the treatment of an underlying opioid use disorder, if present.
Collapse
Affiliation(s)
- Peter E Wu
- Department of Medicine, University Health Network, Toronto, Ontario, Canada; Division of Clinical Pharmacology and Toxicology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - David N Juurlink
- Division of Clinical Pharmacology and Toxicology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Institute for Clinical and Evaluative Sciences and Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Wanek T, Römermann K, Mairinger S, Stanek J, Sauberer M, Filip T, Traxl A, Kuntner C, Pahnke J, Bauer F, Erker T, Löscher W, Müller M, Langer O. Factors Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier Measured with Positron Emission Tomography. Mol Pharm 2015. [PMID: 26202880 PMCID: PMC4566129 DOI: 10.1021/acs.molpharmaceut.5b00168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The
adenosine triphosphate-binding cassette transporter P-glycoprotein
(ABCB1/Abcb1a) restricts at the blood–brain barrier (BBB) brain
distribution of many drugs. ABCB1 may be involved in drug–drug
interactions (DDIs) at the BBB, which may lead to changes in brain
distribution and central nervous system side effects of drugs. Positron
emission tomography (PET) with the ABCB1 substrates (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide and the ABCB1 inhibitor tariquidar has allowed
direct comparison of ABCB1-mediated DDIs at the rodent and human BBB.
In this work we evaluated different factors which could influence
the magnitude of the interaction between tariquidar and (R)-[11C]verapamil or [11C]-N-desmethyl-loperamide at the BBB and thereby contribute to previously
observed species differences between rodents and humans. We performed in vitro transport experiments with [3H]verapamil
and [3H]-N-desmethyl-loperamide in ABCB1
and Abcb1a overexpressing cell lines. Moreover we conducted in vivo PET experiments and biodistribution studies with
(R)-[11C]verapamil and [11C]-N-desmethyl-loperamide in wild-type mice without and with
tariquidar pretreatment and in homozygous Abcb1a/1b(−/−) and heterozygous Abcb1a/1b(+/−) mice. We found no differences for in vitro transport of [3H]verapamil and [3H]-N-desmethyl-loperamide by ABCB1 and Abcb1a and its inhibition
by tariquidar. [3H]-N-Desmethyl-loperamide
was transported with a 5 to 9 times higher transport ratio than [3H]verapamil in ABCB1- and Abcb1a-transfected cells. In vivo, brain radioactivity concentrations were lower for
[11C]-N-desmethyl-loperamide than for
(R)-[11C]verapamil. Both radiotracers
showed tariquidar dose dependent increases in brain distribution with
tariquidar half-maximum inhibitory concentrations (IC50) of 1052 nM (95% confidence interval CI: 930–1189) for (R)-[11C]verapamil and 1329 nM (95% CI: 980–1801)
for [11C]-N-desmethyl-loperamide. In homozygous Abcb1a/1b(−/−) mice brain radioactivity
distribution was increased by 3.9- and 2.8-fold and in heterozygous Abcb1a/1b(+/−) mice by 1.5- and 1.1-fold,
for (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide, respectively, as compared
with wild-type mice. For both radiotracers radiolabeled metabolites
were detected in plasma and brain. When brain and plasma radioactivity
concentrations were corrected for radiolabeled metabolites, brain
distribution of (R)-[11C]verapamil and
[11C]-N-desmethyl-loperamide was increased
in tariquidar (15 mg/kg) treated animals by 14.1- and 18.3-fold, respectively,
as compared with vehicle group. Isoflurane anesthesia altered [11C]-N-desmethyl-loperamide but not (R)-[11C]verapamil metabolism, and this had a
direct effect on the magnitude of the increase in brain distribution
following ABCB1 inhibition. Our data furthermore suggest that in the
absence of ABCB1 function brain distribution of [11C]-N-desmethyl-loperamide but not (R)-[11C]verapamil may depend on cerebral blood flow. In conclusion,
we have identified a number of important factors, i.e., substrate
affinity to ABCB1, brain uptake of radiolabeled metabolites, anesthesia,
and cerebral blood flow, which can directly influence the magnitude
of ABCB1-mediated DDIs at the BBB and should therefore be taken into
consideration when interpreting PET results.
