1
|
Isik OG, Ing C. Maternal exposure to general anesthesia and labor epidural analgesia during pregnancy and delivery, and subsequent neurodevelopmental outcomes in children. Int J Obstet Anesth 2025; 61:104318. [PMID: 39754838 DOI: 10.1016/j.ijoa.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Gestation is a vulnerable developmental period, and exposures during that time may have longterm implications. While evaluating the implications of early exposures on children is an important public health concern, as opposed to other chemical exposures, medications are given for a clinical purpose, and any potential injury must be weighed against the benefits of these medications to the mother and child. This review examines neurodevelopmental outcomes in children following two maternal anesthetic exposures: general anesthesia and labor epidural analgesia. Exposure to general anesthetic agents has been found to interfere with neurodevelopment in animal models, and exposures in children, including prenatal exposures are also associated with worse neurodevelopmental outcomes. While these medications are likely to impact neurodevelopment in animals, it remains unclear if prenatal general anesthetic exposure causes the reported differences in children. As a result, since avoidance or delay of necessary surgery in mothers may result in adverse outcomes in mothers and children, necessary surgery in pregnant mothers should proceed without delay. Concerns about the safety of maternal neuraxial labor analgesia ("epidurals") have also emerged due to a reported association with autism spectrum diagnoses in their children. This may be due to familial factors in pregnant women electing for neuraxial labor analgesia rather than the "epidural" itself. In addition, since clinically significant differences in neurodevelopmental scores in children following exposure have not been found, and a mechanism of injury has not yet been identified in preclinical studies, the benefits of neuraxial labor analgesia appear to outweigh the potential risks.
Collapse
Affiliation(s)
- Oliver G Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Caleb Ing
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
2
|
Ng JJ, Banala M, Sussman JH, Massenburg BB, Wu M, Romeo DJ, Jackson OA, Low DW, Taylor JA, Swanson JW. Primary Rhinoplasty for Unilateral Cleft Lip: A Long-Term Cohort Assessment of Aesthetic and Anthropometric Outcomes. Cleft Palate Craniofac J 2025:10556656241309810. [PMID: 39782695 DOI: 10.1177/10556656241309810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The decision to undertake rhinoplasty maneuvers during cleft lip repair remains controversial. Little data compare long-term outcomes with and without primary rhinoplasty (PR). This study compared nasolabial outcomes in cohorts with unilateral cleft lip (UCL) treated with and without PR at the Children's Hospital of Philadelphia using standardized aesthetic and anthropometric assessments. Retrospective cohort study. Tertiary care pediatric hospital. Patients who underwent lip repair for UCL. Cleft lip repair with and without PR. Anthropometric analyses and crowdsourced aesthetic assessments using Americleft nasolabial appearance reference scales and pairwise comparisons. Among 208 patients, 155 (74.5%) and 53 (25.5%) underwent lip repair with and without PR at 4.5 ± 1.1 months. Primary rhinoplasty (β = 0.345, P = .037) and a lower Cleft Lip Severity Index (β = -0.341, P < .001) predicted superior pairwise rank at 4.9 ± 1.9 years of age. History of PR predicted decreased columellar deviation angle (CDA) (β = -2.375, P = .019) and improved nostril symmetry (β = 0.111, P = .038). Increased columellar-labial angle (r = 0.27, P = .002), improved nostril symmetry (r = -0.23, P = .01), and decreased CDA (r = -0.45, P < .001) correlated with superior ratings. Patients with ˂20 days of postoperative nasal stenting had inferior lateral ratings (2.4 ± 0.6 vs 2.1 ± 0.5, P = .005). Those who underwent surgery at ˂5.3 months had inferior nasal projection (Goode's ratio 0.56 ± 0.09 vs 0.62 ± 0.08, P = .006). Primary rhinoplasty for UCL offers superior aesthetic results in early childhood by layperson and anthropometric assessments. Specific improved characteristics from PR-CDA and nostril symmetry-most greatly influence layperson perception of nasal appearance. Older age at surgery predicted increased nasal projection, while prolonged nasal stenting predicted superior profile appearance.
Collapse
Affiliation(s)
- Jinggang J Ng
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Manisha Banala
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan H Sussman
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin B Massenburg
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meagan Wu
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dominic J Romeo
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Oksana A Jackson
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David W Low
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jesse A Taylor
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jordan W Swanson
- Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Xiao QX, Geng MJ, Wang QL, Fang CL, Zhang JH, Liu Q, Xiong LL. Unraveling the effects of prenatal anesthesia on neurodevelopment: A review of current evidence and future directions. Neurotoxicology 2024; 105:96-110. [PMID: 39276873 DOI: 10.1016/j.neuro.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Human brain development is a complex, multi-stage, and sensitive process, especially during the fetal stage. Animal studies over the last two decades have highlighted the potential risks of anesthetics to the developing brain, impacting its structure and function. This has raised concerns regarding the safety of anesthesia during pregnancy and its influence on fetal brain development, garnering significant attention from the anesthesiology community. Although preclinical studies predominantly indicate the neurotoxic effects of prenatal anesthesia, these findings cannot be directly extrapolated to humans due to interspecies variations. Clinical research, constrained by ethical and technical hurdles in accessing human prenatal brain tissues, often yields conflicting results compared to preclinical data. The emergence of brain organoids as a cutting-edge research tool shows promise in modeling human brain development. When integrated with single-cell sequencing, these organoids offer insights into potential neurotoxic mechanisms triggered by prenatal anesthesia. Despite several retrospective and cohort studies exploring the clinical impact of anesthesia on brain development, many findings remain inconclusive. As such, this review synthesizes preclinical and clinical evidence on the effects of prenatal anesthesia on fetal brain development and suggests areas for future research advancement.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Min-Jian Geng
- The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiu-Lin Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Chang-Le Fang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Jing-Han Zhang
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Qi Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China.
| |
Collapse
|
4
|
Barton K, Yellowman RD, Holm T, Beaulieu F, Zuckerberg G, Gwal K, Setty BN, Janitz E, Hwang M. Pre-clinical and clinical trials for anesthesia in neonates: gaps and future directions. Pediatr Radiol 2024; 54:2143-2156. [PMID: 39349661 DOI: 10.1007/s00247-024-06066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 12/13/2024]
Abstract
Literature examining possible deleterious effects of anesthesia exposure on the developing brain has increased substantially over the past 30 years. Initial concerning findings in animal models, both rodents and non-human primates, prompted increasingly thorough examinations in humans, including randomized controlled trials. This review will provide a concise overview of what we know about anesthesia and the developing brain: the background in animal studies, the most robust results we have in humans, and the work yet to be done. This is particularly relevant to a pediatric radiology audience because we have the unique opportunity to modify anesthesia exposure during imaging through innovation.
Collapse
Affiliation(s)
- Katherine Barton
- Department of Radiology, Oregon Health & Science University, Portland, OR, USA.
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L340, Portland, OR, 97239, USA.
| | | | - Tara Holm
- Department of Radiology, University of Minnesota, Masonic Children's Hospital, Minneapolis, MN, USA
| | - Forrest Beaulieu
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel Zuckerberg
- Department of Anesthesia and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kriti Gwal
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Bindu N Setty
- Department of Radiology, Boston University, Boston, MA, USA
| | - Emily Janitz
- Department of Radiology, Akron Children's Hospital, Akron, OH, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
5
|
Sun M, Fu N, Li T, Miao M, Chen WM, Wu SY, Zhang J. Childhood anaesthesia and autism risk: population and murine study. Brain Commun 2024; 6:fcae325. [PMID: 39372140 PMCID: PMC11450270 DOI: 10.1093/braincomms/fcae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Early childhood exposure to general anaesthesia has been linked to potential changes in infant brain morphology and behaviour in preclinical studies, contributing to long-term behaviours associated with autism spectrum disorder. This study investigates the association between early childhood exposure to general anaesthesia and the risk of autism, using a population-based cohort study with matching for baseline characteristics and evaluates the effect of sevoflurane exposure on autism-like behaviour in mice, using the Taiwan Maternal and Child Health Database. Children aged 0-3 who received at least one exposure to general anaesthesia between 2004 and 2014 were matched 1:1 with children who were not exposed. Risk ratios and confidence intervals were used to assess the relationship between general anaesthesia and the occurrence of autism. Additionally, mice were exposed to sevoflurane for 2 h on postnatal days 5-7, and changes in behaviour related to autism were evaluated. Propensity score matching resulted in 7530 children in each group. The incidence rates (IRs) of autism were 11.26 and 6.05 per 100 000 person-years in the exposed and unexposed groups, respectively. The incidence ratio for autism following exposure to general anaesthesia was 1.86 (95% confidence interval, 1.34-2.59). In mice, sevoflurane exposure induced autism-like behaviours and led to the downregulation of high-risk autism genes, including ARID1B, GABRA5, GABRB3, GRIN2B, SHANK3 and SUV420H1. Early childhood exposure to general anaesthesia is associated with an increased risk of autism. Repeated exposure to sevoflurane in mice induces autism-like behaviours, suggesting a potential link between anaesthesia and the development of autism.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, Henan 450003, China
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, Henan 450003, China
| | - Ting Li
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, Henan 450003, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, Henan 450003, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei 242062, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei 242062, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei 242062, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei 242062, Taiwan
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, 500, Lioufeng Road, Wufeng, Taichung 41354, Taiwan
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
6
|
Schlegelmilch M, Plint AC, Barrowman N, Gray C, Bhatt M. Intravenous ketamine for emergency department treatment of suicidal ideation in a paediatric population: protocol for a double-blind, randomised, placebo-controlled, parallel-arm pilot trial (KSI study). BMJ Open 2024; 14:e085681. [PMID: 38969374 PMCID: PMC11227786 DOI: 10.1136/bmjopen-2024-085681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/20/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Suicidal ideation (SI) is a common and severe cause of morbidity in adolescents. Patients frequently present to the emergency department (ED) for care, yet there is no acute therapeutic intervention for SI. A single dose of intravenous ketamine has demonstrated efficacy in rapidly reducing SI in adults; however, ketamine has not been studied in paediatrics. We aim to determine the feasibility of a trial of a single intravenous ketamine dose to reduce SI for patients in the paediatric ED. METHODS AND ANALYSIS This will be a single-centre, double-blind, randomised, placebo-controlled, parallel-arm pilot trial of intravenous ketamine for ED treatment of SI in a paediatric population. INTERVENTION one intravenous dose of 0.5 mg/kg of ketamine (max 50 mg), over 40 min. Placebo: one intravenous dose of 0.5 mL/kg (max 50 mL) of normal saline, over 40 min. Participants will be randomised in a 1:1 ratio. SI severity will be measured at baseline, 40 min, 80 min, 120 min, 24 hours and 7 days. We aim to recruit 20 participants. The primary feasibility outcome is the proportion of eligible patients who complete the study protocol. We will pilot three SI severity tools and explore the efficacy, safety and tolerability of the intervention. ETHICS AND DISSEMINATION This study will be conducted according to Canadian Biomedical Research Tutorial, international standards of Good Clinical Practice and the Health Canada, Food and Drug Act, Part C, Division 5. The study documents have been approved by the CHEO Research Institute Research Ethics Board (CHEO REB (23/02E)). Participants must provide free and informed consent to participate. If incapable due to age, assenting participants with parental/legal guardian consent may participate. On completion, we will endeavour to present results at international conferences, and publish the results in a peer-reviewed journal. Participants will receive a results letter. TRIAL REGISTRATION NUMBER NCT05468840.
