1
|
Milad D, Antaki F, Bernstein A, Touma S, Duval R. Automated Machine Learning versus Expert-Designed Models in Ocular Toxoplasmosis: Detection and Lesion Localization Using Fundus Images. Ocul Immunol Inflamm 2024; 32:2061-2067. [PMID: 38411944 DOI: 10.1080/09273948.2024.2319281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Automated machine learning (AutoML) allows clinicians without coding experience to build their own deep learning (DL) models. This study assesses the performance of AutoML in detecting and localizing ocular toxoplasmosis (OT) lesions in fundus images and compares it to expert-designed models. METHODS Ophthalmology trainees without coding experience designed AutoML models using 304 labelled fundus images. We designed a binary model to differentiate OT from normal and an object detection model to visually identify OT lesions. RESULTS The AutoML model had an area under the precision-recall curve (AuPRC) of 0.945, sensitivity of 100%, specificity of 83% and accuracy of 93.5% (vs. 94%, 86% and 91% for the bespoke models). The AutoML object detection model had an AuPRC of 0.600 with a precision of 93.3% and recall of 56%. Using a diversified external validation dataset, our model correctly labeled 15 normal fundus images (100%) and 15 OT fundus images (100%), with a mean confidence score of 0.965 and 0.963, respectively. CONCLUSION AutoML models created by ophthalmologists without coding experience were comparable or better than expert-designed bespoke models trained on the same dataset. By creatively using AutoML to identify OT lesions on fundus images, our approach brings the whole spectrum of DL model design into the hands of clinicians.
Collapse
Affiliation(s)
- Daniel Milad
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
- The CHUM School of Artificial Intelligence in Healthcare (SAIH), Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Allison Bernstein
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Samir Touma
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Renaud Duval
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Wong CYT, O'Byrne C, Taribagil P, Liu T, Antaki F, Keane PA. Comparing code-free and bespoke deep learning approaches in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2024; 262:2785-2798. [PMID: 38446200 PMCID: PMC11377500 DOI: 10.1007/s00417-024-06432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
AIM Code-free deep learning (CFDL) allows clinicians without coding expertise to build high-quality artificial intelligence (AI) models without writing code. In this review, we comprehensively review the advantages that CFDL offers over bespoke expert-designed deep learning (DL). As exemplars, we use the following tasks: (1) diabetic retinopathy screening, (2) retinal multi-disease classification, (3) surgical video classification, (4) oculomics and (5) resource management. METHODS We performed a search for studies reporting CFDL applications in ophthalmology in MEDLINE (through PubMed) from inception to June 25, 2023, using the keywords 'autoML' AND 'ophthalmology'. After identifying 5 CFDL studies looking at our target tasks, we performed a subsequent search to find corresponding bespoke DL studies focused on the same tasks. Only English-written articles with full text available were included. Reviews, editorials, protocols and case reports or case series were excluded. We identified ten relevant studies for this review. RESULTS Overall, studies were optimistic towards CFDL's advantages over bespoke DL in the five ophthalmological tasks. However, much of such discussions were identified to be mono-dimensional and had wide applicability gaps. High-quality assessment of better CFDL applicability over bespoke DL warrants a context-specific, weighted assessment of clinician intent, patient acceptance and cost-effectiveness. We conclude that CFDL and bespoke DL are unique in their own assets and are irreplaceable with each other. Their benefits are differentially valued on a case-to-case basis. Future studies are warranted to perform a multidimensional analysis of both techniques and to improve limitations of suboptimal dataset quality, poor applicability implications and non-regulated study designs. CONCLUSION For clinicians without DL expertise and easy access to AI experts, CFDL allows the prototyping of novel clinical AI systems. CFDL models concert with bespoke models, depending on the task at hand. A multidimensional, weighted evaluation of the factors involved in the implementation of those models for a designated task is warranted.
Collapse
Affiliation(s)
- Carolyn Yu Tung Wong
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ciara O'Byrne
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Priyal Taribagil
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Timing Liu
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Fares Antaki
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- The CHUM School of Artificial Intelligence in Healthcare, Montreal, QC, Canada
| | - Pearse Andrew Keane
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- NIHR Moorfields Biomedical Research Centre, London, UK.