Collapse
Affiliation(s)
- Thomas Wanek
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology & Pharmacy, University of Veterinary Medicine Hannover , Hannover, Germany.,Department of Clinical Pharmacology, Medical University of Vienna , Vienna, Austria
| | - Severin Mairinger
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria
| | - Johann Stanek
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna , Vienna, Austria
| | - Michael Sauberer
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria
| | - Thomas Filip
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria
| | - Alexander Traxl
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria
| | - Claudia Kuntner
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS) , Oslo, Norway.,Lübeck Institute of Experimental Dermatology, University of Lübeck , Lübeck, Germany
| | - Florian Bauer
- Department of Medicinal Chemistry, University of Vienna , Vienna, Austria
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna , Vienna, Austria
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology & Pharmacy, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna , Vienna, Austria
| | - Oliver Langer
- Health & Environment Department, AIT Austrian Institute of Technology GmbH , Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
7
|
Kim TE, Lee H, Lim KS, Lee S, Yoon SH, Park KM, Han H, Shin SG, Jang IJ, Yu KS, Cho JY. Effects of HM30181, a P-glycoprotein inhibitor, on the pharmacokinetics and pharmacodynamics of loperamide in healthy volunteers. Br J Clin Pharmacol 2015; 78:556-64. [PMID: 24602137 DOI: 10.1111/bcp.12368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/27/2014] [Indexed: 01/02/2023] Open
Abstract
AIMS HM30181 is a third generation P-glycoprotein (P-gp) inhibitor currently under development. The objectives of this study were to evaluate the effects of a single dose of HM30181 on the pharmacodynamics and pharmacokinetics of loperamide, a P-gp substrate, and to compare them with those of quinidine. METHODS Eighteen healthy male subjects were administered loperamide alone (period 1) or with loperamide plus quinidine or HM30181 in period 2 or 3, respectively. In period 3, subjects randomly received one of three HM30181 doses: 15, 60 or 180 mg. Changes in pupil size, alertness, oxygen saturation and the oral bioavailability of loperamide were assessed in each period. In addition, the pharmacokinetics of HM30181 were determined. RESULTS Pupil size, alertness and oxygen saturation did not change over time when loperamide alone or loperamide plus HM30181 was administered while HM30181 significantly increased the systemic exposure to loperamide, i.e. the geometric mean ratio (90% confidence interval) of AUC(0,tlast ) for loperamide with and without HM30181 was 1.48 (1.08, 2.02). Co-administered quinidine significantly increased the systemic exposure to loperamide 2.2-fold (1.53, 3.18), which also markedly reduced pupil size, resulting in a decrease of 24.7 mm h in the area under the effect curve of pupil size change from baseline compared with loperamide alone. CONCLUSIONS HM30181 inhibits P-gp mainly in the intestinal endothelium, which can be beneficial because pan-inhibition of P-gp, particularly in the brain, could lead to detrimental adverse events. Further studies are warranted to investigate adequately the dose-exposure relationship of HM30181, along with its duration of effect.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van Tellingen O, Yetkin-Arik B, de Gooijer M, Wesseling P, Wurdinger T, de Vries H. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19:1-12. [DOI: 10.1016/j.drup.2015.02.002] [Citation(s) in RCA: 662] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
|
9
|
Kreisl WC, Bhatia R, Morse CL, Woock AE, Zoghbi SS, Shetty HU, Pike VW, Innis RB. Increased permeability-glycoprotein inhibition at the human blood-brain barrier can be safely achieved by performing PET during peak plasma concentrations of tariquidar. J Nucl Med 2014; 56:82-7. [PMID: 25500831 DOI: 10.2967/jnumed.114.146894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The permeability-glycoprotein (P-gp) efflux transporter is densely expressed at the blood-brain barrier, and its resultant spare capacity requires substantial blockade to increase the uptake of avid substrates, blunting the ability of investigators to measure clinically meaningful alterations in P-gp function. This study, conducted in humans, examined 2 P-gp inhibitors (tariquidar, a known inhibitor, and disulfiram, a