1
|
Bhargava S, Kulkarni R, Dewangan B, Kulkarni N, Jiaswar C, Kumar K, Kumar A, Bodhe PR, Kumar H, Sahu B. Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem 2023; 14:2192-2205. [PMID: 37974959 PMCID: PMC10650357 DOI: 10.1039/d3md00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuronal cells made of soma, axon, and dendrites are highly compartmentalized and possess a specialized transport system that can convey long-distance electrical signals for the cross-talk. The transport system is made up of microtubule (MT) polymers and MT-binding proteins. MTs play vital and diverse roles in various cellular processes. Therefore, defects and dysregulation of MTs and their binding proteins lead to many neurological disorders as exemplified by Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and many others. MT-stabilising agents (MSAs) altering the MT-associated protein connections have shown great potential for several neurodegenerative disorders. Peptides are an important class of molecules with high specificity, biocompatibility and are devoid of side effects. In the past, peptides have been explored in various neuronal disorders as therapeutics. Davunetide, a MT-stabilising octapeptide, has entered into phase II clinical trials for schizophrenia. Numerous examples of peptides emerging as MSAs reflect the emergence of a new paradigm for peptides which can be explored further as drug candidates for neuronal disorders. Although small molecule-based MSAs have been reviewed in the past, there is no systematic review in recent years focusing on peptides as MSAs apart from davunetide in 2013. Therefore, a systematic updated review on MT stabilising peptides may shed light on many hidden aspects and enable researchers to develop new therapies for diseases related to the CNS. In this review we have summarised the recent examples of peptides as MSAs.
Collapse
Affiliation(s)
- Shubhangi Bhargava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Riya Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Chirag Jiaswar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Kunal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Amit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Praveen Reddy Bodhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
2
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Moreau M, Carmona-Iragui M, Altuna M, Dalzon L, Barroeta I, Vilaire M, Durand S, Fortea J, Rebillat AS, Janel N. DYRK1A and Activity-Dependent Neuroprotective Protein Comparative Diagnosis Interest in Cerebrospinal Fluid and Plasma in the Context of Alzheimer-Related Cognitive Impairment in Down Syndrome Patients. Biomedicines 2022; 10:1380. [PMID: 35740400 PMCID: PMC9219646 DOI: 10.3390/biomedicines10061380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS.
Collapse
Affiliation(s)
- Manon Moreau
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, 08029 Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Lorraine Dalzon
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marie Vilaire
- Institut Médical Jérôme Lejeune, 75015 Paris, France; (M.V.); (S.D.); (A.-S.R.)
| | - Sophie Durand
- Institut Médical Jérôme Lejeune, 75015 Paris, France; (M.V.); (S.D.); (A.-S.R.)
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.C.-I.); (M.A.); (I.B.); (J.F.)
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, 08029 Barcelona, Spain
| | | | - Nathalie Janel
- CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013 Paris, France; (M.M.); (L.D.)
| |
Collapse
|
4
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
5
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
6
|
Tayebati SK, Cecchi A, Martinelli I, Carboni E, Amenta F. Pharmacotherapy of Down’s Syndrome: When and Which? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:750-757. [DOI: 10.2174/1871527318666191114092924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
:
Down Syndrome (DS) is an essential genetic disease that involves many other body systems
along with cerebral functions. The postnatal approach to treat this genetic disease includes intervention
on various related disorders (e.g., heart failure, respiratory, oral, ear, and hearing disorders). However,
different proposed treatments do not significantly improve the quality of life of these subjects. Another
approach to the treatment of DS considering the possibility to intervene on the embryo was recently
introduced. As of this, the current study has reviewed different outcomes regarding DS treatment in an
animal model, namely the Ts65Dn mouse. The obtained results encouraged spending more time, efforts,
and resources in this field. Besides, various treatment strategies were tried to include genetic
modification, treatment with vasoactive intestinal peptide derivatives or fluoxetine. However, the main
obstacle to the use of these possible treatments is the ethical issues it raises. The progression of the
pregnancy in spite of awareness that DS affects the unborn and prenatal treatment of DS injured embryo
are relevant dilemmas. Thus, talented researchers should spend more efforts to improve the quality
of life for people affected by DS, which will allow probably a better approach to the ethical issues.