Collapse
Affiliation(s)
| | - Amy C Plint
- Department of Pediatrics, CHEO, Ottawa, Ontario, Canada
| | | | - Clare Gray
- Department of Psychiatry, CHEO, Ottawa, Ontario, Canada
| | - Maala Bhatt
- Department of Pediatrics, CHEO, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Li R, Zhang Y, Zhu Q, Wu Y, Song W. The role of anesthesia in peri‑operative neurocognitive disorders: Molecular mechanisms and preventive strategies. FUNDAMENTAL RESEARCH 2024; 4:797-805. [PMID: 39161414 PMCID: PMC11331737 DOI: 10.1016/j.fmre.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Peri-operative neurocognitive disorders (PNDs) include postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). Children and the elderly are the two populations most vulnerable to the development of POD and POCD, which results in both high morbidity and mortality. There are many factors, including neuroinflammation and oxidative stress, that are associated with POD and POCD. General anesthesia is a major risk factor of PNDs. However, the molecular mechanisms of PNDs are poorly understood. Dexmedetomidine (DEX) is a useful sedative agent with analgesic properties, which significantly improves POCD in elderly patients. In this review, the current understanding of anesthesia in PNDs and the protective effects of DEX are summarized, and the underlying mechanisms are further discussed.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinxin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yili Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
8
|
Yang JR, Li YY, Ran TJ, Lin XY, Xu JY, Zhou SL, Huang PJ. Esketamine Combined with Dexmedetomidine to reduce Visceral Pain During elective Cesarean Section Under Combined Spinal-Epidural Anesthesia: A double-Blind Randomized Controlled Study. Drug Des Devel Ther 2024; 18:2381-2392. [PMID: 38911034 PMCID: PMC11193401 DOI: 10.2147/dddt.s460924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose We aimed to evaluate the effect of intravenous esketamine combined with dexmedetomidine as supplemental analgesia in reducing intraoperative visceral pain during elective cesarean section under combined spinal-epidural anesthesia (CSEA). Patients and Methods A total of 269 parturients scheduled for elective cesarean section under CSEA between May 2023 and August 2023 were assessed. The parturients were randomly allocated to receiving either intravenous infusion of 0.3-mg/kg esketamine combined with 0.5-μg/kg dexmedetomidine (group ED, n=76), 0.5-μg/kg dexmedetomidine (group D, n=76), or normal saline (group C, n=76) after umbilical cord clamping. The primary outcome was intraoperative visceral pain. Secondary outcomes included the visual analog scale (VAS) score for pain evaluation and other intraoperative complications. Results The incidence of visceral pain was lower in group ED [9 (12.7%)] than in group D [32 (43.8%)] and group C [36 (48.6%), P <0.0001]. The VAS score was also lower in group ED when exploring abdominal cavity [0 (0), P <0.0001] and suturing the muscle layer [0 (0), P =0.036]. The mean arterial pressure was higher in group D [83 (9) mmHg] and group ED [81 (11) mmHg] than in group C [75 (10) mmHg, P <0.0001] after solution infusion. The heart rate after infusion of the solution was lower in group D [80 (12) bpm] than in group C [86 (14) bpm] and group ED [85 (12) bpm, P = 0.016]. The incidence of transient neurologic or mental symptoms was higher in group ED compared to group C and group D (76.1% vs 18.9% vs 23.3%, P<0.0001). Conclusion During cesarean section, 0.3-mg/kg esketamine combined with 0.5-μg/kg dexmedetomidine can alleviate visceral traction pain and provide stable hemodynamics. Parturients receiving this regimen may experience transient neurologic or mental symptoms that can spontaneously resolve at the end of the surgery.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ying-Yuan Li
- Department of Anesthesiology, Huadu District People’s Hospital, Guangzhou, Guangdong Province, People’s Republic of China
| | - Tao-Jia Ran
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiao-Yu Lin
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jin-Yan Xu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shao-Li Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pin-Jie Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
9
|
Zhang J, Deng H, Huang X, Wang L, Zhou P, Zeng J, Yu C. Pre-school children single inhalation anesthetic exposure and neuro-psychological development: a prospective study and Mendelian randomization analysis. Front Neurol 2024; 15:1389203. [PMID: 38933327 PMCID: PMC11199877 DOI: 10.3389/fneur.2024.1389203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background For children who are unable to cooperate due to severe dental anxiety (DA), dental treatment of childhood caries under Dental General Anesthesia (DGA) is a safe and high-quality treatment method. This study aims to evaluate the impact on neurocognitive functions and the growth and development of children 2 years after dental procedure based on previous research, and further establish a causal relationship between general anesthesia (GA) and changes in children's neurocognitive functions by incorporating Mendelian Randomization (MR) analysis. Methods Data were collected and analyzed from 340 cases of S-ECC procedures of preschool children conducted in 2019. This involved comparing the neurocognitive outcomes 2 years post-operation of preschool children receiving dental procedures under general anesthesia or local anesthesia. Physical development indicators such as height, weight, and body mass index (BMI) of children were also compared at baseline, half a year post-operation, and 2 years post-operation. We performed a Mendelian randomization analysis on the causal relationship between children's cognitive development and general anesthesia, drawing on a large-scale meta-analysis of GWAS for anesthesia, including multiple general anesthesia datasets. Results Outcome data were obtained for 111 children in the general anesthesia group and 121 children in the local anesthesia group. The mean FSIQ score for the general anesthesia group was 106.77 (SD 6.96), while the mean score for the local anesthesia group was 106.36 (SD 5.88). FSIQ scores were equivalent between the two groups. The incidence of malnutrition in children in the general anesthesia group was 27.93% (p < 0.001) before surgery and decreased to 15.32% (p > 0.05) after 2 years, which was not different from the general population. The IVW method suggested that the causal estimate (p = 0.99 > 0.05, OR = 1.04, 95% CI = 5.98 × 10-4-1.82 × 103) was not statistically significant for disease prevalence. This indicates no genetic cause-and-effect relationship between anesthesia and childhood intelligence. Conclusion There were no adverse outcomes in neurocognitive development in 2 years after severe early childhood caries (S-ECC) procedure under total sevoflurane-inhalation in preschool children. The malnutrition condition in children can be improved after S-ECC procedure under general anesthesia. Limited MR evidence does not support a correlation between genetic susceptibility to anesthesia and an increased risk for intelligence in children.
Collapse
Affiliation(s)
- Jinghong Zhang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xilu Huang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Pinping Zhou
- People’s Hospital of Changshou, Changshou, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
10
|
Xu D, Liu J, Meng S, Sun M, Chen Y, Hong Y. Isoflurane-induced neuroinflammation and NKCC1/KCC2 dysregulation result in long-term cognitive disorder in neonatal mice. BMC Anesthesiol 2024; 24:200. [PMID: 38840092 PMCID: PMC11151488 DOI: 10.1186/s12871-024-02587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were quantified using ELISA. RESULTS We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1β levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1β, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.
Collapse
Affiliation(s)
- Dongni Xu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Jiayi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Meixian Sun
- The Eighth People's Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Yuqing Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
11
|
Adiyeke E, Bakan N, Uvez A, Arslan DO, Kilic S, Koc B, Ozer S, Saatci O, Armutak Eİ. The effect of N-acetylcysteine on the neurotoxicity of sevoflurane in developing hippocampus cells. Neurotoxicology 2024; 103:96-104. [PMID: 38843996 DOI: 10.1016/j.neuro.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Sevoflurane, a common pediatric anesthetic, has been linked to neurodegeneration, raising safety concerns. This study explored N-acetylcysteine's protective potential against sevoflurane-induced neurotoxicity in rat hippocampi. Four groups were examined: Control: Received 6 hours of 3 l/min gas (air and 30 % O2) and intraperitoneal saline. NAC: Received 6 hours of 3 l/min gas and 150 mg/kg NAC intraperitoneally. Sev: Exposed to 6 hours of 3 l/min gas and 3 % sevoflurane. Sev+NAC: Received 6 hours of 3 l/min gas, 3 % sevoflurane, and 150 mg/kg NAC. Protein levels of NRF-2, NLRP3, IL-1β, caspase-1, Beclin 1, p62, LC3A, and apoptosis markers were assessed. Sevoflurane and NAC alone reduced autophagy, while Sev+NAC group maintained autophagy levels. Sev group had elevated NRF-2, NLRP3, pNRF2, Caspase-1, and IL-1β, which were reduced in Sev+NAC. Apoptosis was higher in Sev, but Sev+NAC showed reduced apoptosis compared to the control. In summary, sevoflurane induced neurotoxicity in developing hippocampus, which was mitigated by N-acetylcysteine administration.