putative inhibitor) and 2 routes of administration (intravenous and oral) to maximally increase brain uptake of the avid and selective P-gp substrate (11)C-N-desmethyl-loperamide (dLop) while avoiding side effects associated with high doses of tariquidar. METHODS Forty-two (11)C-dLop PET scans were obtained from 37 healthy volunteers. PET was performed with (11)C-dLop under the following 5 conditions: injected under baseline conditions without P-gp inhibition, injected 1 h after intravenous tariquidar infusion, injected during intravenous tariquidar infusion, injected after oral tariquidar, and injected after disulfiram. (11)C-dLop uptake was quantified with kinetic modeling using metabolite-corrected arterial input function or by measuring the area under the time-activity curve in the brain from 10 to 30 min. RESULTS Neither oral tariquidar nor oral disulfiram increased brain uptake of (11)C-dLop. Injecting (11)C-dLop during tariquidar infusion, when plasma tariquidar concentrations reach their peak, resulted in a brain uptake of the radioligand approximately 5-fold greater than baseline. Brain uptake was similar with 2 and 4 mg of intravenous tariquidar per kilogram; however, the lower dose was better tolerated. Injecting (11)C-dLop after tariquidar infusion also increased brain uptake, though higher doses (up to 6 mg/kg) were required. Brain uptake of (11)C-dLop increased fairly linearly with increasing plasma tariquidar concentrations, but we are uncertain whether maximal uptake was achieved. CONCLUSION We sought to increase the dynamic range of P-gp function measured after blockade. Performing (11)C-dLop PET during peak plasma concentrations of tariquidar, achieved with concurrent administration of intravenous tariquidar, resulted in greater P-gp inhibition at the human blood-brain barrier than delayed administration and allowed the use of a lower, more tolerable dose of tariquidar. On the basis of prior monkey studies, we suspect that plasma concentrations of tariquidar did not fully block P-gp; however, higher doses of tariquidar would likely be associated with unacceptable side effects.
Collapse
Affiliation(s)
- William C Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and Taub Institute, Columbia University Medical Center, New York, New York
| | - Ritwik Bhatia
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| | - Alicia E Woock
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| | - H Umesha Shetty
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and
| |
Collapse
|
10
|
Sugimoto H, Hirabayashi H, Amano N, Moriwaki T. Retrospective analysis of P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier in humans. Drug Metab Dispos 2013; 41:683-8. [PMID: 23340958 DOI: 10.1124/dmd.112.049577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
To date, the in vitro-in vivo correlation (IVIVC) of P-glycoprotein (P-gp)-mediated drug-drug interaction (DDI) at the blood-brain barrier (BBB) in rats indicated that the cutoff value to significantly affect the brain penetration of digoxin was [I,unbound/Ki] of 1, where I,unbound is the unbound plasma concentration of P-gp inhibitors. On the basis of the IVIVC in rats, we speculated that clinically used P-gp inhibitors do not cause DDI at the human BBB, because none of the compounds studied was [I,unbound/Ki]>1 at therapeutic doses. Recently, positron emission tomography studies with P-gp substrates, such as [(11)C]verapamil, [(11)C]N-desmethyl loperamide, and [(11)C]loperamide, together with potent P-gp inhibitors, have indicated that increases in the influx rate constant for brain entry were observed in humans. Therefore, we aimed to retrospectively analyze the results of P-gp-mediated DDIs with in vitro P-gp inhibition assays and to confirm the appropriate cutoff value. In vitro P-gp inhibition assays using verapamil, N-desmethyl loperamide, and loperamide as P-gp probe substrates were performed in human multidrug resistance protein 1-expressing LLC-PK1 cells. The efflux ratios decreased in the presence of P-gp inhibitors, and the Ki of tariquidar was 10 nmol/L, regardless of probe substrates. Taking the in vitro Ki and unbound plasma concentrations in clinical DDI studies together, the criterion [I,unbound/Ki] of 1 was an appropriate cutoff limit to observe significant P-gp-mediated DDI at the BBB in humans. On the other hand, no significant DDI was observed in cases in which [I,unbound/Ki] was less than 0.1. This criterion was comparable to the previous IVIVC result in rats.