Collapse
Affiliation(s)
- Seyed K. Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | | | - Ilenia Martinelli
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| | - Elisa Carboni
- Regional Centre for Prenatal Diagnosis, Loreto, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, Camerino, Italy
| |
Collapse
|
7
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
8
|
Developmental excitatory-to-inhibitory GABA polarity switch is delayed in Ts65Dn mice, a genetic model of Down syndrome. Neurobiol Dis 2018; 115:1-8. [PMID: 29550538 DOI: 10.1016/j.nbd.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABAA agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS.
Collapse
|
9
|
Smith-Hicks CL, Cai P, Savonenko AV, Reeves RH, Worley PF. Increased Sparsity of Hippocampal CA1 Neuronal Ensembles in a Mouse Model of Down Syndrome Assayed by Arc Expression. Front Neural Circuits 2017; 11:6. [PMID: 28217086 PMCID: PMC5289947 DOI: 10.3389/fncir.2017.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS) is the leading chromosomal cause of intellectual disability, yet the neural substrates of learning and memory deficits remain poorly understood. Here, we interrogate neural networks linked to learning and memory in a well-characterized model of DS, the Ts65Dn mouse. We report that Ts65Dn mice exhibit exploratory behavior that is not different from littermate wild-type (WT) controls yet behavioral activation of Arc mRNA transcription in pyramidal neurons of the CA1 region of the hippocampus is altered in Ts65Dn mice. In WT mice, a 5 min period of exploration of a novel environment resulted in Arc mRNA transcription in 39% of CA1 neurons. By contrast, the same period of exploration resulted in only ~20% of CA1 neurons transcribing Arc mRNA in Ts65Dn mice indicating increased sparsity of the behaviorally induced ensemble. Like WT mice the CA1 pyramidal neurons of Ts65Dn mice reactivated Arc transcription during a second exposure to the same environment 20 min after the first experience, but the size of the reactivated ensemble was only ~60% of that in WT mice. After repeated daily exposures there was a further decline in the size of the reactivated ensemble in Ts65Dn and a disruption of reactivation. Together these data demonstrate reduction in the size of the behaviorally induced network that expresses Arc in Ts65Dn mice and disruption of the long-term stability of the ensemble. We propose that these deficits in network formation and stability contribute to cognitive symptoms in DS.
Collapse
Affiliation(s)
- Constance L Smith-Hicks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Peiling Cai
- The State Key Laboratory of Biotherapy, West-China Hospital, Sichuan University Chengdu, China
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Roger H Reeves
- Department of Physiology and Institute of Genetic Medicine, Johns Hopkins University, School of Medicine Baltimore, MD, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
10
|
Quraishe S, Sealey M, Cranfield L, Mudher A. Microtubule stabilising peptides rescue tau phenotypes in-vivo. Sci Rep 2016; 6:38224. [PMID: 27910888 PMCID: PMC5133624 DOI: 10.1038/srep38224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
The microtubule cytoskeleton is a highly dynamic, filamentous network underpinning cellular structure and function. In Alzheimer's disease, the microtubule cytoskeleton is compromised, leading to neuronal dysfunction and eventually cell death. There are currently no disease-modifying therapies to slow down or halt disease progression. However, microtubule stabilisation is a promising therapeutic strategy that is being explored. We previously investigated the disease-modifying potential of a microtubule-stabilising peptide NAP (NAPVSIPQ) in a well-established Drosophila model of tauopathy characterised by microtubule breakdown and axonal transport deficits. NAP prevented as well as reversed these phenotypes even after they had become established. In this study, we investigate the neuroprotective capabilities of an analogous peptide SAL (SALLRSIPA). We found that SAL mimicked NAP's protective effects, by preventing axonal transport disruption and improving behavioural deficits, suggesting both NAP and SAL may act via a common mechanism. Both peptides contain a putative 'SIP' (Ser-Ile-Pro) domain that is important for interactions with microtubule end-binding proteins. Our data suggests this domain may be central to the microtubule stabilising function of both peptides and the mechanism by which they rescue phenotypes in this model of tauopathy. Our observations support microtubule stabilisation as a promising disease-modifying therapeutic strategy for tauopathies like Alzheimer's disease.