Collapse
Affiliation(s)
- Esra Adiyeke
- Sancaktepe Training and Research Hospital, Anesthesiology and Reanimation Department, Emek Mahallesi Namık Kemal Caddesi No:54 Sancaktepe, Istanbul, Turkey.
| | - Nurten Bakan
- Sancaktepe Training and Research Hospital, Anesthesiology and Reanimation Department, Emek Mahallesi Namık Kemal Caddesi No:54 Sancaktepe, Istanbul, Turkey
| | - Ayca Uvez
- Istanbul University-Cerrahpaşa Faculty of Veterinary Medicine Department of Histology and Embryology, Turkey
| | - Devrim Oz Arslan
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Biophysics, Turkey
| | - Sima Kilic
- Istanbul University-Cerrahpasa, Institude of Nanotechnology and Biotechnology Department of Biotechnology, Turkey
| | - Berkcan Koc
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Biophysics, Turkey
| | - Samed Ozer
- Acibadem Mehmet Ali Aydinlar University Institute of Health Science Department of Physiology, Turkey
| | - Ozlem Saatci
- Sancaktepe Training and Research Hospital Department of Otolaryngology/Head and Neck Surgery, Turkey
| | - Elif İlkay Armutak
- Istanbul University-Cerrahpaşa Faculty of Veterinary Medicine Department of Histology and Embryology, Turkey
| |
Collapse
|
12
|
Behrooz AB, Nasiri M, Adeli S, Jafarian M, Pestehei SK, Babaei JF. Pre-adolescence repeat exposure to sub-anesthetic doses of ketamine induces long-lasting behaviors and cognition impairment in male and female rat adults. IBRO Neurosci Rep 2024; 16:211-223. [PMID: 38352700 PMCID: PMC10862408 DOI: 10.1016/j.ibneur.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
In pre-adolescence, repeated anesthesia may be required for therapeutic interventions. Adult cognitive and neurobehavioral problems may result from preadolescent exposure to anesthetics. This study examined the long-term morphological and functional effects of repeated sub-anesthetic doses of ketamine exposure on male and female rat adults during pre-adolescence. Weaned 48 pre-adolescent rats from eight mothers and were randomly divided into four equal groups: control group and the ketamine group of males and females (20 mg/kg daily for 14 days); then animals received care for 20-30 days. Repeated exposure to sub-anesthetic doses of ketamine on cognitive functions was assayed using Social discrimination and novel object tests. Besides, an elevated plus maze and fear conditioning apparatus were utilized to determine exploratory and anxiety-like behavior in adults. Toluidine blue stain was used to evaluate the number of dead neurons in the hippocampus, and the effects of ketamine on synaptic plasticity were compared in the perforant pathway of the CA1 of the hippocampus. Our study indicates that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can result in neurobehavioral impairment in male and female rat adulthood but does not affect anxiety-like behavior. We found a significant quantifiable increase in dark neurons. Recorded electrophysiologically, repeat sub-anesthetic doses of ketamine resulted in hampering long-term potentiation and pair pulse in male adult animals. Our results showed that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can induce hippocampus and neuroplasticity changes later in adulthood. This study opens up a new line of inquiry into potential adverse outcomes of repeated anesthesia exposure in pre-adolescent rats.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Nasiri
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Feng Y, Qin J, Lu Y, Wang M, Wang S, Luo F. Suberoylanilide hydroxamic acid attenuates cognitive impairment in offspring caused by maternal surgery during mid-pregnancy. PLoS One 2024; 19:e0295096. [PMID: 38551911 PMCID: PMC10980197 DOI: 10.1371/journal.pone.0295096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.
Collapse
Affiliation(s)
- Yunlin Feng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Qin
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanfei Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengdie Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People’s Hospital, Yichun, China
| | - Foquan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Ghosh A, Quinlan S, Forcelli PA. Anti-seizure medication-induced developmental cell death in neonatal rats is unaltered by history of hypoxia. Epilepsy Res 2024; 201:107318. [PMID: 38430668 PMCID: PMC11018699 DOI: 10.1016/j.eplepsyres.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Many anti-seizure medications (ASMs) trigger neuronal cell death when administered during a confined period of early life in rodents. Prototypical ASMs used to treat early-life seizures such as phenobarbital induce this effect, whereas levetiracetam does not. However, most prior studies have examined the effect of ASMs in naïve animals, and the degree to which underlying brain injury interacts with these drugs to modify cell death is poorly studied. Moreover, the degree to which drug-induced neuronal cell death differs as a function of sex is unknown. METHODS We treated postnatal day 7 Sprague Dawley rat pups with vehicle, phenobarbital (75 mg/kg) or levetiracetam (200 mg/kg). Separate groups of pups were pre-exposed to either normoxia or graded global hypoxia. Separate groups of males and females were used. Twenty-four hours after drug treatment, brains were collected and processed for markers of cell death. RESULTS Consistent with prior studies, phenobarbital, but not levetiracetam, increased cell death in cortical regions, basal ganglia, hippocampus, septum, and lateral thalamus. Hypoxia did not modify basal levels of cell death. Females - collapsed across treatment and hypoxia status, displayed a small but significant increase in cell death as compared to males in the cingulate cortex, somatosensory cortex, and the CA1 and CA3 hippocampus; these effects were not modulated by hypoxia or drug treatment. CONCLUSION We found that a history of graded global hypoxia does not alter the neurotoxic profile of phenobarbital. Levetiracetam, which does not induce cell death in normal developing animals, maintained a benign profile on the background of neonatal hypoxia. We found a sex-based difference, as female animals showed elevated levels of cell death across all treatment conditions. Together, these data address several long-standing gaps in our understanding of the neurotoxic profile of antiseizure medications during early postnatal development.
Collapse
Affiliation(s)
- Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Sean Quinlan
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA; Department of Neuroscience, Georgetown University, Washington, DC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
15
|
Wang M, Feng N, Qin J, Wang S, Chen J, Qian S, Liu Y, Luo F. Abdominal surgery under ketamine anesthesia during second trimester impairs hippocampal learning and memory of offspring by regulating dendrite spine remodeling in rats. Neurotoxicology 2024; 101:82-92. [PMID: 38346645 DOI: 10.1016/j.neuro.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Recent evidence showed that general anesthesia produces long-term neurotoxicity and cognitive dysfunction. However, it remains unclear whether maternal non-obstetric surgery under ketamine anesthesia during second trimester causes cognitive impairment in offspring. The present study assigned pregnant rats into three groups: 1) normal control group receiving no anesthesia and no surgery, 2) ketamine group receiving ketamine anesthesia for 2 h on the 14th day of gestation but no surgery, and 3) surgery group receiving abdominal surgery under ketamine anesthesia on the 14th day of gestation. On postnatal day 1, the offspring rats in Ketamine group and surgery group were assigned to receive intra-peritoneal injection of Senegenin (15 mg/kg), once per day for consecutive 14 days. The offspring's spatial perception, anxiety-like behavior, and learning and memory were evaluated. Then the offspring's hippocampal tissues were collected. The offspring of the surgery group were impaired in the spatial perception in the cliff avoidance test and the spatial learning and memory in the Morris water maze test. Accordingly, the activity of histone deacetylases increased, the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 decreased, and the density of dendritic spines reduced in the hippocampus of the offspring of the surgery group, and such effects were not seen in the offspring of the ketamine group, neither in the offspring of control group. Senegenin alleviated the learning and memory impairment, and increased the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 and the density of dendritic spines in the offspring of the surgery group. ketamine anesthesia plus surgery during second trimester impairs hippocampus-dependent learning and memory, and the deficits could be rescued by treatment with Senegenin.
Collapse
Affiliation(s)
- Mengdie Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Namin Feng
- Department of Anesthesiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Qin
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People's Hospital, Yichun 336000, China
| | - Jiabao Chen
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Shaojie Qian
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China
| | - Yulin Liu
- Department of Immunology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Foquan Luo
- Rehabilitation Medical Center and Department of Anesthesiology, Zhejiang Provincial People's Hospital and Hangzhou Medical College Affiliated People's Hospital, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
16
|
Stanton E, Roohani I, Shakoori P, Fahradyan A, Urata MM, Magee WP, Hammoudeh JA. Comparing Outcomes of Traditional Lip Repair Versus Early Cleft Lip Repair on a National Scale. Ann Plast Surg 2024; 92:194-197. [PMID: 38198627 DOI: 10.1097/sap.0000000000003771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
BACKGROUND Cleft lip (CL) is one of the most common congenital anomalies and has traditionally been repaired surgically when the patient is between 3 and 6 months of age. However, recent single-institutional studies have demonstrated the efficacy and safety of early CL repairs (ECLRs) during the neonatal period. This study seeks to evaluate the outcomes of ECLR (repair <1 month) versus traditional lip repair (TLR) by comparing outcomes on a national scale. METHODS The American College of Surgeons National Surgical Quality Improvement Program Pediatric Date File was used to query patients who underwent CL repairs between 2012 and 2022. The main outcome measures were anesthesia times and perioperative complications. The main predictive variable was operative group (ECLR vs TLR). Patients were considered to be in the ECLR cohort if they were younger than 30 days after birth at the time of cleft repair. Student t test and χ2 analyses were used to evaluate categorical and continuous differences, respectively. Multiple logistic regression was performed to model the association of ECLR versus TLR with death within 30 days, overall complication rates, dehiscence rates, readmission within 30 days, and reoperation rates while controlling for various covariates. RESULTS Multiple linear regression determined that the ECLR cohort had significantly shorter operative times when controlling for operative complications, sex, cardiac risk factors, and American Society of Anesthesiologists class (coefficient = -34.4; confidence interval, -47.8 to -20.9; P < 0.001). Similarly, multiple linear regression demonstrated ECLR patients to have significantly shorter time of exposure to anesthesia (coefficient = -35.0; 95% confidence interval, -50.3 to -19.7; P < 0.001). Multiple logistic regression demonstrated that ECLR was not significantly associated with an increased likelihood of any postoperative complication when controlling for sex, cardiac risk factors, and American Society of Anesthesiologists class (P = 0.26). CONCLUSIONS The findings of this study provide nationwide evidence that ECLR does not lead to an increased risk of adverse outcomes or complications. In addition, ECLR patients have shorter surgeries and shorter exposure to anesthesia compared with TLR. The results provide further evidence that ECLR can be done safely where earlier intervention may result in better feeding/weight gain and subsequently improve cleft care. However, longer-term studies are warranted to further elucidate the effects of this protocol.
Collapse
Affiliation(s)
| | | | | | - Artur Fahradyan
- From the Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles
| | | | | | | |
Collapse
|
17
|
Sinkey RG, Ogunsile FJ, Kanter J, Bean C, Greenberg M. Society for Maternal-Fetal Medicine Consult Series #68: Sickle cell disease in pregnancy. Am J Obstet Gynecol 2024; 230:B17-B40. [PMID: 37866731 PMCID: PMC10961101 DOI: 10.1016/j.ajog.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Pregnant individuals with sickle cell disease have an increased risk of maternal and perinatal morbidity and mortality. However, prepregnancy counseling and multidisciplinary care can lead to favorable maternal and neonatal outcomes. In this consult series, we summarize what is known about sickle cell disease and provide guidance for sickle cell disease management during pregnancy. The following are Society for Maternal-Fetal Medicine recommendations.
