1
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Zeng B, Liu Y, Xu J, Niu L, Wu Y, Zhang D, Tang X, Zhu Z, Chen Y, Hu L, Yu S, Yu P, Zhang J, Wang W. Future Directions in Optimizing Anesthesia to Reduce Perioperative Acute Kidney Injury. Am J Nephrol 2023; 54:434-450. [PMID: 37742618 DOI: 10.1159/000533534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Perioperative acute kidney injury (AKI) is common in surgical patients and is associated with high morbidity and mortality. There are currently few options for AKI prevention and treatment. Due to its complex pathophysiology, there is no efficient medication therapy to stop the onset of the injury or repair the damage already done. Certain anesthetics, however, have been demonstrated to affect the risk of perioperative AKI in some studies. The impact of anesthetics on renal function is particularly important as it is closely related to the prognosis of patients. Some anesthetics can induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. Propofol, sevoflurane, and dexmedetomidine are a few examples of anesthetics that have protective association with AKI in the perioperative period. SUMMARY In this study, we reviewed the clinical characteristics, risk factors, and pathogenesis of AKI. Subsequently, the protective effects of various anesthetic agents against perioperative AKI and the latest research are introduced. KEY MESSAGE This work demonstrates that a thorough understanding of the reciprocal effects of anesthetic drugs and AKI is crucial for safe perioperative care and prognosis of patients. However, more complete mechanisms and pathophysiological processes still need to be further studied.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yinuo Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
- The Second Clinical Medical College of Nanchang University, Nanchang, China,
| | - Jiawei Xu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
- Huan Kui College, Nanchang University, Nanchang, China
| | - Yuting Wu
- Huan Kui College, Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deju Zhang
- Huan Kui College, Nanchang University, Nanchang, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leilei Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Abstract
Chronic kidney disease (CKD) affects over 10% of the worldwide population and kidney fibrosis is a main driver of CKD and considered a therapeutic target. The mechanisms leading to kidney fibrosis are highly complexed and can be best studied in rodent models. Here we describe the most commonly used kidney fibrosis models in mice, the unilateral ureteral obstruction (UUO) model and the ischemia reperfusion injury (IRI) model. Both models are easy to learn and can be applied in animals of different age, sex, and strain.
Collapse
Affiliation(s)
- Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany. .,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
4
|
Yang W, Zhang S, Ou T, Jiang H, Jia D, Qi Z, Zou Y, Qian J, Sun A, Ge J. Interleukin-11 regulates the fate of adipose-derived mesenchymal stem cells via STAT3 signalling pathways. Cell Prolif 2020; 53:e12771. [PMID: 32270546 PMCID: PMC7260062 DOI: 10.1111/cpr.12771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Adipose‐derived mesenchymal stem cells (ADSCs) offer great promise as cell therapy for ischaemic diseases. Due to their poor survival in the ischaemic environment, the therapeutic efficacy of ADSCs is still relatively low. Interleukin‐11 (IL‐11) has been shown to play a key role in promoting cell proliferation and protecting cells from oxidative stress injury. The aim of this study was to determine whether IL‐11 could improve therapeutic efficacy of ADSCs in ischaemic diseases. Methods and Results ADSCs were prepared from inguinal subcutaneous adipose tissue and exposed to hypoxic environment. The protein expression of IL‐11 was decreased after hypoxic treatment. In addition, ADSCs viability was increased after IL‐11 treatment under hypoxia. Moreover, IL‐11 enhanced ADSCs viability in a dose‐dependent manner under normoxia. Importantly, IL‐11 promoted ADSCs proliferation and migration and protected ADSCs against hydrogen peroxide‐induced cellular death. Notably, IL‐11 enhanced ADSCs proliferation and migration, also promoted cell survival and apoptosis resistance by STAT3 signalling. In vivo, mice were subjected to limb ischaemia and treated with IL‐11 overexpression ADSCs and control ADSCs. IL‐11 overexpression ADSCs improved perfusion recovery in the ischaemic muscles. Conclusions We provide the evidence that IL‐11 promoted ADSCs proliferation, stimulated ADSCs migration and attenuated ADSCs apoptosis by activation of STAT3 signalling. These results suggest that IL‐11 facilitated ADSCs engraftment in ischaemic tissue, thereby enhanced ADSCs therapeutic efficacy.