Collapse
Affiliation(s)
- Shmma Quraishe
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Building 85, University of Southampton, Southampton, SO17 1BJ, UK
| | - Megan Sealey
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Building 85, University of Southampton, Southampton, SO17 1BJ, UK
| | - Louise Cranfield
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Building 85, University of Southampton, Southampton, SO17 1BJ, UK
| | - Amritpal Mudher
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Building 85, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
11
|
Gozes I, Sragovich S, Schirer Y, Idan-Feldman A. D-SAL and NAP: Two Peptides Sharing a SIP Domain. J Mol Neurosci 2016; 59:220-31. [DOI: 10.1007/s12031-015-0701-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Stagni F, Giacomini A, Guidi S, Ciani E, Bartesaghi R. Timing of therapies for Down syndrome: the sooner, the better. Front Behav Neurosci 2015; 9:265. [PMID: 26500515 PMCID: PMC4594009 DOI: 10.3389/fnbeh.2015.00265] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), with a heavy impact on public health. Accumulating evidence shows that DS is characterized by numerous neurodevelopmental alterations among which the reduction of neurogenesis, dendritic hypotrophy and connectivity alterations appear to play a particularly prominent role. Although the mechanisms whereby gene triplication impairs brain development in DS have not been fully clarified, it is theoretically possible to correct trisomy-dependent defects with targeted pharmacotherapies. This review summarizes what we know about the effects of pharmacotherapies during different life stages in mouse models of DS. Since brain alterations in DS start to be present prenatally, the prenatal period represents an optimum window of opportunity for therapeutic interventions. Importantly, recent studies clearly show that treatment during the prenatal period can rescue overall brain development and behavior and that this effect outlasts treatment cessation. Although late therapies are unlikely to exert drastic changes in the brain, they may have an impact on the hippocampus, a brain region where neurogenesis continues throughout life. Indeed, treatment at adult life stages improves or even rescues hippocampal neurogenesis and connectivity and hippocampal-dependent learning and memory, although the duration of these effects still remains, in the majority of cases, a matter of investigation. The exciting discovery that trisomy-linked brain abnormalities can be prevented with early interventions gives us reason to believe that treatments during pregnancy may rescue brain development in fetuses with DS. For this reason we deem it extremely important to expedite the discovery of additional therapies practicable in humans in order to identify the best treatment/s in terms of efficacy and paucity of side effects. Prompt achievement of this goal is the big challenge for the scientific community of researchers interested in DS.
Collapse
Affiliation(s)
| | | | | | | | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
13
|
Gardiner KJ. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 2014; 9:103-25. [PMID: 25552901 PMCID: PMC4277121 DOI: 10.2147/dddt.s51476] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
Collapse
Affiliation(s)
- Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program, Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
14
|
Inglis A, Lohn Z, Austin JC, Hippman C. A 'cure' for Down syndrome: what do parents want? Clin Genet 2014; 86:310-7. [PMID: 24548046 DOI: 10.1111/cge.12364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 12/12/2022]
Abstract
Recent advancements in molecular genetics raise the possibility that therapeutics or a 'cure' for Down syndrome (DS) may become available. However, there are no data regarding how parents of children with DS perceive the possibility of mitigating specific manifestations such as the intellectual disability (ID) associated with DS, or curing the condition entirely. To explore these issues, we distributed a questionnaire to members of the Lower Mainland Down Syndrome Society in British Columbia, Canada. Questionnaires were completed by 101 parents (response rate=41%). A majority (61%) viewed the possibility of reversing ID in DS positively, but only 41% said that they would 'cure' their child of DS if it were possible. Twenty-seven percent of respondents said they would not 'cure' their child, and 32% were unsure if they would 'cure' their child. The most commonly cited motivation for opting for a 'cure' was to increase their child's independence. However, parental attitudes' towards a 'cure' for DS were complex, affected by ethical issues, perceived societal values, and pragmatic factors such as the age of the individual and long-term care-giving burden. These findings could be used by healthcare professionals supporting families who include a member with DS and to direct future research.