Collapse
|
18
|
Kim J, Barcus R, Lipford ME, Yuan H, Ririe DG, Jung Y, Vlasova RM, Styner M, Nader MA, Whitlow CT. Effects of multiple anesthetic exposures on rhesus macaque brain development: a longitudinal structural MRI analysis. Cereb Cortex 2024; 34:bhad463. [PMID: 38142289 PMCID: PMC10793576 DOI: 10.1093/cercor/bhad463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/25/2023] Open
Abstract
Concerns about the potential neurotoxic effects of anesthetics on developing brain exist. When making clinical decisions, the timing and dosage of anesthetic exposure are critical factors to consider due to their associated risks. In our study, we investigated the impact of repeated anesthetic exposures on the brain development trajectory of a cohort of rhesus monkeys (n = 26) over their first 2 yr of life, utilizing longitudinal magnetic resonance imaging data. We hypothesized that early or high-dose anesthesia exposure could negatively influence structural brain development. By employing the generalized additive mixed model, we traced the longitudinal trajectories of brain volume, cortical thickness, and white matter integrity. The interaction analysis revealed that age and cumulative anesthetic dose were variably linked to white matter integrity but not to morphometric measures. Early high-dose exposure was associated with increased mean, axial, and radial diffusivities across all white matter regions, compared to late-low-dose exposure. Our findings indicate that early or high-dose anesthesia exposure during infancy disrupts structural brain development in rhesus monkeys. Consequently, the timing of elective surgeries and procedures that require anesthesia for children and pregnant women should be strategically planned to account for the cumulative dose of volatile anesthetics, aiming to minimize the potential risks to brain development.
Collapse
Affiliation(s)
- Jeongchul Kim
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, NC, United States
| | - Richard Barcus
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Megan E Lipford
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, NC, United States
| | - Hongyu Yuan
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Douglas G Ririe
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Youngkyoo Jung
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T Whitlow
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, NC, United States
- Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
19
|
Gartenberg A, Levine K, Petrie A. Emergency department management of acute agitation in the reproductive age female and pregnancy. World J Emerg Med 2024; 15:83-90. [PMID: 38476529 PMCID: PMC10925524 DOI: 10.5847/wjem.j.1920-8642.2024.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Agitation is a common presentation within emergent departments (EDs). Agitation during pregnancy should be treated as an obstetric emergency, as the distress may jeopardize both the patient and fetus. The safety of psychotropic medications in the reproductive age female has not been well established. This review aimed to explore a summary of general agitation recommendations with an emphasis on ED management of agitation during pregnancy. METHODS A literature review was conducted to explore the pathophysiology of acute agitation and devise a preferred treatment plan for ED management of acute agitation in the reproductive age or pregnant female. RESULTS While nonpharmacological management is preferred, ED visits for agitation often require medical management. Medication should be selected based on the etiology of agitation and the clinical setting to avoid major adverse effects. Adverse effects are common in pregnant females. For mild to moderate agitation in pregnancy, diphenhydramine is an effective sedating agent with minimal adverse effects. In moderate to severe agitation, high-potency typical psychotropics are preferred due to their neutral effects on hemodynamics. Haloperidol has become the most frequently utilized psychotropic for agitation during pregnancy. Second generation psychotropics are often utilized as second-line therapy, including risperidone. Benzodiazepines and ketamine have demonstrated adverse fetal outcomes. CONCLUSION While randomized control studies cannot be ethically conducted on pregnant patients requiring sedation, animal models and epidemiologic studies have demonstrated the effects of psychotropic medication exposure in utero. As the fetal risk associated with multiple doses of psychotropic medications remains unknown, weighing the risks and benefits of each agent, while utilizing the lowest effective dose remains critical in the treatment of acute agitation within the EDs.
Collapse
Affiliation(s)
- Ariella Gartenberg
- Department of Emergency Medicine, Jacobi Medical Center and Montefiore Medical Center, NY 10461, USA
| | - Kayla Levine
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, NY 10461, USA
| | - Alexander Petrie
- Department of Emergency Medicine, Jacobi Medical Center and North Central Bronx Hospital, NY 10461, USA
| |
Collapse
|
20
|
Neudecker V, Perez-Zoghbi JF, Miranda-Domínguez O, Schenning KJ, Ramirez JS, Mitchell AJ, Perrone A, Earl E, Carpenter S, Martin LD, Coleman K, Neuringer M, Kroenke CD, Dissen GA, Fair DA, Brambrink AM. Early-in-life isoflurane exposure alters resting-state functional connectivity in juvenile non-human primates. Br J Anaesth 2023; 131:1030-1042. [PMID: 37714750 PMCID: PMC10687619 DOI: 10.1016/j.bja.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Viola Neudecker
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Oscar Miranda-Domínguez
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Katie J Schenning
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Julian Sb Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Anders Perrone
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Sam Carpenter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lauren D Martin
- Animal Resources & Research Support, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristine Coleman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Damien A Fair
- Clinical Behavioral Neuroscience Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Ansgar M Brambrink
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Fan S, Wang X, Gao N, Wei S. Electroacupuncture Pretreatment Attenuates Learning Memory Impairment Induced by Repeated Propofol Exposure and Modulates Hippocampal Synaptic Plasticity in Rats. J Inflamm Res 2023; 16:4559-4573. [PMID: 37868829 PMCID: PMC10588748 DOI: 10.2147/jir.s427925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Recurrent propofol anesthesia in the peak of neurodevelopment may lead to learning-memory decline. This study aimed to examine the efficacy of electroacupuncture pretreatment in ameliorating the aforementioned learning memory deficits and to explore its underlying mechanisms in a rat model of repeated propofol exposure. Methods 10-day-old Sprague Dawley rats were randomly assigned to five groups: the control, fat emulsion, propofol, electroacupuncture pretreatment and electroacupuncture pretreatment combined with propofol groups. The electroacupuncture pretreatment involved three consecutive daily sessions, while propofol was received intraperitoneally once daily for five days. Following the modeling period, the rats' learning-memory performance was assessed using the New Novel Arm Y-maze, New Object Recognition, and Morris Water Maze. The Nissl staining method was used to observe the development of hippocampal neurons, while Golgi staining was employed to observe hippocampal synaptic development. Results The electroacupuncture pretreatment significantly attenuated the learning and memory impairment induced by recurring propofol exposure in rats. Additionally, it facilitated the development of hippocampal neurons and synaptic plasticity in the hippocampus. Immunofluorescence and Western Blot analyses were conducted to detect the expression of proteins related to apoptosis, learning memory, and synaptic plasticity. In the propofol group, the pro-apoptotic factors Caspase-3 and Bax was up-regulated, while the anti-apoptotic factor Bcl-2 was down-regulated, as compared to the blank group. Additionally, the phosphorylated cAMP-response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), synaptophysin, and growth associated protein-43 (GAP-43) was significantly decreased. In contrast, the electroacupuncture pretreatment combined with propofol group exhibited decreased the Caspase-3 and Bax and increased the Bcl-2, as compared to the propofol group, meanwhile, the pCREB, BDNF, Synaptophysin and GAP-43 was increased. Conclusion Our findings indicate that electroacupuncture pretreatment can alleviate the learning and memory impairment induced by recurring propofol exposure in rats. This is achieved by enhancing hippocampal synaptic plasticity, activating the pCREB/BDNF pathway and inhibiting neuronal apoptosis.
Collapse
Affiliation(s)
- Shunqin Fan
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Xijun Wang
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Ning Gao
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Songli Wei
- Department of Anesthesiology, International Zhuang Medical Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
22
|
Hogarth K, Tarazi D, Maynes JT. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front Neurol 2023; 14:1179823. [PMID: 37533472 PMCID: PMC10390784 DOI: 10.3389/fneur.2023.1179823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3 years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.
Collapse
Affiliation(s)
- Kaley Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Doorsa Tarazi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Du Z, Zang Z, Luo J, Liu T, Yang L, Cai Y, Wang L, Zhang D, Zhao J, Gao J, Lv K, Wang L, Li H, Gong H, Fan X. Chronic exposure to (2 R,6 R)-hydroxynorketamine induces developmental neurotoxicity in hESC-derived cerebral organoids. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131379. [PMID: 37054645 DOI: 10.1016/j.jhazmat.2023.131379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
(R,S)-ketamine (ketamine) has been increasingly used recreationally and medicinally worldwide; however, it cannot be removed by conventional wastewater treatment plants. Both ketamine and its metabolite norketamine have been frequently detected to a significant degree in effluents, aquatic, and even atmospheric environments, which may pose risks to organisms and humans via drinking water and aerosols. Ketamine has been shown to affect the brain development of unborn babies, while it is still elusive whether (2 R,6 R)-hydroxynorketamine (HNK) induces similar neurotoxicity. Here, we investigated the neurotoxic effect of (2 R,6 R)-HNK exposure at the early stages of gestation by applying human cerebral organoids derived from human embryonic stem cells (hESCs). Short-term (2 R,6 R)-HNK exposure did not significantly affect the development of cerebral organoids, but chronic high-concentration (2 R,6 R)-HNK exposure at day 16 inhibited the expansion of organoids by suppressing the proliferation and augmentation of neural precursor cells (NPCs). Notably, the division mode of apical radial glia was unexpectedly switched from vertical to horizontal division planes following chronic (2 R,6 R)-HNK exposure in cerebral organoids. Chronic (2 R,6 R)-HNK exposure at day 44 mainly inhibited the differentiation but not the proliferation of NPCs. Overall, our findings indicate that (2 R,6 R)-HNK administration leads to the abnormal development of cortical organoids, which may be mediated by inhibiting HDAC2. Future clinical studies are needed to explore the neurotoxic effects of (2 R,6 R)-HNK on the early development of the human brain.
Collapse
Affiliation(s)
- Zhulin Du
- School of Life Sciences, Chongqing University, Chongqing, China, Chongqing 401331, China; Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 40037, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
24
|
Tomlinson C, Vlasova R, Al-Ali K, Young JT, Shi Y, Lubach GR, Alexander AL, Coe CL, Styner M, Fine J. Effects of anesthesia exposure on postnatal maturation of white matter in rhesus monkeys. Dev Psychobiol 2023; 65:e22396. [PMID: 37338252 PMCID: PMC11000522 DOI: 10.1002/dev.22396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 06/21/2023]
Abstract
There is increasing concern about the potential effects of anesthesia exposure on the developing brain. The effects of relatively brief anesthesia exposures used repeatedly to acquire serial magnetic resonance imaging scans could be examined prospectively in rhesus macaques. We analyzed magnetic resonance diffusion tensor imaging (DTI) of 32 rhesus macaques (14 females, 18 males) aged 2 weeks to 36 months to assess postnatal white matter (WM) maturation. We investigated the longitudinal relationships between each DTI property and anesthesia exposure, taking age, sex, and weight of the monkeys into consideration. Quantification of anesthesia exposure was normalized to account for variation in exposures. Segmented linear regression with two knots provided the best model for quantifying WM DTI properties across brain development as well as the summative effect of anesthesia exposure. The resulting model revealed statistically significant age and anesthesia effects in most WM tracts. Our analysis indicated there were major effects on WM associated with low levels of anesthesia even when repeated as few as three times. Fractional anisotropy values were reduced across several WM tracts in the brain, indicating that anesthesia exposure may delay WM maturation, and highlight the potential clinical concerns with even a few exposures in young children.