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Tiantong Ou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Abdulla MH, O'Halloran KD. Unraveling the Role of Interleukin-11 in Renal and Cardiac Fibrosis in Malignant Hypertension. Am J Hypertens 2020; 33:303-304. [PMID: 32030403 DOI: 10.1093/ajh/hpaa020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/05/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Zhang B, Zhang HX, Shi ST, Bai YL, Zhe X, Zhang SJ, Li YJ. Interleukin-11 treatment protected against cerebral ischemia/reperfusion injury. Biomed Pharmacother 2019; 115:108816. [PMID: 31096144 DOI: 10.1016/j.biopha.2019.108816] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Inflammation and immune responses are crucial factors associated with the onset and progression of stroke. Interleukin-11 (IL-11) is a hematopoietic IL-6 family cytokine that functions as an anti-inflammatory agent against various inflammatory diseases. However, its roles in stroke remain unknown. In this study, we investigated the effects of IL-11 on cerebral ischemia-reperfusion injury in a model of focal cerebral ischemia. METHODS Mice were randomly divided into five groups the vehicle group, the middle cerebral artery occlusion (MCAO) group, the MCAO plus adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C group, the MCAO plus IL-11 treatment group, and the MCAO plus IL-11 treatment and compound C group. Focal cerebral ischemia was induced by occluding the left middle cerebral artery, and reperfusion was achieved by withdrawing the suture 2 h after ischemia. The protein expression levels of IL-11 were measured using Western blot analysis, and its location was detected using immunohistochemistry and immunofluorescence staining. The infarct volume was examined using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and the neurobehavioral progression was assessed using the neurological scoring system. The expression of astrocytes and microglia was detected using immunochemistry, and real-time quantitative PCR was used for the gene quantification of inflammatory cytokines. The extent of cerebral ischemia-reperfusion injury was tested using Nissl staining and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. The expression of the apoptotic proteins Bax, Bcl-2 and cleaved caspase-3 were detected using Western blot analysis, and the oxidative stress was also measured. RESULTS The expression of IL-11 mRNA and protein significantly decreased after cerebral ischemia. Immunohistochemical staining showed a large amount of IL-11 in the cerebral cortex of the mice in the vehicle group, whereas the immunoreactivity of IL-11 remained weak for 24 h in the MCAO group. Immunofluorescent staining further confirmed that IL-11 was mainly expressed in the neurons. It was suggested that IL-11 (20 μg/kg) treatment ameliorated infarction and reduced neurological scores. In addition, IL-11 proved to reduce neuropathic damage, glial activation, and the expression of proinflammatory cytokines and increase the expression of anti-inflammatory cytokines after cerebral ischemia. IL-11 was also able to alleviate oxidative stress caused by cerebral ischemia, and AMPK inhibition enhanced the alleviation. Moreover, IL-11 was found to inhibit apoptosis caused by cerebral ischemia, which could also be facilitated by AMPK inhibitors. SIGNIFICANCE Our research suggests that IL-11 is decreased during cerebral ischemia-reperfusion injury, but IL-11 treatment can improve neurological function and reduce the cerebral infarct volume, which can trigger stroke in mice. AMPK inhibition can further promote the protective effect of IL-11 in stroke. Overall, we demonstrate that IL-11 is of therapeutic interest in controlling stroke and managing cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Hai-Xiong Zhang
- Otolaryngology Department, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Shao-Ting Shi
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Yu-Lan Bai
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Xiao Zhe
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Shi-Jun Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Ya-Jun Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China.
| |
Collapse
|
7
|
Abstract
Volatile general anesthetics continue to be an important part of clinical anesthesia worldwide. The impact of volatile anesthetics on the immune system has been investigated at both mechanistic and clinical levels, but previous studies have returned conflicting findings due to varied protocols, experimental environments, and subject species. While many of these studies have focused on the immunosuppressive effects of volatile anesthetics, compelling evidence also exists for immunoactivation. Depending on the clinical conditions, immunosuppression and activation due to volatile anesthetics can be either detrimental or beneficial. This review provides a balanced perspective on the anesthetic modulation of innate and adaptive immune responses as well as indirect effectors of immunity. Potential mechanisms of immunomodulation by volatile anesthetics are also discussed. A clearer understanding of these issues will pave the way for clinical guidelines that better account for the impact of volatile anesthetics on the immune system, with the ultimate goal of improving perioperative management.
