1
|
Shenoy S, Bhatt K, Yazdani Y, Rahimian H, Djalilian HR, Abouzari M. A Systematic Review: State of the Science on Diagnostics of Hidden Hearing Loss. Diagnostics (Basel) 2025; 15:742. [PMID: 40150084 PMCID: PMC11940875 DOI: 10.3390/diagnostics15060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: A sizeable population of patients with normal pure-tone audiograms endorse a consistent difficulty of following conversations in noisy environments. Termed hidden hearing loss (HHL), this condition evades traditional diagnostic methods for hearing loss and thus is significantly under-diagnosed and untreated. This review sought to identify emerging methods of diagnosing HHL via measurement of its histopathologic correlate: cochlear synaptopathy, the loss of synapses in the auditory nerve pathway. Methods: A thorough literature search of multiple databases was conducted to identify studies with objective, electrophysiological measures of synaptopathy. The PRISMA protocol was employed to establish criteria for the selection of relevant literature. Results: A total of 21 studies were selected with diagnostic methods, including the auditory brainstem response (ABR), electrocochleography (EcochG), middle ear muscle reflex (MEMR), and frequency-following response (FFR). Measures that may indicate the presence of synaptopathy include a reduced wave I amplitude of ABR, reduced SP amplitude of EcochG, and abnormal MEMR, among other measurements. Behavioral measures were often performed alongside electrophysiological measures, the most common of which was the speech-in-noise assessment. Conclusions: ABR was the most common diagnostic method for assessing HHL. Though ABR, EcochG, and MEMR may be sensitive to measuring synaptopathy, more literature comparing these methods is necessary. A two-pronged approach combining behavioral and electrophysiological measures may prove useful as a criterion for diagnosing and estimating the extent of pathology in affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Mehdi Abouzari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of age and noise exposure history on auditory nerve response amplitudes: A systematic review, study, and meta-analysis. Hear Res 2024; 447:109010. [PMID: 38744019 PMCID: PMC11135078 DOI: 10.1016/j.heares.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States.
| | - Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - April P Alvey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Abigail Lawson
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Lois J Matthews
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Judy R Dubno
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Kelly C Harris
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| |
Collapse
|
3
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of Age and Noise Exposure History on Auditory Nerve Response Amplitudes: A Systematic Review, Study, and Meta-Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585882. [PMID: 38585917 PMCID: PMC10996537 DOI: 10.1101/2024.03.20.585882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Carolyn M McClaskey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - April P Alvey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Abigail Lawson
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Lois J Matthews
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Judy R Dubno
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Kelly C Harris
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| |
Collapse
|
4
|
Colla MDF, Lunardelo PP, Dias FAM. Cochlear synaptopathy and hidden hearing loss: a scoping review. Codas 2023; 36:e20230032. [PMID: 37991055 PMCID: PMC10715634 DOI: 10.1590/2317-1782/20232023032pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE To identify the pathophysiological definitions adopted by studies investigating "cochlear synaptopathy" (CS) and "hidden hearing loss" (HHL). RESEARCH STRATEGIES The combination of keywords "Auditory Synaptopathy" or "Neuronal Synaptopathy" or "Hidden Hearing Loss" with "etiology" or "causality" or "diagnosis" was used in the databases EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO), and Web of Science. SELECTION CRITERIA Studies that investigated CS or HHL in humans using behavioral and/or electrophysiological procedures were included. DATA ANALYSIS Data analysis and extraction were performed with regard to terminology, definitions, and population. RESULTS 49 articles were included. Of these, 61.2% used the CS terminology, 34.7% used both terms, and 4.1% used HHL. The most-studied conditions were exposure to noise and tinnitus. CONCLUSION CS terminology was used in most studies, referring to the pathophysiological process of deafferentiation between the cochlear nerve fibers and inner hair cells.