Collapse
Affiliation(s)
- Chalmer Tomlinson
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roza Vlasova
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Khalid Al-Ali
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Young
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Tsivitis A, Wang A, Murphy J, Khan A, Jin Z, Moore R, Tateosian V, Bergese S. Anesthesia, the developing brain, and dexmedetomidine for neuroprotection. Front Neurol 2023; 14:1150135. [PMID: 37351266 PMCID: PMC10282145 DOI: 10.3389/fneur.2023.1150135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Anesthesia-induced neurotoxicity is a set of unfavorable adverse effects on central or peripheral nervous systems associated with administration of anesthesia. Several animal model studies from the early 2000's, from rodents to non-human primates, have shown that general anesthetics cause neuroapoptosis and impairment in neurodevelopment. It has been difficult to translate this evidence to clinical practice. However, some studies suggest lasting behavioral effects in humans due to early anesthesia exposure. Dexmedetomidine is a sedative and analgesic with agonist activities on the alpha-2 (ɑ2) adrenoceptors as well as imidazoline type 2 (I2) receptors, allowing it to affect intracellular signaling and modulate cellular processes. In addition to being easily delivered, distributed, and eliminated from the body, dexmedetomidine stands out for its ability to offer neuroprotection against apoptosis, ischemia, and inflammation while preserving neuroplasticity, as demonstrated through many animal studies. This property puts dexmedetomidine in the unique position as an anesthetic that may circumvent the neurotoxicity potentially associated with anesthesia.
Collapse
Affiliation(s)
- Alexandra Tsivitis
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Ashley Wang
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY, United States
| | - Ayesha Khan
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Robert Moore
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Vahe Tateosian
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, New York, NY, United States
| |
Collapse
|
26
|
Pin JN, Leonardi L, Nosadini M, Cavicchiolo ME, Guariento C, Zarpellon A, Perilongo G, Raffagnato A, Toldo I, Baraldi E, Sartori S. Efficacy and safety of ketamine for neonatal refractory status epilepticus: case report and systematic review. Front Pediatr 2023; 11:1189478. [PMID: 37334223 PMCID: PMC10275409 DOI: 10.3389/fped.2023.1189478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Background Evidence-based data on treatment of neonatal status epilepticus (SE) are scarce. We aimed to collect data on the efficacy and safety of ketamine for the treatment of neonatal SE and to assess its possible role in the treatment of neonatal SE. Methods We described a novel case and conducted a systematic literature review on neonatal SE treated with ketamine. The search was carried out in Pubmed, Cochrane, Clinical Trial Gov, Scopus and Web of Science. Results Seven published cases of neonatal SE treated with ketamine were identified and analyzed together with our novel case. Seizures typically presented during the first 24 h of life (6/8). Seizures were resistant to a mean of five antiseizure medications. Ketamine, a NMDA receptor antagonist, appeared to be safe and effective in all neonates treated. Neurologic sequelae including hypotonia and spasticity were reported for 4/5 of the surviving children (5/8). 3/5 of them were seizure free at 1-17 months of life. Discussion Neonatal brain is more susceptible to seizures due to a shift towards increased excitation because of a paradoxical excitatory effect of GABA, a greater density of NMDA receptors and higher extracellular concentrations of glutamate. Status epilepticus and neonatal encephalopathy could further enhance these mechanisms, providing a rationale for the use of ketamine in this setting. Conclusions Ketamine in the treatment of neonatal SE showed a promising efficacy and safety profile. However, further in-depth studies and clinical trials on larger populations are needed.
Collapse
Affiliation(s)
- Jacopo Norberto Pin
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Master in Pediatrics and Pediatric Subspecialties, University Hospital of Padua, Padova, Italy
| | - Letizia Leonardi
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Margherita Nosadini
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza”, Padova, Italy
| | - Maria Elena Cavicchiolo
- Department of Women’s and Children’s Health, Neonatal Intensive Care Unit, University Hospital of Padua, Padova, Italy
| | - Chiara Guariento
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Anna Zarpellon
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Alessia Raffagnato
- Department of Women’s and Children’s Health, Child and Adolescent Neuropsychiatric Unit, University Hospital of Padua, Padova, Italy
| | - Irene Toldo
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Eugenio Baraldi
- Department of Women’s and Children’s Health, Neonatal Intensive Care Unit, University Hospital of Padua, Padova, Italy
| | - Stefano Sartori
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Master in Pediatrics and Pediatric Subspecialties, University Hospital of Padua, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza”, Padova, Italy
- Department of Neuroscience, University Hospital of Padua, Padova, Italy
| |
Collapse
|
27
|
Hooijmans CR, Buijs M, Struijs F, Som T, Karim N, Scheffer GJ, Malagon I. Exposure to halogenated ethers causes neurodegeneration and behavioural changes in young healthy experimental animals: a systematic review and meta analyses. Sci Rep 2023; 13:8063. [PMID: 37202446 DOI: 10.1038/s41598-023-35052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
The FDA issued a warning that repeated and prolonged use of inhalational anaesthetics in children younger than 3 years may increase the risk of neurological damage. Robust clinical evidence supporting this warning is however lacking. A systematic review of all preclinical evidence concerning isoflurane, sevoflurane, desflurane and enflurane exposure in young experimental animals on neurodegeneration and behaviour may elucidate how severe this risk actually is PubMed and Embase were comprehensively searched on November 23, 2022. Based on predefined selection criteria the obtained references were screened by two independent reviewers. Data regarding study design and outcome data (Caspase-3 and TUNEL for neurodegeneration, Morris water maze (MWM), Elevated plus maze (EPM), Open field (OF) and Fear conditioning (FC)) were extracted, and individual effect sizes were calculated and subsequently pooled using the random effects model. Subgroup analyses were predefined and conducted for species, sex, age at anesthesia, repeated or single exposure and on time of outcome measurement. Out of the 19.796 references screened 324 could be included in the review. For enflurane there were too few studies to conduct meta-analysis (n = 1). Exposure to sevoflurane, isoflurane and desflurane significantly increases Caspase-3 levels and TUNEL levels. Further, sevoflurane and isoflurane also cause learning and memory impairment, and increase anxiety. Desflurane showed little effect on learning and memory, and no effect on anxiety. Long term effects of sevoflurane and isoflurane on neurodegeneration could not be analysed due to too few studies. For behavioural outcomes, however, this was possible and revealed that sevoflurane caused impaired learning and memory in all three related outcomes and increased anxiety in the elevated plus maze. For isoflurane, impaired learning and memory was observed as well, but only sufficient data was available for two of the learning and memory related outcomes. Further, single exposure to either sevoflurane or isoflurane increased neurodegeneration and impaired learning and memory. In summary, we show evidence that exposure to halogenated ethers causes neurodegeneration and behavioural changes. These effects are most pronounced for sevoflurane and isoflurane and already present after single exposure. To date there are not sufficient studies to estimate the presence of long term neurodegenerative effects. Nevertheless, we provide evidence in this review of behavioral changes later in life, suggesting some permanent neurodegenerative changes. Altogether, In contrast to the warning issued by the FDA we show that already single exposure to isoflurane and sevoflurane negatively affects brain development. Based on the results of this review use of sevoflurane and isoflurane should be restrained as much as possible in this young vulnerable group, until more research on the long term permanent effects have been conducted.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands.
| | - Marije Buijs
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands
| | - Frederique Struijs
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands
| | - Thijs Som
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands
| | - Najma Karim
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands
| | - Ignacio Malagon
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein-Noord 21, route 126, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Friese MB, Gujral TS, Palanisamy A, Hemmer B, Culley DJ, Crosby G. Anesthetics inhibit phosphorylation of the ribosomal protein S6 in mouse cultured cortical cells and developing brain. Front Aging Neurosci 2023; 15:1060186. [PMID: 37261265 PMCID: PMC10229047 DOI: 10.3389/fnagi.2023.1060186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The development and maintenance of neural circuits is highly sensitive to neural activity. General anesthetics have profound effects on neural activity and, as such, there is concern that these agents may alter cellular integrity and interfere with brain wiring, such as when exposure occurs during the vulnerable period of brain development. Under those conditions, exposure to anesthetics in clinical use today causes changes in synaptic strength and number, widespread apoptosis, and long-lasting cognitive impairment in a variety of animal models. Remarkably, most anesthetics produce these effects despite having differing receptor mechanisms of action. We hypothesized that anesthetic agents mediate these effects by inducing a shared signaling pathway. Methods We exposed cultured cortical cells to propofol, etomidate, or dexmedetomidine and assessed the protein levels of dozens of signaling molecules and post-translational modifications using reverse phase protein arrays. To probe the role of neural activity, we performed separate control experiments to alter neural activity with non-anesthetics. Having identified anesthetic-induced changes in vitro, we investigated expression of the target proteins in the cortex of sevoflurane anesthetized postnatal day 7 mice by Western blotting. Results All the anesthetic agents tested in vitro reduced phosphorylation of the ribosomal protein S6, an important member of the mTOR signaling pathway. We found a comparable decrease in cortical S6 phosphorylation by Western blotting in sevoflurane anesthetized neonatal mice. Using a systems approach, we determined that propofol, etomidate, dexmedetomidine, and APV/TTX all similarly modulate a signaling module that includes pS6 and other cell mediators of the mTOR-signaling pathway. Discussion Reduction in S6 phosphorylation and subsequent suppression of the mTOR pathway may be a common and novel signaling event that mediates the impact of general anesthetics on neural circuit development.