Collapse
Affiliation(s)
- A Inglis
- Department of Psychiatry, University of British Columbia, Vancouver, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
15
|
Dang V, Medina B, Das D, Moghadam S, Martin KJ, Lin B, Naik P, Patel D, Nosheny R, Wesson Ashford J, Salehi A. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry 2014; 75:179-88. [PMID: 23827853 DOI: 10.1016/j.biopsych.2013.05.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Down syndrome is associated with significant failure in cognitive function. Our previous investigation revealed age-dependent degeneration of locus coeruleus, a major player in contextual learning, in the Ts65Dn mouse model of Down syndrome. We studied whether drugs already available for use in humans can be used to improve cognitive function in these mice. METHODS We studied the status of β adrenergic signaling in the dentate gyrus of the Ts65Dn mouse model of Down syndrome. Furthermore, we used fear conditioning to study learning and memory in these mice. Postmortem analyses included the analysis of synaptic density, dendritic arborization, and neurogenesis. RESULTS We found significant atrophy of dentate gyrus and failure of β adrenergic signaling in the hippocampus of Ts65Dn mice. Our behavioral analyses revealed that formoterol, a long-acting β2 adrenergic receptor agonist, caused significant improvement in the cognitive function in Ts65Dn mice. Postmortem analyses revealed that the use of formoterol was associated with a significant improvement in the synaptic density and increased complexity of newly born dentate granule neurons in the hippocampus of Ts65Dn mice. CONCLUSIONS Our data suggest that targeting β2 adrenergic receptors is an effective strategy for restoring synaptic plasticity and cognitive function in these mice. Considering its widespread use in humans and positive effects on cognition in Ts65Dn mice, formoterol or similar β2 adrenergic receptor agonists with ability to cross the blood brain barrier might be attractive candidates for clinical trials to improve cognitive function in individuals with Down syndrome.
Collapse
Affiliation(s)
- Van Dang
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Brian Medina
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Devsmita Das
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Sarah Moghadam
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Kara J Martin
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Bill Lin
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Priyanka Naik
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Devan Patel
- Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Rachel Nosheny
- Department of Molecular and Cellular Physiology (RN), Stanford University School of Medicine, Stanford
| | - John Wesson Ashford
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California
| | - Ahmad Salehi
- Department of Psychiatry and Behavioral Sciences (VD, JWA, AS); Veterans Administration Palo Alto Health Care System (VD, BM, DD, SM, KJM, BL, PN, DP, JWA, AS), Palo Alto, California.
| |
Collapse
|
16
|
Abstract
Down syndrome (DS), which results from an extra copy of chromosome 21 (trisomy 21), is the most common genetically defined cause of intellectual disability. Although no pharmacotherapy aimed at counteracting the cognitive and adaptive deficits associated with this genetic disorder has been approved at present, there have been several new promising studies on pharmacological agents capable of rescuing learning/memory deficits seen in mouse models of DS. Here, we will review the available mouse models for DS and provide a comprehensive, albeit not exhaustive review of the following preclinical research strategies: (1) SOD1 and antioxidant agents; (2) APP and γ-secretase inhibitors; (3) DYRK1A and the polyphenol epigallocatechin gallate (EGCG); (4) GIRK2 and fluoxetine; (5) adrenergic receptor agonists; (6) modulation of GABAA and GABAB receptors; (7) agonism of the hedgehog signaling pathway; (8) nerve growth factor (NGF) and other neurotrophic factors; (9) anticholinesterase (AChE) agents; and (10) antagonism of NMDA receptors. Finally, we will review briefly five different strategies in DS that have led to clinical studies that either have been concluded or are currently underway: (1) antioxidant therapy; (2) AChE therapy; (3) green tea extract therapy; (4) RG1662 therapy; and (5) memantine therapy. These are exciting times in DS research. Within a decade or so, it is well into the realm of possibility that new forms of pharmacotherapies might become valuable tools in the armamentarium of developmental clinicians, as adjutants to more traditional and proven forms of habilitative interventions aimed at improving the quality of life of individuals with DS.
Collapse
|
17
|
D-NAP prophylactic treatment in the SOD mutant mouse model of amyotrophic lateral sclerosis: review of discovery and treatment of tauopathy. J Mol Neurosci 2013; 48:597-602. [PMID: 22956189 DOI: 10.1007/s12031-012-9882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Davunetide (NAP) is a leading drug candidate being tested against tauopathy. Davunetide is an eight-amino-acid peptide fragment derived by structure-activity studies from activity-dependent neuroprotective protein, activity-dependent neuroprotective protein (ADNP). ADNP is essential for brain formation. ADNP haploinsufficiency in mice results in tauopathy and cognitive deficits ameliorated by davunetide treatment. This article summarizes in brief recent reviews about NAP protection against tauopathy including the all D-amino acid analogue-D-NAP (AL-408). D-NAP was discovered to have similar neuroprotective functions to NAP in vitro. Here, D-NAP was tested as prophylactic as well as therapeutic treatment for amytrophic lateral sclerosis (ALS) in the widely used TgN(SOD1-G93A)1Gur transgenic mouse model. Results showed D-NAP-associated prophylactic protection, thus daily treatment starting from day 2 of age resulted in a prolonged life course in the D-NAP-treated mice, which was coupled to a significant decrease in tau hyperphosphorylation. These studies correlate protection against tau hyperphosphorylation and longevity in a severe model of ALS-like motor impairment and early mortality. NAP is a first-in-class drug candidate/investigation compound providing neuroprotection coupled to inhibition of tau pathology. D-NAP (AL-408) is a pipeline product.