| |
Collapse
|
3
|
Touma S, Hammou BA, Antaki F, Boucher MC, Duval R. Comparing code-free deep learning models to expert-designed models for detecting retinal diseases from optical coherence tomography. Int J Retina Vitreous 2024; 10:37. [PMID: 38671486 PMCID: PMC11055378 DOI: 10.1186/s40942-024-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Code-free deep learning (CFDL) is a novel tool in artificial intelligence (AI). This study directly compared the discriminative performance of CFDL models designed by ophthalmologists without coding experience against bespoke models designed by AI experts in detecting retinal pathologies from optical coherence tomography (OCT) videos and fovea-centered images. METHODS Using the same internal dataset of 1,173 OCT macular videos and fovea-centered images, model development was performed simultaneously but independently by an ophthalmology resident (CFDL models) and a postdoctoral researcher with expertise in AI (bespoke models). We designed a multi-class model to categorize video and fovea-centered images into five labels: normal retina, macular hole, epiretinal membrane, wet age-related macular degeneration and diabetic macular edema. We qualitatively compared point estimates of the performance metrics of the CFDL and bespoke models. RESULTS For videos, the CFDL model demonstrated excellent discriminative performance, even outperforming the bespoke models for some metrics: area under the precision-recall curve was 0.984 (vs. 0.901), precision and sensitivity were both 94.1% (vs. 94.2%) and accuracy was 94.1% (vs. 96.7%). The fovea-centered CFDL model overall performed better than video-based model and was as accurate as the best bespoke model. CONCLUSION This comparative study demonstrated that code-free models created by clinicians without coding expertise perform as accurately as expert-designed bespoke models at classifying various retinal pathologies from OCT videos and images. CFDL represents a step forward towards the democratization of AI in medicine, although its numerous limitations must be carefully addressed to ensure its effective application in healthcare.
Collapse
Affiliation(s)
- Samir Touma
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est- de-l'Île-de-Montréal, 5415 boulevard de l'Assomption, H1T 2M4, Montreal, QC, Canada
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Badr Ait Hammou
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est- de-l'Île-de-Montréal, 5415 boulevard de l'Assomption, H1T 2M4, Montreal, QC, Canada
| | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est- de-l'Île-de-Montréal, 5415 boulevard de l'Assomption, H1T 2M4, Montreal, QC, Canada
- Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
- The CHUM School of Artificial Intelligence in Healthcare (SAIH), Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Marie Carole Boucher
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est- de-l'Île-de-Montréal, 5415 boulevard de l'Assomption, H1T 2M4, Montreal, QC, Canada
| | - Renaud Duval
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada.
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est- de-l'Île-de-Montréal, 5415 boulevard de l'Assomption, H1T 2M4, Montreal, QC, Canada.
| |
Collapse
|
4
|
Bhambra N, Antaki F, Malt FE, Xu A, Duval R. Deep learning for ultra-widefield imaging: a scoping review. Graefes Arch Clin Exp Ophthalmol 2022; 260:3737-3778. [PMID: 35857087 DOI: 10.1007/s00417-022-05741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE This article is a scoping review of published and peer-reviewed articles using deep-learning (DL) applied to ultra-widefield (UWF) imaging. This study provides an overview of the published uses of DL and UWF imaging for the detection of ophthalmic and systemic diseases, generative image synthesis, quality assessment of images, and segmentation and localization of ophthalmic image features. METHODS A literature search was performed up to August 31st, 2021 using PubMed, Embase, Cochrane Library, and Google Scholar. The inclusion criteria were as follows: (1) deep learning, (2) ultra-widefield imaging. The exclusion criteria were as follows: (1) articles published in any language other than English, (2) articles not peer-reviewed (usually preprints), (3) no full-text availability, (4) articles using machine learning algorithms other than deep learning. No study design was excluded from consideration. RESULTS A total of 36 studies were included. Twenty-three studies discussed ophthalmic disease detection and classification, 5 discussed segmentation and localization of ultra-widefield images (UWFIs), 3 discussed generative image synthesis, 3 discussed ophthalmic image quality assessment, and 2 discussed detecting systemic diseases via UWF imaging. CONCLUSION The application of DL to UWF imaging has demonstrated significant effectiveness in the diagnosis and detection of ophthalmic diseases including diabetic retinopathy, retinal detachment, and glaucoma. DL has also been applied in the generation of synthetic ophthalmic images. This scoping review highlights and discusses the current uses of DL with UWF imaging, and the future of DL applications in this field.
Collapse
Affiliation(s)
- Nishaant Bhambra
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montréal, Québec, Canada
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de L'Est-de-L'Île-de-Montréal, 5415 Assumption Blvd, Montréal, Québec, H1T 2M4, Canada
| | - Farida El Malt
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - AnQi Xu
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Renaud Duval
- Department of Ophthalmology, Université de Montréal, Montréal, Québec, Canada.
- Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de L'Est-de-L'Île-de-Montréal, 5415 Assumption Blvd, Montréal, Québec, H1T 2M4, Canada.
| |
Collapse
|