Collapse
Affiliation(s)
- Hiroshi Sugimoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | |
Collapse
|
11
|
Westerhout J, Smeets J, Danhof M, de Lange ECM. The impact of P-gp functionality on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokinet Pharmacodyn 2013; 40:327-42. [PMID: 23539188 PMCID: PMC4269305 DOI: 10.1007/s10928-013-9314-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/19/2013] [Indexed: 12/05/2022]
Abstract
In the development of central nervous system (CNS)-targeted drugs, the prediction of human CNS target exposure is a big challenge. Cerebrospinal fluid (CSF) concentrations have often been suggested as a ‘good enough’ surrogate for brain extracellular fluid (brainECF, brain target site) concentrations in humans. However, brain anatomy and physiology indicates prudence. We have applied a multiple microdialysis probe approach in rats, for continuous measurement and direct comparison of quinidine kinetics in brainECF, CSF, and plasma. The data obtained indicated important differences between brainECF and CSF kinetics, with brainECF kinetics being most sensitive to P-gp inhibition. To describe the data we developed a systems-based pharmacokinetic model. Our findings indicated that: (1) brainECF- and CSF-to-unbound plasma AUC0–360 ratios were all over 100 %; (2) P-gp also restricts brain intracellular exposure; (3) a direct transport route of quinidine from plasma to brain cells exists; (4) P-gp-mediated efflux of quinidine at the blood–brain barrier seems to result of combined efflux enhancement and influx hindrance; (5) P-gp at the blood–CSF barrier either functions as an efflux transporter or is not functioning at all. It is concluded that in parallel obtained data on unbound brainECF, CSF and plasma concentrations, under dynamic conditions, is a complex but most valid approach to reveal the mechanisms underlying the relationship between brainECF and CSF concentrations. This relationship is significantly influenced by activity of P-gp. Therefore, information on functionality of P-gp is required for the prediction of human brain target site concentrations of P-gp substrates on the basis of human CSF concentrations.
Collapse
Affiliation(s)
- Joost Westerhout
- Department of Pharmacology, Leiden/Amsterdam Center for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | |
Collapse
|
12
|
Krajcsi P. Drug-transporter interaction testing in drug discovery and development. World J Pharmacol 2013; 2:35-46. [DOI: 10.5497/wjp.v2.i1.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/25/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
The human body consists of several physiological barriers that express a number of membrane transporters. For an orally absorbed drug the intestinal, hepatic, renal and blood-brain barriers are of the greatest importance. The ATP-binding cassette (ABC) transporters that mediate cellular efflux and the solute carrier transporters that mostly mediate cellular uptake are the two superfamilies responsible for membrane transport of vast majority of drugs and drug metabolites. The total number of human transporters in the two superfamilies exceeds 400, and about 40-50 transporters have been characterized for drug transport. The latest Food and Drug Administration guidance focuses on P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 2 (OCT2), and organic anion transporters 1 (OAT1) and OAT3. The European Medicines Agency’s shortlist additionally contains the bile salt export pump, OCT1, and the multidrug and toxin extrusion transporters, multidrug and toxin extrusion protein 1 (MATE1) and MATE2/MATE2K. A variety of transporter assays are available to test drug-transporter interactions, transporter-mediated drug-drug interactions, and transporter-mediated toxicity. The drug binding site of ABC transporters is accessible from the cytoplasm or the inner leaflet of the plasma membrane. Therefore, vesicular transport assays utilizing inside-out vesicles are commonly used assays, where the directionality of transport results in drugs being transported into the vesicle. Monolayer assays utilizing polarized cells expressing efflux transporters are the test systems suggested by regulatory agencies. However, in some monolayers, uptake transporters must be coexpressed with efflux transporters to assure detectable transport of low passive permeability drugs. For uptake transporters mediating cellular drug uptake, utilization of stable transfectants have been suggested. In vivo animal models complete the testing battery. Some issues, such as in vivo relevance, gender difference, age and ontogeny issues can only be addressed using in vivo models. Transporter specificity is provided by using knock-out or mutant models. Alternatively, chemical knock-outs can be employed. Compensatory changes are less likely when using chemical knock-outs. On the other hand, specific inhibitors for some uptake transporters are not available, limiting the options to genetic knock-outs.