Collapse
Affiliation(s)
- Matthew B Friese
- Laboratory for Aging Neuroscience, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Taranjit S Gujral
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Arvind Palanisamy
- Laboratory for Aging Neuroscience, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Brittany Hemmer
- Laboratory for Aging Neuroscience, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Deborah J Culley
- Laboratory for Aging Neuroscience, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Gregory Crosby
- Laboratory for Aging Neuroscience, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
29
|
Huang R, Lin B, Tian H, Luo Q, Li Y. Prenatal Exposure to General Anesthesia Drug Esketamine Impaired Neurobehavior in Offspring. Cell Mol Neurobiol 2023:10.1007/s10571-023-01354-4. [PMID: 37119312 DOI: 10.1007/s10571-023-01354-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Prenatal exposure to anesthetics has raised increasing attention about the neuronal development in offspring. Animal models are usually used for investigation. As a new drug, esketamine is the s-isoform of ketamine and is twice as potent as the racemic ketamine with less reported adverse effects. Esketamine is currently being used and become more favorable in clinical anesthesia work, including surgeries during pregnancy, yet the effect on the offspring is unknown. The present study aimed to elucidate the effects of gestational administration of esketamine on neuronal development in offspring, using a rat model. Gestational day 14.5 pregnant rats received intravenous injections of esketamine. The postnatal day 0 (P0) hippocampus was digested and cultured in vitro to display the neuronal growth morphology. On Day 4 the in vitro experiments revealed a shorter axon length and fewer dendrite branches in the esketamine group. The results from the EdU- imaging kit showed decreased proliferative capacity in the subventricular zone (SVZ) and dentate gyrus (DG) in both P0 and P30 offspring brains in the esketamine group. Moreover, neurogenesis, neuron maturity and spine density were impaired, resulting in attenuated long-term potentiation (LTP). Compromised hippocampal function accounted for the deficits in neuronal cognition, memory and emotion. The evidence obtained suggests that the neurobehavioral deficit due to prenatal exposure to esketamine may be related to the decrease phosphorylation of CREB and abnormalities in N-methyl-D-aspartic acid receptor subunits. Taken together, these results demonstrate the negative effect of prenatal esketamine exposure on neuronal development in offspring rats. G14.5 esketamine administration influenced the neurobehavior of the offspring in adolescence. Poorer neuronal growth and reduced brain proliferative capacity in late gestation and juvenile pups resulted in impaired P30 neuronal plasticity and synaptic spines as well as abnormalities in NMDAR subunits. Attenuated LTP reflected compromised hippocampal function, as confirmed by behavioral tests of cognition, memory and emotions. This figure was completed on the website of Figdraw.
Collapse
Affiliation(s)
- Ronghua Huang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China
| | - Bingbiao Lin
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China
| | - Hongyan Tian
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China
| | - Qichen Luo
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Number 613, The West of Huangpu Avenue, Tianhe Region, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
30
|
Fine-Raquet B, Manzella FM, Joksimovic SM, Dietz RM, Orfila JE, Sampath D, Tesic V, Atluri N, Covey DF, Raol YH, Jevtovic-Todorovic V, Herson PS, Todorovic SM. Neonatal exposure to a neuroactive steroid alters low-frequency oscillations in the subiculum. Exp Biol Med (Maywood) 2023; 248:578-587. [PMID: 37309730 PMCID: PMC10350800 DOI: 10.1177/15353702231177009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Preclinical studies have established that neonatal exposure to contemporary sedative/hypnotic drugs causes neurotoxicity in the developing rodent and primate brains. Our group recently reported that novel neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) induced effective hypnosis in both neonatal and adult rodents but did not cause significant neurotoxicity in vulnerable brain regions such as subiculum, an output region of hippocampal formation particularly sensitive to commonly used sedatives/hypnotics. Despite significant emphasis on patho-morphological changes, little is known about long-term effects on subicular neurophysiology after neonatal exposure to neuroactive steroids. Hence, we explored the lasting effects of neonatal exposure to 3β-OH on sleep macrostructure as well as subicular neuronal oscillations in vivo and synaptic plasticity ex vivo in adolescent rats. At postnatal day 7, we exposed rat pups to either 10 mg/kg of 3β-OH over a period of 12 h or to volume-matched cyclodextrin vehicle. At weaning age, a cohort of rats was implanted with a cortical electroencephalogram (EEG) and subicular depth electrodes. At postnatal day 30-33, we performed in vivo assessment of sleep macrostructure (divided into wake, non-rapid eye movement, and rapid eye movement sleep) and power spectra in cortex and subiculum. In a second cohort of 3β-OH exposed animals, we conducted ex vivo studies of long-term potentiation (LTP) in adolescent rats. Overall, we found that neonatal exposure to 3β-OH decreased subicular delta and sigma oscillations during non-rapid eye movement sleep without altering sleep macrostructure. Furthermore, we observed no significant changes in subicular synaptic plasticity. Interestingly, our previous study found that neonatal exposure to ketamine increased subicular gamma oscillations during non-rapid eye movement sleep and profoundly suppressed subicular LTP in adolescent rats. Together these results suggest that exposure to different sedative/hypnotic agents during a critical period of brain development may induce distinct functional changes in subiculum circuitry that may persist into adolescent age.
Collapse
Affiliation(s)
- Brier Fine-Raquet
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francesca M Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dayalan Sampath
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, College Station, TX 77843, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas F Covey
- Department of Developmental Biology, St. Louis School of Medicine, Washington University, St. Louis, MO 63130, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, MD 20824, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Zhou N, Liang S, Yue X, Zou W. Prenatal anesthetic exposure and offspring neurodevelopmental outcomes—A narrative review. Front Neurol 2023; 14:1146569. [PMID: 37064201 PMCID: PMC10090376 DOI: 10.3389/fneur.2023.1146569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
While it is common for pregnant women to take anesthesia during surgery, the effects of prenatal anesthesia exposure (PAE) on the long-term neurodevelopment of the offspring remain to be clarified. Preclinical animal research has shown that in utero anesthetic exposure causes neurotoxicity in newborns, which is mainly characterized by histomorphological changes and altered learning and memory abilities. Regional birth cohort studies that are based on databases are currently the most convenient and popular types of clinical studies. Specialized questionnaires and scales are usually employed in these studies for the screening and diagnosis of neurodevelopmental disorders in the offspring. The time intervals between the intrauterine exposure and the onset of developmental outcomes often vary over several years and accommodate a large number of confounding factors, which have an even greater impact on the neurodevelopment of the offspring than prenatal anesthesia itself. This narrative review summarized the progress in prenatal anesthetic exposure and neurodevelopmental outcomes in the offspring from animal experimental research and clinical studies and provided a brief introduction to assess the neurodevelopment in children and potential confounding factors.
Collapse
|
32
|
Yu Y, Tham SK, Roslan FF, Shaharuddin B, Yong YK, Guo Z, Tan JJ. Large animal models for cardiac remuscularization studies: A methodological review. Front Cardiovasc Med 2023; 10:1011880. [PMID: 37008331 PMCID: PMC10050756 DOI: 10.3389/fcvm.2023.1011880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most common cause of heart failure, one of the most fatal non-communicable diseases worldwide. The disease could potentially be treated if the dead, ischemic heart tissues are regenerated and replaced with viable and functional cardiomyocytes. Pluripotent stem cells have proven the ability to derive specific and functional cardiomyocytes in large quantities for therapy. To test the remuscularization hypothesis, the strategy to model the disease in animals must resemble the pathophysiological conditions of myocardial infarction as in humans, to enable thorough testing of the safety and efficacy of the cardiomyocyte therapy before embarking on human trials. Rigorous experiments and in vivo findings using large mammals are increasingly important to simulate clinical reality and increase translatability into clinical practice. Hence, this review focus on large animal models which have been used in cardiac remuscularization studies using cardiomyocytes derived from human pluripotent stem cells. The commonly used methodologies in developing the myocardial infarction model, the choice of animal species, the pre-operative antiarrhythmics prophylaxis, the choice of perioperative sedative, anaesthesia and analgesia, the immunosuppressive strategies in allowing xenotransplantation, the source of cells, number and delivery method are discussed.
Collapse
Affiliation(s)
- Yuexin Yu
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
| | | | - Fatin Fazrina Roslan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bakiah Shaharuddin
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
- Correspondence: Jun Jie Tan Zhikun Guo
| | - Jun Jie Tan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Correspondence: Jun Jie Tan Zhikun Guo
| |
Collapse
|
33
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
34
|
An Update on Preclinical Research in Anesthetic-Induced Developmental Neurotoxicity in Nonhuman Primate and Rodent Models. J Neurosurg Anesthesiol 2023; 35:104-113. [PMID: 36745171 DOI: 10.1097/ana.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Ulinastatin Alleviates Repetitive Ketamine Exposure-Evoked Cognitive Impairment in Adolescent Mice. Neural Plast 2022; 2022:6168284. [PMID: 36545238 PMCID: PMC9763019 DOI: 10.1155/2022/6168284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Ketamine (KET) is widely used for induction and maintenance of anesthesia, and long-term use is required for treatment of depression patients. Repeated use of KET is associated with mood and memory disorders. Ulinastatin (UTI), a urinary trypsin inhibitor, has been widely undertaken as an anti-inflammatory drug and proved to have neuroprotective effects. The aim of this work was to determine whether prophylactic use of UTI could attenuate KET-induced cognitive impairment. It was found that repetitive KET anesthesia cause cognitive and emotional disorders in adolescent mice in WMZ and OFT test, while UTI pretreatment reversed the poor performance compared to the AK group, and the platform finding time and center crossing time were obviously short in the CK+UTI group (P < 0.05). Our ELISA experiment results discovered that UTI pretreatment reduced the expression levels of IL-1β and IL-6 induced by CK anesthesia compared to AK (P < 0.05). In addition, UTI pretreatment protected the cognitive function by restraining the expression levels of Tau protein, Tau phospho-396 protein, and Aβ protein in the CK group compared to the AK group in Western blotting (P < 0.05). The results suggested that UTI could act as a new strategy to prevent the neurotoxicity of KET, revealing a significant neuroprotective effect of UTI.
Collapse
|
36
|
Ji D, Karlik J. Neurotoxic Impact of Individual Anesthetic Agents on the Developing Brain. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1779. [PMID: 36421228 PMCID: PMC9689007 DOI: 10.3390/children9111779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023]
Abstract
Concerns about the safety of anesthetic agents in children arose after animal studies revealed disruptions in neurodevelopment after exposure to commonly used anesthetic drugs. These animal studies revealed that volatile inhalational agents, propofol, ketamine, and thiopental may have detrimental effects on neurodevelopment and cognitive function, but dexmedetomidine and xenon have been shown to have neuroprotective properties. The neurocognitive effects of benzodiazepines have not been extensively studied, so their effects on neurodevelopment are undetermined. However, experimental animal models may not truly represent the pathophysiological processes in children. Multiple landmark studies, including the MASK, PANDA, and GAS studies have provided reassurance that brief exposure to anesthesia is not associated with adverse neurocognitive outcomes in infants and children, regardless of the type of anesthetic agent used.