Collapse
|
18
|
Incerti M, Horowitz K, Roberson R, Abebe D, Toso L, Caballero M, Spong CY. Prenatal treatment prevents learning deficit in Down syndrome model. PLoS One 2012; 7:e50724. [PMID: 23209818 PMCID: PMC3510191 DOI: 10.1371/journal.pone.0050724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/23/2012] [Indexed: 12/04/2022] Open
Abstract
Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8–10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. Statistical analysis: two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, P<0.05 was used to denote statistical significance. Trisomic mice who prenatally received placebo (Down syndrome -placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome -placebo (p<0.01), and similar to control-placebo (n = 33) and control-peptide (n = 30). In conclusion prenatal treatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.
Collapse
Affiliation(s)
- Maddalena Incerti
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists. J Neurosci 2012; 32:9217-27. [PMID: 22764230 DOI: 10.1523/jneurosci.1673-12.2012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABA(B) receptors is significantly increased in the dentate gyrus of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABA(B) receptors in cognitive deficits in DS by defining the effect of selective GABA(B) receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABA(B) receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition, and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor, equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABA(B) receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABA(B) receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABA(B) receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS.
Collapse
|
20
|
Herault Y, Duchon A, Velot E, Maréchal D, Brault V. The in vivo Down syndrome genomic library in mouse. PROGRESS IN BRAIN RESEARCH 2012; 197:169-97. [PMID: 22541293 DOI: 10.1016/b978-0-444-54299-1.00009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models are key elements to better understand the genotype-phenotype relationship and the physiopathology of Down syndrome (DS). Even though the mouse will never recapitulate the whole spectrum of intellectual disabilities observed in the DS, mouse models have been developed over the recent decades and have been used extensively to identify homologous genes or entire regions homologous to the human chromosome 21 (Hsa21) that are necessary or sufficient to induce DS cognitive features. In this chapter, we review the principal mouse DS models which have been selected and engineered over the years either for large genomic regions or for a few or a single gene of interest. Their analyses highlight the complexity of the genetic interactions that are involved in DS cognitive phenotypes and also strengthen the hypothesis on the multigenic nature of DS. This review also addresses future research challenges relative to the making of new models and their combination to go further in the characterization of candidates and modifier of the DS features.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational medicine and Neurogenetics program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, Strasbourg, France.
| | | | | | | | | |
Collapse
|
21
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
22
|
Sturgeon X, Le T, Ahmed MM, Gardiner KJ. Pathways to cognitive deficits in Down syndrome. PROGRESS IN BRAIN RESEARCH 2012; 197:73-100. [PMID: 22541289 DOI: 10.1016/b978-0-444-54299-1.00005-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major efforts in Down syndrome (DS) research have been directed at the identification and functional characterization of genes encoded by human chromosome 21 (HSA21). In parallel with this, tissue samples and cell lines derived from individuals with DS have been examined for abnormalities in gene expression and cellular morphology, and mouse models of DS have been characterized for abnormalities at the molecular, cellular, electrophysiological, and behavioral level. One goal of such investigations has been the identification of effective targets for pharmacotherapies that can prevent or correct the abnormalities and, by extension to human clinical trials, prevent or lessen aspects of the cognitive deficits seen in people with DS. Because it is caused by an extra copy of an entire chromosome, DS has been considered by some as too complicated a genetic perturbation to be amenable to postnatal pharmacological interventions. However, recent data from experiments with one mouse model, the Ts65Dn, have clearly demonstrated that several pharmacological interventions can indeed rescue DS-relevant learning and memory deficits. Extension of mouse data to successful human clinical trials will be aided by understanding the molecular basis of successful drug treatments, that is, how increased expression of HSA21 genes perturbs molecular mechanisms that are targeted and rescued by specific drugs. Here, we review information on HSA21 genes, their expression and their likely contributions to the DS phenotype. We then describe results of a bioinformatics effort that integrates information on genes known to cause intellectual disability when mutated, the pathways in which these genes function, and how these pathways are impacted by HSA21 encoded proteins. This pathway approach to the molecular basis of ID in DS aids in understanding why some drug therapies have been successful in the Ts65Dn and in predicting whether these same drugs are likely to be successful in treating ID in DS. These data can be used to design new experiments and interpret information for prediction of additional targets for effective drug treatments.
