1
|
Kumar A, Qian M, Xu Y, Benz A, Covey DF, Zorumski CF, Mennerick S. Multifaceted Actions of Neurosteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634297. [PMID: 39896603 PMCID: PMC11785204 DOI: 10.1101/2025.01.22.634297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background and purpose Neurosteroids modulate neuronal function and are promising therapeutic agents for neuropsychiatric disorders. Neurosteroid analogues are approved for treating postpartum depression and are of interest in other disorders. GABA-A receptors are well characterized targets of natural neurosteroids, but other biological pathways are likely relevant to therapeutic mechanisms and/or to off-target effects. We performed hypothesis-generating in silico analyses and broad in vitro biological screens to assess the range of actions of neurosteroids analogues of varying structural attributes. Key Results We employed in silico molecular similarity analysis and network pharmacology to elucidate likely targets. This analysis confirmed likely targets beyond GABA-A receptors. We then functionally screened 19 distinct neurosteroid structures across 78 targets representing interconnected signaling pathways, complemented with a limited screen of kinase activation. Results revealed unanticipated modulation of targets by neurosteroids with some structural selectivity. Many compounds-initiated androgen receptor translocation with little or no enantioselectivity. Modulation of multiple G-protein receptors was also unexpected. Conclusions and implications Neurosteroids are ascendant treatments in neuropsychiatry, but their full spectrum of actions remains unclear. This virtual and biological screening discovery approach opens new vistas for exploring mechanism of neurosteroids analogues. The multifaceted approach provides an unbiased, holistic exploration of the potential effects of neurosteroids across various molecular targets and provides a platform for future validation studies to aid drug discovery.
Collapse
|
2
|
Benndorf K, Schulz E. Identifiability of equilibrium constants for receptors with two to five binding sites. J Gen Physiol 2023; 155:e202313423. [PMID: 37882789 PMCID: PMC10602793 DOI: 10.1085/jgp.202313423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Ligand-gated ion channels (LGICs) are regularly oligomers containing between two and five binding sites for ligands. Neither in homomeric nor heteromeric LGICs the activation process evoked by the ligand binding is fully understood. Here, we show on theoretical grounds that for LGICs with two to five binding sites, the cooperativity upon channel activation can be determined in considerable detail. The main requirements for our strategy are a defined number of binding sites in a channel, which can be achieved by concatenation, a systematic mutation of all binding sites and a global fit of all concentration-activation relationships (CARs) with corresponding intimately coupled Markovian state models. We take advantage of translating these state models to cubes with dimensions 2, 3, 4, and 5. We show that the maximum possible number of CARs for these LGICs specify all 7, 13, 23, and 41 independent model parameters, respectively, which directly provide all equilibrium constants within the respective schemes. Moreover, a fit that uses stochastically varied scaled unitary start vectors enables the determination of all parameters, without any bias imposed by specific start vectors. A comparison of the outcome of the analyses for the models with 2 to 5 binding sites showed that the identifiability of the parameters is best for a case with 5 binding sites and 41 parameters. Our strategy can be used to analyze experimental data of other LGICs and may be applicable to voltage-gated ion channels and metabotropic receptors.
Collapse
Affiliation(s)
- Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eckhard Schulz
- Faculty of Electrical Engineering, Schmalkalden University of Applied Sciences, Schmalkalden, Germany
| |
Collapse
|
3
|
Luu DD, Owens AM, Mebrat MD, Van Horn WD. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Temperature (Austin) 2021; 10:67-101. [PMID: 37187836 PMCID: PMC10177694 DOI: 10.1080/23328940.2021.1983354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Aerial M. Owens
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Mubark D. Mebrat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| |
Collapse
|
4
|
Taleb O, Patte-Mensah C, Meyer L, Kemmel V, Geoffroy P, Miesch M, Mensah-Nyagan AG. Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone. J Neuroendocrinol 2018; 30. [PMID: 29265686 DOI: 10.1111/jne.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
The neurosteroid allopregnanolone (AP) modulates neuroendocrine/neurobiological processes, including hypothalamic-pituitary-adrenocortical activities, pain, anxiety, neurogenesis and neuroprotection. These observations raised the hope of developing AP-based therapies against neuroendocrine and/or neurodegenerative disorders. However, the pleiotropic actions of AP, particularly its cell-proliferation-promoting effects, hamper the development of selective/targeted therapies. For example, although AP-induced neurogenesis may serve to compensate neuronal loss in degenerative brains, AP-evoked cell-proliferation is contraindicated for steroid-sensitive cancer patients. To foster progress, we synthesised 4 novel AP analogues of neurosteroids (ANS) designated BR053 (12-oxo-epi-AP), BR297 (O-allyl-epi-AP), BR351 (O-allyl-AP) and BR338 (12-oxo-AP). First, because AP is well-known as allosteric modulator of GABAA receptors (GABAA-R), we used the electrophysiological patch-clamp technique to determine the structure-activity relationship of our ANS on GABAA-activated current in NCB20 cells expressing functional GABAA-R. We found that the addition of 12-oxo-group did not significantly change the respective positive or negative allosteric effects of 3α-AP or 3β-(epi)-AP analogues. Importantly, substitution of the 3α-hydroxyl-group by 3α-O-allyl highly modified the ANS activities. Unlike AP, BR351 induced a long-lasting desensitisation/inhibition of GABAA-R. Interestingly, replacement of the 3β-hydroxyl by 3β-O-allyl (BR297) completely reversed the activity from negative to positive allosteric action. In a second step, we compared the actions of AP and ANS on SH-SY5Y neuronal cell viability/proliferation using MTT-reduction assays. Different dose-response curves were demonstrated for AP and the ANS. By contrast to AP, BR297 was totally devoid of cell-proliferative effect. Finally, we compared AP and ANS abilities to protect against oxidative stress-induced neuronal death pivotally involved in neurodegenerative diseases. Both BR351 and BR297 had notable advantages over AP in protecting SH-SY5Y cells against oxidative stress-induced death. Thus, BR297 appears to be a potent neuroprotective compound devoid of cell-proliferative activity. Altogether, our results suggest promising perspectives for the development of neurosteroid-based selective and effective strategies against neuroendocrine and/or neurodegenerative disorders.