Collapse
|
13
|
Abstract
Efflux pump mechanisms perform important physiological functions such as prevention of toxin absorption from the gastrointestinal tract, elimination of bile from the hepatocytes, effective functioning of the blood-brain barrier and placental barrier, and renal excretion of drugs. They exist in all living cells, but those in the bacterial and mammalian cells are more important to the clinician and pharmacologist, as they constitute an important cause of antimicrobial drug resistance, which contributes to treatment failure, high medical bills, and increased mortality / morbidity. This review was aimed at highlighting the role of efflux pump mechanisms in microbial resistance to chemotherapeutic agents. It was also aimed to elucidate their structure and mechanisms of action so as to integrate the efflux pump mechanisms in the design and development of novel antimicrobial agents. Findings from previous studies and research on this subject assessed through Google search, Pubmed, Hinari websites, as well as standard textbooks on chemotherapy, provided the needed information in the process of this review. Efflux pump inhibitors are promising strategies for preventing and reverting efflux-mediated resistance to chemotherapeutic agents. They are usually employed as adjuncts in antimicrobial and cancer chemotherapy. Toxicity, more common with the older-generation inhibitors such as verapamil and reserpine, constitutes the greatest impediment to their clinical applications. No efflux pump inhibitor has been approved for routine clinical use, as a result of doubtful clinical efficacy and unacceptably high incidence of adverse effects, particularly inhibition of the P-450 drug metabolizing enzyme. At present, their applications are mainly restricted to epidemiological studies. Nonetheless, the search for efficacious and tolerable efflux pump inhibitors continues because of the potential benefits. There is a need to consider efflux pump substrate selectivity in the design and development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Po Ughachukwu
- Department of Pharmacology and Therapeutics, College of Medicine, Anambra State University, Awka Campus, Anambra, Nigeria
| | | |
Collapse
|
14
|
Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release 2012; 161:50-61. [DOI: 10.1016/j.jconrel.2012.04.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 12/13/2022]
|
15
|
Novel and emerging strategies in drug delivery for overcoming the blood-brain barrier. Future Med Chem 2011; 1:1623-41. [PMID: 21425983 DOI: 10.4155/fmc.09.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular research have revealed the presence of transporters and receptors expressed in the brain vascular endothelium that provide potential novel targets for the rational design of blood-brain barrier-penetrating drugs. In this review, we briefly introduce the reader to the molecular characteristics of the blood-brain barrier that make this one of the most important obstacles towards the development of efficacious CNS drugs. We highlight recent attempts to rationally target influx and bidirectional transport systems expressed on the brain endothelial cell and avoid the important obstacle presented in the form of efflux transporters. Many of these approaches are highly innovative and show promise for future human application. Some of these approaches, however, have revealed significant limitations and are critiqued in this review. Nonetheless, these combined efforts have left the field of CNS drug delivery better positioned for developing novel approaches towards the rational design of CNS-penetrating drugs.
Collapse
|
16
|
Vandenbossche J, Huisman M, Xu Y, Sanderson-Bongiovanni D, Soons P. Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol 2011; 62:401-12. [PMID: 20604828 DOI: 10.1211/jpp.62.04.0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Loperamide is a peripherally acting mu opioid receptor agonist and an avid substrate for P-glycoprotein. This may give rise to drug-drug interactions and increased risk for central adverse effects. The objective of this study was to re-evaluate the predictability of non-clinical data using loperamide as a probe P-glycoprotein substrate. We searched the literature for papers containing data on drug-drug interactions of loperamide-containing products in humans. We also reviewed the internal worldwide safety database of Johnson & Johnson for spontaneous case reports suggestive of a central opioid effect after coadministration of loperamide with a P-glycoprotein inhibitor or substrate. KEY FINDINGS Only one of the ten studies in our review supported the finding that inhibition of P-glycoprotein is associated with clinically relevant signs or symptoms of central nervous system (CNS) depression/opioid toxicity of loperamide. None of the 25 spontaneous case reports of interest were suggestive of signs or symptoms of CNS depression/opioid toxicity due to coadministration of loperamide and a P-glycoprotein inhibitor or substrate. SUMMARY Based on a review of the literature and a cumulative review of the spontaneous case reports, there is insufficient evidence that an interaction between loperamide and a P-glycoprotein inhibitor or substrate is associated with clinical symptoms of CNS depression/opioid toxicity when loperamide is taken at the recommended dose.