Collapse
|
37
|
Discussion: Early Cleft Lip Repair: Demonstrating Efficacy in the First 100 Patients. Plast Reconstr Surg 2022; 150:1081-1082. [DOI: 10.1097/prs.0000000000009636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Bleeser T, Hubble TR, Van de Velde M, Deprest J, Rex S, Devroe S. Introduction and history of anaesthesia-induced neurotoxicity and overview of animal models. Best Pract Res Clin Anaesthesiol 2022. [DOI: 10.1016/j.bpa.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Meshkat S, Rosenblat JD, Ho RC, Rhee TG, Cao B, Ceban F, Danayan K, Chisamore N, Vincenzo JDD, McIntyre RS. Ketamine use in pediatric depression: A systematic review. Psychiatry Res 2022; 317:114911. [PMID: 37732856 DOI: 10.1016/j.psychres.2022.114911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
Pediatric depression is a common psychiatric disorder that is associated with significant morbidity and mortality. Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist with demonstrated antidepressant effects in the adult population, however, the efficacy and safety of ketamine for the treatment of pediatric depression remains poorly understood. Electronic databases were searched from inception to June 2022 to identify relevant articles. Six articles involving 46 participants with a mean age of 15.7 years were included in this systematic review. Out of six articles, three were case reports, one was a randomized clinical trial (RCT) and two were open-label trials. All studies used 0.5 mg/kg intravenous ketamine except for one, which used 2-7 micrograms/kg. Ketamine was significantly associated with reduced depressive symptoms without severe adverse events. Taken together, the results of these studies demonstrated the potential role of ketamine for treating pediatric depression. Several important limitations were identified, most notably the small sample sizes of the component studies, and that all studies administered intravenous ketamine. Further studies with larger sample sizes and different administration modalities are needed to better determine the efficacy and safety of ketamine in pediatric depression.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Braxia Health, Braxia Scientific Corp, Mississauga, ON, Canada
| | - Roger C Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Taeho Greg Rhee
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; VA New England Mental Illness, Research, Education and Clinical Center (MIRECC), VA Connecticut Healthcare System, West Haven, CT, USA; Department of Public Health Sciences, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, PR China
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kevork Danayan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Noah Chisamore
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Braxia Health, Braxia Scientific Corp, Mississauga, ON, Canada.
| |
Collapse
|
40
|
Xiao A, Feng Y, Yu S, Xu C, Chen J, Wang T, Xiao W. General anesthesia in children and long-term neurodevelopmental deficits: A systematic review. Front Mol Neurosci 2022; 15:972025. [PMID: 36238262 PMCID: PMC9551616 DOI: 10.3389/fnmol.2022.972025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMillions of children experienced surgery procedures requiring general anesthesia (GA). Any potential neurodevelopmental risks of pediatric anesthesia can be a serious public health issue. Various animal studies have provided evidence that commonly used GA induced a variety of morphofunctional alterations in the developing brain of juvenile animals.MethodsWe conducted a systematic review to provide a brief overview of preclinical studies and summarize the existing clinical studies. Comprehensive literature searches of PubMed, EMBASE, CINAHL, OVID Medline, Web of Science, and the Cochrane Library were conducted using the relevant search terms “general anesthesia,” “neurocognitive outcome,” and “children.” We included studies investigating children who were exposed to single or multiple GA before 18, with long-term neurodevelopment outcomes evaluated after the exposure(s).ResultsSeventy-two clinical studies originating from 18 different countries published from 2000 to 2022 are included in this review, most of which are retrospective studies (n = 58). Two-thirds of studies (n = 48) provide evidence of negative neurocognitive effects after GA exposure in children. Neurodevelopmental outcomes are categorized into six domains: academics/achievement, cognition, development/behavior, diagnosis, brain studies, and others. Most studies focusing on children <7 years detected adverse neurocognitive effects following GA exposure, but not all studies consistently supported the prevailing view that younger children were at greater risk than senior ones. More times and longer duration of exposures to GA, and major surgeries may indicate a higher risk of negative outcomes.ConclusionBased on current studies, it is necessary to endeavor to limit the duration and numbers of anesthesia and the dose of anesthetic agents. For future studies, we require cohort studies with rich sources of data and appropriate outcome measures, and carefully designed and adequately powered clinical trials testing plausible interventions in relevant patient populations.
Collapse
Affiliation(s)
- Aoyi Xiao
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Feng
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Yu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Xu
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghai Chen
- Department of Hand Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tingting Wang
| | - Weimin Xiao
- Department of Anesthesiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weimin Xiao
| |
Collapse
|
41
|
Lung and large airway imaging: magnetic resonance imaging versus computed tomography. Pediatr Radiol 2022; 52:1814-1825. [PMID: 35570212 DOI: 10.1007/s00247-022-05386-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Disorders of the respiratory system are common in children and imaging plays an important role for initial diagnosis and follow-up evaluation. Radiographs are typically the first-line imaging test for respiratory symptoms in children and, when advanced imaging is required, CT has been the most frequently used imaging modality. However, because of increasing concern about potentially harmful effects of ionizing radiation on children, there has been a shift toward MRI in pediatric imaging. Although MRI of chest in children presents many technical challenges, recent advances in MRI technology are overcoming many of these issues, and MRI is now being used for evaluating the lung and large airway in children at centers with expertise in pediatric chest MRI. In this article we review the state of pediatric lung and large airway imaging, with an emphasis on cross-sectional modalities and the roles of MRI versus CT.
Collapse
|
42
|
Wong-Kee-You AMB, Loveridge-Easther C, Mueller C, Simon N, Good WV. The impact of early exposure to general anesthesia on visual and neurocognitive development. Surv Ophthalmol 2022; 68:539-555. [PMID: 35970232 DOI: 10.1016/j.survophthal.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Every year millions of children are exposed to general anesthesia while undergoing surgical and diagnostic procedures. In the field of ophthalmology, 44,000 children are exposed to general anesthesia annually for strabismus surgery alone. While it is clear that general anesthesia is necessary for sedation and pain minimization during surgical procedures, the possibility of neurotoxic impairments from its exposure is of concern. In animals there is strong evidence linking early anesthesia exposure to abnormal neural development. but in humans the effects of anesthesia are debated. In humans many aspects of vision develop within the first year of life, making the visual system vulnerable to early adverse experiences and potentially vulnerable to early exposure to general anesthesia. We attempt to address whether the visual system is affected by early postnatal exposure to general anesthesia. We first summarize key mechanisms that could account for the neurotoxic effects of general anesthesia on the developing brain and review existing literature on the effects of early anesthesia exposure on the visual system in both animals and humans and on neurocognitive development in humans. Finally, we conclude by proposing future directions for research that could address unanswered questions regarding the impact of general anesthesia on visual development.
Collapse
Affiliation(s)
| | - Cam Loveridge-Easther
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA; University of Auckland, Auckland, New Zealand
| | - Claudia Mueller
- Sutter Health, San Francisco, CA, USA; Stanford Children's Health, Palo Alto, CA, USA
| | | | - William V Good
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| |
Collapse
|
43
|
Fu N, Zhu R, Zeng S, Li N, Zhang J. Effect of Anesthesia on Oligodendrocyte Development in the Brain. Front Syst Neurosci 2022; 16:848362. [PMID: 35664684 PMCID: PMC9158484 DOI: 10.3389/fnsys.2022.848362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) participate in the formation of myelin, promoting the propagation of action potentials, and disruption of their proliferation and differentiation leads to central nervous system (CNS) damage. As surgical techniques have advanced, there is an increasing number of children who undergo multiple procedures early in life, and recent experiments have demonstrated effects on brain development after a single or multiple anesthetics. An increasing number of clinical studies showing the effects of anesthetic drugs on the development of the nervous system may mainly reside in the connections between neurons, where myelin development will receive more research attention. In this article, we review the relationship between anesthesia exposure and the brain and OLs, provide new insights into the development of the relationship between anesthesia exposure and OLs, and provide a theoretical basis for clinical prevention of neurodevelopmental risks of general anesthesia drugs.
Collapse
|
44
|
Orsolini L, Salvi V, Volpe U. Craving and addictive potential of esketamine as side effects? Expert Opin Drug Saf 2022; 21:803-812. [PMID: 35509224 DOI: 10.1080/14740338.2022.2071422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Esketamine was approved for adults with treatment-resistant depression (TRD) in conjunction with an oral antidepressant, and for treating depressive symptoms in adults with major depressive disorder with acute suicidal ideation or behavior. However, evidence of great efficacy and safety of esketamine is accompanied by a widespread concern regarding its addictive potential. AREAS COVERED A comprehensive review on the craving and addictive potential of ketamine and esketamine was carried out. In addition, a clinical case of a 34-year-old TRD woman treated with esketamine who experienced drug-seeking behaviors and craving symptomatology was described and critically discussed, with a particular focus on treatment strategies to manage craving in the short- and long term. EXPERT OPINION Esketamine showed great efficacy and safety in treating TRD and MDD with acute suicidal ideation or behavior. Our clinical experience demonstrated the presence of an additive potential, which has been favorably managed with slow esketamine de-titration and combination with bupropion. However, literature so far published is scant and shows contradictory findings. Therefore, it is crucial to promptly detect and manage craving symptomatology in esketamine-treated TRD patients. In our experience, the use of bupropion to counteract craving and addictive symptoms was proven to be effective and safe.
Collapse
Affiliation(s)
- Laura Orsolini
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Virginio Salvi
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, School of Medicine, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
45
|
Vines L, Sotelo D, Johnson A, Dennis E, Manza P, Volkow ND, Wang GJ. Ketamine use disorder: preclinical, clinical, and neuroimaging evidence to support proposed mechanisms of actions. INTELLIGENT MEDICINE 2022; 2:61-68. [PMID: 35783539 PMCID: PMC9249268 DOI: 10.1016/j.imed.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ketamine, a noncompetitive NMDA receptor antagonist, has been exclusively used as an anesthetic in medicine and has led to new insights into the pathophysiology of neuropsychiatric disorders. Clinical studies have shown that low subanesthetic doses of ketamine produce antidepressant effects for individuals with depression. However, its use as a treatment for psychiatric disorders has been limited due to its reinforcing effects and high potential for diversion and misuse. Preclinical studies have focused on understanding the molecular mechanisms underlying ketamine's antidepressant effects, but a precise mechanism had yet to be elucidated. Here we review different hypotheses for ketamine's mechanism of action including the direct inhibition and disinhibition of NMDA receptors, AMPAR activation, and heightened activation of monoaminergic systems. The proposed mechanisms are not mutually exclusive, and their combined influence may exert the observed structural and functional neural impairments. Long term use of ketamine induces brain structural, functional impairments, and neurodevelopmental effects in both rodents and humans. Its misuse has increased rapidly in the past 20 years and is one of the most common addictive drugs used in Asia. The proposed mechanisms of action and supporting neuroimaging data allow for the development of tools to identify 'biotypes' of ketamine use disorder (KUD) using machine learning approaches, which could inform intervention and treatment.