Collapse
Affiliation(s)
- O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - V Kemmel
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - P Geoffroy
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - M Miesch
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - A-G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Feng HJ, Jounaidi Y, Haburcak M, Yang X, Forman SA. Etomidate produces similar allosteric modulation in α1β3δ and α1β3γ2L GABA(A) receptors. Br J Pharmacol 2014; 171:789-98. [PMID: 24199598 DOI: 10.1111/bph.12507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/13/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuronal GABA(A) receptors are pentameric chloride ion channels, which include synaptic αβγ and extrasynaptic αβδ isoforms, mediating phasic and tonic inhibition respectively. Although the subunit arrangement of αβγ receptors is established as β-α-γ-β-α, that of αβδ receptors is uncertain and possibly variable. We compared receptors formed from free α1, β3 and δ or γ2L subunits and concatenated β3-α1-δ and β3-α1 subunit assemblies (placing δ in the established γ position) by investigating the effects of R-(+)-etomidate (ETO), an allosteric modulator that selectively binds to transmembrane interfacial sites between β3 and α1. EXPERIMENTAL APPROACH GABA-activated receptor-mediated currents in Xenopus oocytes were measured electrophysiologically, and ETO-induced allosteric shifts were quantified using an established model. KEY RESULTS ETO (3.2 μM) similarly enhanced maximal GABA (1 mM)-evoked currents in oocytes injected with 5 ng total mRNA and varying subunit ratios, for α1β3(1:1), α1β3δ(1:1:1) and α1β3δ(1:1:3), but this potentiation by ETO was significantly greater for β3-α1-δ/β3-α1(1:1) receptors. Reducing the amount of α1β3δ(1:1:3) mRNA mixture injected (0.5 ng) increased the modulatory effect of ETO, matching that seen with β3-α1-δ/β3-α1(1:1, 1 ng). ETO similarly reduced EC₅₀s and enhanced maxima of GABA concentration-response curves for both α1β3δ and β3-α1-δ/β3-α1 receptors. Allosteric shift parameters derived from these data depended on estimates of maximal GABA efficacy, and the calculated ranges overlap with allosteric shift values for α1β3γ2L receptors. CONCLUSION AND IMPLICATIONS Reducing total mRNA unexpectedly increased δ subunit incorporation into receptors on oocyte plasma membranes. Our results favour homologous locations for δ and γ2L subunits in α1β3γ2/δ GABA(A) receptors.
Collapse
Affiliation(s)
- H-J Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
6
|
Two etomidate sites in α1β2γ2 γ-aminobutyric acid type A receptors contribute equally and noncooperatively to modulation of channel gating. Anesthesiology 2012; 116:1235-44. [PMID: 22531336 DOI: 10.1097/aln.0b013e3182567df3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Etomidate is a potent hypnotic agent that acts via γ-aminobutyric acid receptor type A (GABA(A)) receptors. Evidence supports the presence of two etomidate sites per GABA(A) receptor, and current models assume that each site contributes equally and noncooperatively to drug effects. These assumptions remain untested. METHODS We used concatenated dimer (β2-α1) and trimer (γ2-β2-α1) GABA(A) subunit assemblies that form functional α1β2γ2 channels, and inserted α1M236W etomidate site mutations into both dimers (β2-α1M236W) and trimers (γ2-β2-α1M236W). Wild-type or mutant dimers (D(wt) or D(αM236W)) and trimers (T(wt) or T(αM236W)) were coexpressed in Xenopus oocytes to produce four types of channels: D(wt)T(wt), D(αM236W)T(wt), D(wt)T(αM236W), and D(αM236W)T(αM236W). For each channel type, two-electrode voltage clamp was performed to quantitatively assess GABA EC(50), etomidate modulation (left shift), etomidate direct activation, and other functional parameters affected by αM236W mutations. RESULTS Concatenated wild-type D(wt)T(wt) channels displayed etomidate modulation and direct activation similar to α1β2γ2 receptors formed with free subunits. D(αM236W)T(αM236W) receptors also displayed altered GABA sensitivity and etomidate modulation similar to mutated channels formed with free subunits. Both single-site mutant receptors (D(αM236W)T(wt) and D(wt)T(αM236W)) displayed indistinguishable functional properties and equal gating energy changes for GABA activation (-4.9 ± 0.48 vs. -4.7 ± 0.48 kJ/mol, respectively) and etomidate modulation (-3.4 ± 0.49 vs. -3.7 ± 0.38 kJ/mol, respectively), which together accounted for the differences between D(wt)T(wt) and D(αM236W)T(αM236W) channels. CONCLUSIONS These results support the hypothesis that the two etomidate sites on α1β2γ2 GABA(A) receptors contribute equally and noncooperatively to drug interactions and gating effects.
Collapse
|