Collapse
Affiliation(s)
- Xiaolu Sturgeon
- Department of Pediatrics, University of Colorado Denver, Denver, CO, USA
| | | | | | | |
Collapse
|
23
|
Costa ACS. On the promise of pharmacotherapies targeted at cognitive and neurodegenerative components of Down syndrome. Dev Neurosci 2011; 33:414-27. [PMID: 21893967 PMCID: PMC3254040 DOI: 10.1159/000330861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/14/2011] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS) is the phenotypic consequence of trisomy 21 and is the most common genetically defined cause of intellectual disability. The most complete, widely available, and well-studied animal model of DS is the Ts65Dn mouse. Recent preclinical successes in rescuing learning and memory deficits in Ts65Dn mice are legitimate causes for optimism that pharmacotherapies for cognitive deficits in DS might be within reach. This article provides a snapshot of potential pharmacotherapies for DS, with emphasis on our recent results showing that the N-methyl-D-aspartate receptor antagonist memantine can reverse learning and memory deficits in Ts65Dn mice. Because memantine has already been approved for the therapy of Alzheimer's dementia, we have been able to very rapidly translate these results into human research and are currently conducting a 16-week, randomized, double-blind, placebo-controlled evaluation of the efficacy, tolerability and safety of memantine hydrochloride on enhancing the cognitive abilities of young adults with DS. The design and current status of this clinical trial will be discussed, which will be followed by some speculation on the potential impact of this and future clinical trials in the field of DS.
Collapse
Affiliation(s)
- Alberto C S Costa
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Greggio S, de Paula S, de Oliveira IM, Trindade C, Rosa RM, Henriques JAP, DaCosta JC. NAP prevents acute cerebral oxidative stress and protects against long-term brain injury and cognitive impairment in a model of neonatal hypoxia-ischemia. Neurobiol Dis 2011; 44:152-9. [PMID: 21757007 DOI: 10.1016/j.nbd.2011.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/17/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022] Open
Abstract
Hypoxia-ischemia (HI) is a common cause of neonatal brain damage with lifelong morbidities in which current therapies are limited. In this study, we investigated the effect of neuropeptide NAP (NAPVSIPQ) on early cerebral oxidative stress, long-term neurological function and brain injury after neonatal HI. Seven-day-old rat pups were subjected to an HI model by applying a unilateral carotid artery occlusion and systemic hypoxia. The animals were randomly assigned to groups receiving an intraperitoneal injection of NAP (3 μg/g) or vehicle immediately (0 h) and 24 h after HI. Brain DNA damage, lipid peroxidation and reduced glutathione (GSH) content were determined 24 h after the last NAP injection. Cognitive impairment was assessed on postnatal day 60 using the spatial version of the Morris water maze learning task. Next, the animals were euthanized to assess the cerebral hemispheric volume using the Cavalieri principle associated with the counting point method. We observed that NAP prevented the acute HI-induced DNA and lipid membrane damage and also recovered the GSH levels in the injured hemisphere of the HI rat pups. Further, NAP was able to prevent impairments in learning and long-term spatial memory and to significantly reduce brain damage up to 7 weeks following the neonatal HI injury. Our findings demonstrate that NAP confers potent neuroprotection from acute brain oxidative stress, long-term cognitive impairment and brain lesions induced by neonatal HI through, at least in part, the modulation of the glutathione-mediated antioxidant system.
Collapse
Affiliation(s)
- Samuel Greggio
- Laboratório de Neurociências, Instituto do Cérebro e Instituto de Pesquisas Biomédicas, Programa de Pós-Graduação em Pediatria e Saúde da Criança, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Bartesaghi R, Guidi S, Ciani E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 2011; 22:419-55. [DOI: 10.1515/rns.2011.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|