Collapse
Affiliation(s)
- Joris Vandenbossche
- Clinical Pharmacology, Johnson & Johnson Pharmaceutical Research & Development, Beerse, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Bauer F, Kuntner C, Bankstahl JP, Wanek T, Bankstahl M, Stanek J, Mairinger S, Dörner B, Löscher W, Müller M, Erker T, Langer O. Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorg Med Chem 2010; 18:5489-97. [PMID: 20621487 PMCID: PMC3690440 DOI: 10.1016/j.bmc.2010.06.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 12/15/2022]
Abstract
The aim of this study was to develop a positron emission tomography (PET) tracer based on the dual P-glycoprotein (P-gp) breast cancer resistance protein (BCRP) inhibitor tariquidar (1) to study the interaction of 1 with P-gp and BCRP in the blood-brain barrier (BBB) in vivo. O-Desmethyl-1 was synthesized and reacted with [(11)C]methyl triflate to afford [(11)C]-1. Small-animal PET imaging of [(11)C]-1 was performed in naïve rats, before and after administration of unlabeled 1 (15 mg/kg, n=3) or the dual P-gp/BCRP inhibitor elacridar (5mg/kg, n=2), as well as in wild-type, Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice (n=3). In vitro autoradiography was performed with [(11)C]-1 using brain sections of all four mouse types, with and without co-incubation with unlabeled 1 or elacridar (1 microM). In PET experiments in rats, administration of unlabeled 1 or elacridar increased brain activity uptake by a factor of 3-4, whereas blood activity levels remained unchanged. In Mdr1a/b((-/-)), Bcrp1((-/-)) and Mdr1a/b((-/-))Bcrp1((-/-)) mice, brain-to-blood ratios of activity at 25 min after tracer injection were 3.4, 1.8 and 14.5 times higher, respectively, as compared to wild-type animals. Autoradiography showed approximately 50% less [(11)C]-1 binding in transporter knockout mice compared to wild-type mice and significant displacement by unlabeled elacridar in wild-type and Mdr1a/b((-/-)) mouse brains. Our data suggest that [(11)C]-1 interacts specifically with P-gp and BCRP in the BBB. However, further investigations are needed to assess if [(11)C]-1 behaves in vivo as a transported or a non-transported inhibitor.
Collapse
Affiliation(s)
- Florian Bauer
- Department of Medicinal Chemistry, University of Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Claudia Kuntner
- Molecular Medicine, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens P. Bankstahl
- Department of Pharmacology, Toxicology & Pharmacy, University of Veterinary Medicine Hanover, Germany
| | - Thomas Wanek
- Molecular Medicine, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology & Pharmacy, University of Veterinary Medicine Hanover, Germany
| | - Johann Stanek
- Molecular Medicine, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Severin Mairinger
- Molecular Medicine, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Medicinal Chemistry, University of Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Bernd Dörner
- Department of Medicinal Chemistry, University of Vienna, Austria
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology & Pharmacy, University of Veterinary Medicine Hanover, Germany
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna, Austria
| | - Oliver Langer
- Molecular Medicine, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
18
|
Lee CA, Cook JA, Reyner EL, Smith DA. P-glycoprotein related drug interactions: clinical importance and a consideration of disease states. Expert Opin Drug Metab Toxicol 2010; 6:603-19. [PMID: 20397967 DOI: 10.1517/17425251003610640] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD P-glycoprotein (P-gp) is the most characterized drug transporter in terms of its clinical relevance for pharmacokinetic disposition and interaction with other medicines. Clinically significant P-gp related drug interactions appear restricted to digoxin. P-gp may act as a major barrier to current and effective drug treatment in a number of diseases including cancer, AIDS, Alzheimer's and epilepsy due to its expression in tumors, lymphocytes, cell membranes of brain capillaries and the choroid plexus. AREAS COVERED IN THIS REVIEW This review summarizes the current understanding of P-gp structure/function, clinical importance of P-gp related drug interactions and the modulatory role this transporter may contribute towards drug efficacy in disease states such as cancer, AIDS, Alzheimer's and epilepsy. WHAT THE READER WILL GAIN The reader will gain an understanding that the clinical relevance of P-gp in drug interactions is limited. In certain disease states, P-gp in barrier tissues can modulate changes in regional distribution. TAKE HOME MESSAGE P-gp inhibition in isolation will not result in clinically important alterations in systemic exposure; however, P-gp transport may be of significance in barrier tissues (tumors, lymphocytes, brain) resulting in attenuated efficacy.