Collapse
|
8
|
Wang G, Yao J, Li Z, Zu G, Feng D, Shan W, Li Y, Hu Y, Zhao Y, Tian X. miR-34a-5p Inhibition Alleviates Intestinal Ischemia/Reperfusion-Induced Reactive Oxygen Species Accumulation and Apoptosis via Activation of SIRT1 Signaling. Antioxid Redox Signal 2016; 24:961-73. [PMID: 26935288 DOI: 10.1089/ars.2015.6492] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Reactive oxygen species (ROS) generation and massive epithelial apoptosis are critical in the pathogenesis of intestinal ischemia/reperfusion (I/R) injury. We previously found that the Sirtuin 1 (SIRT1)-mediated antioxidant pathway was impaired in the intestine after I/R. Here, we investigate the potential role of SIRT1-targeting microRNAs (miRNAs) in regulating ROS accumulation and apoptosis in intestinal I/R, and the important role SIRT1 involved in. RESULTS C57BL/6 mice were subjected to intestinal I/R induced by occlusion of the superior mesenteric artery followed by reperfusion. Caco-2 cells were incubated under hypoxia/reoxygenation condition to mimic I/R in vivo. We find that SIRT1 is gradually repressed during the early reperfusion, and that this repression results in intestinal ROS accumulation and apoptosis. Using bioinformatics analysis and real-time PCR, we demonstrate that miR-34a-5p and miR-495-3p are significantly increased among the 41 putative miRNAs that can target SIRT1. Inhibition of miR-34a-5p, but not miR-495-3p, attenuates intestinal I/R injury, as demonstrated by repressing p66shc upregulation, manganese superoxide dismutase repression, and the caspase-3 activation in vitro and in vivo; it further alleviates systemic injury, as demonstrated by reducing inflammatory cytokine release, attenuating lung and liver lesions, and improving survival. Interestingly, SIRT1 plays an indispensable role in the protection afforded by miR-34a-5p inhibition. INNOVATION This study provides the first evidence of miRNAs in regulating oxidative stress and apoptosis in intestinal I/R. CONCLUSION miR-34a-5p knockdown attenuates intestinal I/R injury through promoting SIRT1-mediated suppression of epithelial ROS accumulation and apoptosis. This may represent a novel prophylactic approach to intestinal I/R injury. Antioxid. Redox Signal. 24, 961-973.
Collapse
Affiliation(s)
- Guangzhi Wang
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| | - Jihong Yao
- 2 Department of Pharmacology, Dalian Medical University , Dalian, China
| | - Zhenlu Li
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| | - Guo Zu
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| | - Dongcheng Feng
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| | - Wen Shan
- 2 Department of Pharmacology, Dalian Medical University , Dalian, China
| | - Yang Li
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| | - Yan Hu
- 2 Department of Pharmacology, Dalian Medical University , Dalian, China
| | - Yongfu Zhao
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| | - Xiaofeng Tian
- 1 Department of General Surgery, The Second Hospital of Dalian Medical University , Dalian, China
| |
Collapse
|
9
|
Fukazawa K, Lee HT. Volatile anesthetics and AKI: risks, mechanisms, and a potential therapeutic window. J Am Soc Nephrol 2014; 25:884-92. [PMID: 24511126 DOI: 10.1681/asn.2013111215] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AKI is a major clinical problem with extremely high mortality and morbidity. Kidney hypoxia or ischemia-reperfusion injury inevitably occurs during surgery involving renal or aortic vascular occlusion and is one of the leading causes of perioperative AKI. Despite the growing incidence and tremendous clinical and financial burden of AKI, there is currently no effective therapy for this condition. The pathophysiology of AKI is orchestrated by renal tubular and endothelial cell necrosis and apoptosis, leukocyte infiltration, and the production and release of proinflammatory cytokines and reactive oxygen species. Effective management strategies require multimodal inhibition of these injury processes. Despite the past theoretical concerns about the nephrotoxic effects of several clinically utilized volatile anesthetics, recent studies suggest that modern halogenated volatile anesthetics induce potent anti-inflammatory, antinecrotic, and antiapoptotic effects that protect against ischemic AKI. Therefore, the renal protective properties of volatile anesthetics may provide clinically useful therapeutic intervention to treat and/or prevent perioperative AKI. In this review, we outline the history of volatile anesthetics and their effect on kidney function, briefly review the studies on volatile anesthetic-induced renal protection, and summarize the basic cellular mechanisms of volatile anesthetic-mediated protection against ischemic AKI.
Collapse
Affiliation(s)
- Kyota Fukazawa
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|