Collapse
Affiliation(s)
- Marina de Figueiredo Colla
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais – PUC MG - Belo Horizonte (MG), Brasil.
| | - Pamela Papile Lunardelo
- Programa de Pós-graduação em Psicobiologia, Universidade de São Paulo de Ribeirão Preto – USP RP - Ribeirão Preto (SP), Brasil.
| | - Fernanda Abalen Martins Dias
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais – PUC MG - Belo Horizonte (MG), Brasil.
| |
Collapse
|
5
|
Samelli AG, Rocha CH, Kamita MK, Lopes MEP, Andrade CQ, Matas CG. Evaluation of Subtle Auditory Impairments with Multiple Audiological Assessments in Normal Hearing Workers Exposed to Occupational Noise. Brain Sci 2023; 13:968. [PMID: 37371447 PMCID: PMC10296706 DOI: 10.3390/brainsci13060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies involving guinea pigs have shown that noise can damage the synapses between the inner hair cells and spiral ganglion neurons, even with normal hearing thresholds-which makes it important to investigate this kind of impairment in humans. The aim was to investigate, with multiple audiological assessments, the auditory function of normal hearing workers exposed to occupational noise. Altogether, 60 workers were assessed (30 in the noise-exposure group [NEG], who were exposed to occupational noise, and 30 in the control group [CG], who were not exposed to occupational noise); the workers were matched according to age. The following procedures were used: complete audiological assessment; speech recognition threshold in noise (SRTN); speech in noise (SN) in an acoustic field; gaps-in-noise (GIN); transient evoked otoacoustic emissions (TEOAE) and inhibitory effect of the efferent auditory pathway; auditory brainstem response (ABR); and long-latency auditory evoked potentials (LLAEP). No significant difference was found between the groups in SRTN. In SN, the NEG performed worse than the CG in signal-to-noise ratio (SNR) 0 (p-value 0.023). In GIN, the NEG had a significantly lower percentage of correct answers (p-value 0.042). In TEOAE, the NEG had smaller amplitude values bilaterally (RE p-value 0.048; LE p-value 0.045) and a smaller inhibitory effect of the efferent pathway (p-value 0.009). In ABR, the NEG had greater latencies of wave V (p-value 0.017) and interpeak intervals III-V and I-V in the LE (respective p-values: 0.005 and 0.04). In LLAEP, the NEG had a smaller P3 amplitude bilaterally (RE p-value 0.001; LE p-value 0.002). The NEG performed worse than the CG in most of the assessments, suggesting that the auditory function in individuals exposed to occupational noise is impaired, even with normal audiometric thresholds.
Collapse
Affiliation(s)
- Alessandra Giannella Samelli
- Department of Physical Therapy, Speech-Language-Hearing Sciences, and Occupational Therapy, Medical School (FMUSP), University of São Paulo, São Paulo 05360-160, SP, Brazil; (C.H.R.); (M.K.K.); (M.E.P.L.); (C.Q.A.); (C.G.M.)
| | | | | | | | | | | |
Collapse
|
6
|
Auditory Electrophysiological and Perceptual Measures in Student Musicians with High Sound Exposure. Diagnostics (Basel) 2023; 13:diagnostics13050934. [PMID: 36900080 PMCID: PMC10000734 DOI: 10.3390/diagnostics13050934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to determine (a) the influence of noise exposure background (NEB) on the peripheral and central auditory system functioning and (b) the influence of NEB on speech recognition in noise abilities in student musicians. Twenty non-musician students with self-reported low NEB and 18 student musicians with self-reported high NEB completed a battery of tests that consisted of physiological measures, including auditory brainstem responses (ABRs) at three different stimulus rates (11.3 Hz, 51.3 Hz, and 81.3 Hz), and P300, and behavioral measures including conventional and extended high-frequency audiometry, consonant-vowel nucleus-consonant (CNC) word test and AzBio sentence test for assessing speech perception in noise abilities at -9, -6, -3, 0, and +3 dB signal to noise ratios (SNRs). The NEB was negatively associated with performance on the CNC test at all five SNRs. A negative association was found between NEB and performance on the AzBio test at 0 dB SNR. No effect of NEB was found on the amplitude and latency of P300 and the ABR wave I amplitude. More investigations of larger datasets with different NEB and longitudinal measurements are needed to investigate the influence of NEB on word recognition in noise and to understand the specific cognitive processes contributing to the impact of NEB on word recognition in noise.