Collapse
Affiliation(s)
- Caroline A Lee
- Pfizer Global Research & Development, Department of Pharmacokinetics, Dynamics & Metabolism, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
19
|
Kannan P, Brimacombe KR, Zoghbi SS, Liow JS, Morse C, Taku AK, Pike VW, Halldin C, Innis RB, Gottesman MM, Hall MD. N-desmethyl-loperamide is selective for P-glycoprotein among three ATP-binding cassette transporters at the blood-brain barrier. Drug Metab Dispos 2010; 38:917-22. [PMID: 20212014 PMCID: PMC2879961 DOI: 10.1124/dmd.109.031161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/08/2010] [Indexed: 11/22/2022] Open
Abstract
[(11)C]N-desmethyl-Loperamide ([(11)C]dLop) is used in positron emission tomography (PET) to measure the in vivo activity of efflux transporters that block the passage of drugs across the blood-brain barrier. The three most prevalent ATP-binding cassette efflux transporters at the blood-brain barrier are P-glycoprotein (P-gp), multidrug resistance protein 1 (Mrp1), and breast cancer resistance protein (BCRP). We sought to measure the selectivity of dLop among these three transporters. The selectivity of dLop at low concentrations (< or =1 nM) was measured both as the accumulation of [(3)H]dLop in human cells that overexpress each transporter and as the uptake of [(11)C]dLop in brains of mice that lack genes encoding P-gp, Mrp1, or BCRP. The selectivity of dLop at high concentrations (> or =20 microM) was measured as the inhibition of uptake of a fluorescent substrate and the change in cytotoxicity of drugs effluxed at each transporter. Accumulation of [(3)H]dLop was lowest in cells overexpressing P-gp, and the uptake of [(11)C]dLop was highest in brains of mice lacking P-gp. At high concentrations, dLop selectively inhibited P-gp function and also decreased the resistance of only the P-gp-expressing cells to cytotoxic agents. dLop is selective for P-gp among these three transporters, but its activity is dependent on concentration. At low concentrations (< or =1 nM), dLop acts only as a substrate; at high concentrations (> or =20 microM), it acts as both a substrate and an inhibitor (i.e., a competitive substrate). Because low concentrations of radiotracer are used for PET imaging, [(11)C]dLop acts selectively and only as a substrate for P-gp.
Collapse
Affiliation(s)
- Pavitra Kannan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov 2010; 9:215-36. [PMID: 20190787 PMCID: PMC3326076 DOI: 10.1038/nrd3028] [Citation(s) in RCA: 2512] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
Collapse
|
21
|
Lumen AA, Acharya P, Polli JW, Ayrton A, Ellens H, Bentz J. If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos 2010; 38:260-9. [PMID: 19889884 DOI: 10.1124/dmd.109.029843] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
From previous fits of drug transport kinetics across confluent Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 cell monolayers, we found that a drug's binding constant to P-glycoprotein (P-gp) was significantly smaller than its IC(50) when that drug was used as an inhibitor against another P-gp substrate. We tested several IC(50) candidate functions, including the standard function, the Kalvass-Pollack function, and the efflux ratio, to determine whether any of them yielded an IC(50) = K(I), as would be expected for water-soluble enzymes. For the confluent cell monolayer, the IC(50)/K(I) ratio is greater than 1 for all candidate functions tested. From the mass action kinetic model, we have derived a simple approximate equation that shows how the IC(50)/K(I) ratio depends on the elementary rate constants from our mass action model. Thus, the IC(50) will differ between cell lines and tissues, for the same probe substrate and inhibitor, if there are different membrane concentrations of P-gp, or the probe substrate's elementary rate constants, partition coefficient, binding constant to P-gp, passive permeability, and ability to access the other transporters (if any) in the two cell lines. The mass action model and the approximate equation for the IC(50)/K(I) ratio derived here can be used to estimate the elementary rate constants needed to extrapolate in vitro drug-drug interactions for compounds to the in vivo environment.