Collapse
Affiliation(s)
| | | | - Allison Johnson
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Evan Dennis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
46
|
Wang Q, Li Y, Tan H, Wang Y. Sevoflurane-Induced Apoptosis in the Mouse Cerebral Cortex Follows Similar Characteristics of Physiological Apoptosis. Front Mol Neurosci 2022; 15:873658. [PMID: 35465098 PMCID: PMC9024292 DOI: 10.3389/fnmol.2022.873658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
General anesthetics are capable of inducing neuronal apoptosis during the rapid synaptogenesis of immature mammalian brains. In this vulnerable time window, physiological apoptosis also occurs to eliminate excess and inappropriately integrated neurons. We previously showed that physiological and ketamine-induced apoptosis in mouse primary somatosensory cortex (S1) followed similar developmental patterns. However, since sevoflurane is more widely used in pediatric anesthesia, and targets mainly on different receptors, as compared with ketamine, it is important to determine whether sevoflurane-induced apoptosis also follows similar developmental patterns as physiological apoptosis or not. Mice at postnatal days 5 (P5) and P9 were anesthetized with 1.5% sevoflurane for 4 h, and the apoptotic neurons in S1 were quantitated by immunohistochemistry. The results showed that sevoflurane raised the levels of apoptosis in S1 without interfering with the developmental patterns of physiological apoptosis. The cells more vulnerable to both physiological and sevoflurane-induced apoptosis shifted from layer V pyramidal neurons at P5 to layers II–IV GABAergic neurons by P9. The magnitude of both sevoflurane-induced and physiological apoptosis was more attenuated at P9 than P5. To determine whether the Akt-FoxO1-PUMA pathway contributes to the developmental decrease in magnitude of both physiological and sevoflurane-induced apoptosis, Western blot was used to measure the levels of related proteins in S1 of P5 and P9 mice. We observed higher levels of antiapoptotic phosphorylated Akt (p-Akt) and phosphorylated FoxO1 (p-FoxO1), and lower levels of the downstream proapoptotic factor PUMA in control and anesthetized mice at P9 than P5. In addition, the Akt-FoxO1-PUMA pathway may also be responsible for sevoflurane-induced apoptosis. Together, these results suggest that magnitude, lamination pattern and cell-type specificity to sevoflurane-induced apoptosis are age-dependent and follow physiological apoptosis pattern. Moreover, The Akt-FoxO1-PUMA pathway may mediate the developmental decreases in magnitude of both physiological and sevoflurane-induced apoptosis in neonatal mouse S1.
Collapse
|
47
|
Gao F, Wahl JA, Floyd TF. Anesthesia and neurotoxicity study design, execution, and reporting in the nonhuman primate: A systematic review. Paediatr Anaesth 2022; 32:509-521. [PMID: 35066973 DOI: 10.1111/pan.14401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Concern for a role of anesthesia in neurotoxicity in children originated from neonatal rodent and nonhuman primate (NHP) models, yet prospective clinical studies have largely not supported this concern. The goal of this study was to conduct an objective assessment of published NHP study rigor in design, execution, and reporting. METHODS A MEDLINE search from 2005 to December 2021 was performed. Inclusion criteria included full-length original studies published in English under peer-reviewed journals. We documented experimental parameters on anesthetic dosing, monitoring, vitals, and experimental outcomes. RESULTS Twenty-three manuscripts were included. Critical issues identified in study design included: lack of blinding in data acquisition (57%) and analysis (100%), supratherapeutic (4-12 fold) maintenance dosing in 22% of studies, lack of sample size justification (91%) resulting in a mean (SD) sample size of 6 (3) animals per group. Critical items identified in the conduct and reporting of studies included: documentation of anesthesia provider (0%), electrocardiogram monitoring (35%), arterial monitoring (4%), spontaneous ventilation employed (35%), failed intubations resulting in comingling ventilated and unventilated animals in data analysis, inaccurate reporting of failed intubation, and only 50% reporting on survival. Inconsistencies were noted in drug-related induction of neuroapoptosis and region of occurrence. Further, 67%-100% of behavior outcomes were not significantly different from controls. CONCLUSIONS Important deficits in study design, execution, and reporting were identified in neonatal NHP studies. These results raise concern for the validity and reliability of these studies and may explain in part the divergence from results obtained in human neonates.
Collapse
Affiliation(s)
- Feng Gao
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph A Wahl
- Department of Cell and Molecular Biology, Texas Tech University, Lubbock, Texas, USA
| | - Thomas F Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
48
|
Dwyer JB, Landeros-Weisenberger A, Johnson JA, Londono Tobon A, Flores JM, Nasir M, Couloures K, Sanacora G, Bloch MH. Efficacy of Intravenous Ketamine in Adolescent Treatment-Resistant Depression: A Randomized Midazolam-Controlled Trial. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:241-251. [PMID: 37153136 PMCID: PMC10153503 DOI: 10.1176/appi.focus.22020004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/22/2020] [Accepted: 11/25/2020] [Indexed: 05/09/2023]
Abstract
Objective Adolescent depression is prevalent and is associated with significant morbidity and mortality. Although intravenous ketamine has shown efficacy in adult treatment-resistant depression, its efficacy in pediatric populations is unknown. The authors conducted an active-placebo-controlled study of ketamine's safety and efficacy in adolescents. Methods In this proof-of-concept randomized, double-blind, single-dose crossover clinical trial, 17 adolescents (ages 13-17) with a diagnosis of major depressive disorder received a single intravenous infusion of either ketamine (0.5 mg/kg over 40 minutes) or midazolam (0.045 mg/kg over 40 minutes), and the alternate compound 2 weeks later. All participants had previously tried at least one antidepressant medication and met the severity criterion of a score >40 on the Children's Depression Rating Scale-Revised. The primary outcome measure was score on the Montgomery-Åsberg Depression Rating Scale (MADRS) 24 hours after treatment. Results A single ketamine infusion significantly reduced depressive symptoms 24 hours after infusion compared with midazolam (MADRS score: midazolam, mean=24.13, SD=12.08, 95% CI=18.21, 30.04; ketamine, mean=15.44, SD=10.07, 95% CI=10.51, 20.37; mean difference=-8.69, SD=15.08, 95% CI=-16.72, -0.65, df=15; effect size=0.78). In secondary analyses, the treatment gains associated with ketamine appeared to remain 14 days after treatment, the latest time point assessed, as measured by the MADRS (but not as measured by the Children's Depression Rating Scale-Revised). A significantly greater proportion of participants experienced a response to ketamine during the first 3 days following infusion as compared with midazolam (76% and 35%, respectively). Ketamine was associated with transient, self-limited dissociative symptoms that affected participant blinding, but there were no serious adverse events. Conclusions In this first randomized placebo-controlled clinical trial of intravenous ketamine in adolescents with depression, the findings suggest that it is well tolerated acutely and has significant short-term (2-week) efficacy in reducing depressive symptoms compared with an active placebo.Reprinted from Am J Psychiatry 2021; 178:352-362 with permission from American Psychiatric Association Publishing.
Collapse
Affiliation(s)
- Jennifer B Dwyer
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Angeli Landeros-Weisenberger
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Jessica A Johnson
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Amalia Londono Tobon
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - José M Flores
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Madeeha Nasir
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Kevin Couloures
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Gerard Sanacora
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| | - Michael H Bloch
- Yale Child Study Center (Dwyer, Landeros-Weisenberger, Johnson, Londono Tobon, Flores, Nasir, Bloch), Department of Radiology and Biomedical Imaging (Dwyer), and Department of Psychiatry (Londono Tobon, Flores, Sanacora, Bloch), Yale School of Medicine, New Haven, Conn.; Department of Pediatrics, Stanford University, Stanford, Calif. (Couloures)
| |
Collapse
|
49
|
Barcroft M, McKee C, Berman DP, Taylor RA, Rivera BK, Slaughter JL, El-Khuffash A, Backes CH, Backes CH. Percutaneous Closure of Patent Ductus Arteriosus. Clin Perinatol 2022; 49:149-166. [PMID: 35209997 PMCID: PMC8887783 DOI: 10.1016/j.clp.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Percutaneous-based patent ductus arteriosus closure is technically feasible among infants less than 1.5 kg. However, marked heterogeneity in the type and nature of adverse events obscures current safety profile assessments. Although data on the risks of postdevice closure syndrome remain promising, a lack of comparative trials of surgical ductal ligation and inconsistent surveillance across published studies obscure confidence in present estimates of safety and efficacy. To minimize risk and yield the greatest benefits, clinical studies of patent ductus arteriosus treatment should consider incorporating more robust assessments to ensure that infants at greatest risk for adverse ductal consequences are included.
Collapse
Affiliation(s)
- Megan Barcroft
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Christopher McKee
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH,Department of Anesthesiology, Nationwide Children’s Hospital, Columbus, OH,The Heart Center, Nationwide Children’s Hospital, Columbus, OH
| | - Darren P. Berman
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH,The Heart Center, Nationwide Children’s Hospital, Columbus, OH
| | - Rachel A. Taylor
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH,The Heart Center, Nationwide Children’s Hospital, Columbus, OH
| | - Brian K. Rivera
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Jonathan L. Slaughter
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH,Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH,Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH
| | - Afif El-Khuffash
- Department of Neonatology, The Rotunda Hospital; Dublin, Ireland,Department of Paediatrics; The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Carl H. Backes
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH,The Heart Center, Nationwide Children’s Hospital, Columbus, OH,Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | | |
Collapse
|
50
|
Huang W, Wu T, Wu K. Zebrafish (Danio rerio): A potential model to assess developmental toxicity of ketamine. CHEMOSPHERE 2022; 291:133033. [PMID: 34822872 DOI: 10.1016/j.chemosphere.2021.133033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Ketamine is a non-competitive antagonist of NMDA glutamate receptor. It is used as an anesthetic, analgesic, sedative, and anti-depressive agent in clinical practice and also an illegal recreational drug. The increasing use has contributed to the measurable levels of ketamine in both wastewaters and hospital effluents, thereby classified as an emergent contaminant. Lately, the potential toxicity of ketamine has raised serious concerns about its iatrogenic or illicit use during pregnancy, neonatal and childhood stages. However, to assess its long-term toxicity potentially by the use of early life stages in human and rodents is limited. In this regard, the zebrafish has been considered as excellent model organism for biosafety assessments of ketamine due to it boasts an in vivo model with the advantages of an in vitro assay. In this review, we summarize the current understanding of the reported toxicity studies with ketamine in early life stage of zebrafish. The adverse effects of ketamine are known to cause overall developmental and multi-organ toxicity, including cardio-, neuro-, and skeletal toxicity. Furthermore, multiple mechanisms are found to be responsible for perpetrating toxicity of ketamine. The current findings confluence to emphasize the zebrafish embryo as an appealing model system for developmental toxicity testing in higher vertebrates.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, PR China
| |
Collapse
|