Collapse
Affiliation(s)
- Annie Albin Lumen
- Department of Biology, Drexel University, 32nd and Chestnut Sts., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P, Kletter K, Löscher W, Müller M, Zeitlinger M, Langer O. A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med 2009; 50:1954-61. [PMID: 19910428 DOI: 10.2967/jnumed.109.063289] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Tariquidar, a potent, nontoxic, third-generation P-glycoprotein (P-gp) inhibitor, is a possible reversal agent for central nervous system drug resistance. In animal studies, tariquidar has been shown to increase the delivery of P-gp substrates into the brain by severalfold. The aim of this study was to measure P-gp function at the human blood-brain barrier (BBB) after tariquidar administration using PET and the model P-gp substrate (R)-(11)C-verapamil. METHODS Five healthy volunteers underwent paired (R)-(11)C-verapamil PET scans and arterial blood sampling before and at 2 h 50 min after intravenous administration of tariquidar (2 mg/kg of body weight). The inhibition of P-gp on CD56-positive peripheral lymphocytes of each volunteer was determined by means of the (123)Rh efflux assay. Tariquidar concentrations in venous plasma were quantified using liquid chromatography/mass spectrometry. RESULTS Tariquidar administration resulted in significant increases (Wilcoxon test for paired samples) in the distribution volume (DV, +24% +/- 15%) and influx rate constant (K(1), +49% +/- 36%) of (R)-(11)C-verapamil across the BBB (DV, 0.65 +/- 0.13 and 0.80 +/- 0.07, P = 0.043; K(1), 0.034 +/- 0.009 and 0.049 +/- 0.009, P = 0.043, before and after tariquidar administration, respectively). A strong correlation was observed between the change in brain DV after administration of tariquidar and tariquidar exposure in plasma (r = 0.90, P = 0.037). The mean plasma concentration of tariquidar achieved during the second PET scan (490 +/- 166 ng/mL) corresponded to 100% inhibition of P-gp function in peripheral lymphocytes. CONCLUSION Tariquidar significantly increased brain penetration of (R)-(11)C-verapamil-derived activity due to increased influx. As opposed to peripheral P-gp function, central P-gp inhibition appeared to be far from complete after the administered tariquidar dose.
Collapse
Affiliation(s)
- Claudia C Wagner
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 2009; 86:368-77. [PMID: 19625998 PMCID: PMC2746858 DOI: 10.1038/clpt.2009.138] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
P-glycoprotein (P-gp), an efflux transporter, controls the pharmacokinetics of various compounds under physiological conditions. P-gp-mediated drug efflux has been suggested as playing a role in various disorders, including multidrug-resistant cancer and medication-refractory epilepsy. However, P-gp inhibition has had, to date, little or no clinically significant effect in multidrug-resistant cancer. To enhance our understanding of its in vivo function under pathophysiological conditions, substrates of P-gp have been radiolabeled and imaged using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). To accurately quantify P-gp function, a radiolabeled P-gp substrate should be selective for P-gp, produce a large signal after P-gp blockade, and generate few radiometabolites that enter the target tissue. Furthermore, quantification of P-gp function via imaging requires pharmacological inhibition of P-gp, which requires knowledge of P-gp density at the target site. By meeting these criteria, imaging can elucidate the function of P-gp in various disorders and improve the efficacy of treatments.
Collapse
Affiliation(s)
- P Kannan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - C John
- Office of Clinical Pharmacology, US Food and Drug Administration, Rockville, Maryland, USA
| | - SS Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - C Halldin
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - MM Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - RB Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - MD Hall
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009; 123:80-104. [PMID: 19393264 PMCID: PMC2751796 DOI: 10.1016/j.pharmthera.2009.03.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 12/24/2022]
Abstract
There is considerable interest in the therapeutic and adverse outcomes of drug interactions at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). These include altered efficacy of drugs used in the treatment of CNS disorders, such as AIDS dementia and malignant tumors, and enhanced neurotoxicity of drugs that normally penetrate poorly into the brain. BBB- and BCSFB-mediated interactions are possible because these interfaces are not only passive anatomical barriers, but are also dynamic in that they express a variety of influx and efflux transporters and drug metabolizing enzymes. Based on studies in rodents, it has been widely postulated that efflux transporters play an important role at the human BBB in terms of drug delivery. Furthermore, it is assumed that chemical inhibition of transporters or their genetic ablation in rodents is predictive of the magnitude of interaction to be expected at the human BBB. However, studies in humans challenge this well-established paradigm and claim that such drug interactions will be lesser in magnitude but yet may be clinically significant. This review focuses on current known mechanisms of drug interactions at the blood-brain and blood-CSF barriers and the potential impact of such interactions in humans. We also explore whether such drug interactions can be predicted from preclinical studies. Defining the mechanisms and the impact of drug-drug interactions at the BBB is important for improving efficacy of drugs used in the treatment of CNS disorders while minimizing their toxicity as well as minimizing neurotoxicity of non-CNS drugs.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|