Collapse
|
7
|
Le Prell CG, Clavier OH, Bao J. Noise-induced hearing disorders: Clinical and investigational tools. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:711. [PMID: 36732240 PMCID: PMC9889121 DOI: 10.1121/10.0017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | - Jianxin Bao
- Gateway Biotechnology Inc., St. Louis, Missouri 63132, USA
| |
Collapse
|
8
|
Jeong YJ, Oh KH, Lim SJ, Park DH, Rah YC, Choi J. Analysis of auditory brain stem response and otoacoustic emission in unilateral tinnitus patients with normal hearing. Auris Nasus Larynx 2022:S0385-8146(22)00228-0. [DOI: 10.1016/j.anl.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
|
9
|
Grinn SK, Le Prell CG. Evaluation of hidden hearing loss in normal-hearing firearm users. Front Neurosci 2022; 16:1005148. [PMID: 36389238 PMCID: PMC9644938 DOI: 10.3389/fnins.2022.1005148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 04/05/2024] Open
Abstract
Some noise exposures resulting in temporary threshold shift (TTS) result in cochlear synaptopathy. The purpose of this retrospective study was to evaluate a human population that might be at risk for noise-induced cochlear synaptopathy (i.e., "hidden hearing loss"). Participants were firearm users who were (1) at-risk for prior audiometric noise-induced threshold shifts, given their history of firearm use, (2) likely to have experienced complete threshold recovery if any prior TTS had occurred, based on this study's normal-hearing inclusion criteria, and (3) not at-risk for significant age-related synaptopathic loss, based on this study's young-adult inclusion criteria. 70 participants (age 18-25 yr) were enrolled, including 33 firearm users experimental (EXP), and 37 non-firearm users control (CNTRL). All participants were required to exhibit audiometric thresholds ≤20 dB HL bilaterally, from 0.25 to 8 kHz. The study was designed to test the hypothesis that EXP participants would exhibit a reduced cochlear nerve response compared to CNTRL participants, despite normal-hearing sensitivity in both groups. No statistically significant group differences in auditory performance were detected between the CNTRL and EXP participants on standard audiom to etry, extended high-frequency audiometry, Words-in-Noise performance, distortion product otoacoustic emission, middle ear muscle reflex, or auditory brainstem response. Importantly, 91% of EXP participants reported that they wore hearing protection either "all the time" or "almost all the time" while using firearms. The data suggest that consistent use of hearing protection during firearm use can effectively protect cochlear and neural measures of auditory function, including suprathreshold responses. The current results do not exclude the possibility that neural pathology may be evident in firearm users with less consistent hearing protection use. However, firearm users with less consistent hearing protection use are also more likely to exhibit threshold elevation, among other cochlear deficits, thereby confounding the isolation of any potentially selective neural deficits. Taken together, it seems most likely that firearm users who consistently and correctly use hearing protection will exhibit preserved measures of cochlear and neural function, while firearm users who inconsistently and incorrectly use hearing protection are most likely to exhibit cochlear injury, rather than evidence of selective neural injury in the absence of cochlear injury.
Collapse
Affiliation(s)
- Sarah K. Grinn
- Department of Communication Sciences and Disorders, Central Michigan University, Mount Pleasant, MI, United States
| | - Colleen G. Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
10
|
Idiopathic sudden sensorineural hearing loss: A critique on corticosteroid therapy. Hear Res 2022; 422:108565. [PMID: 35816890 DOI: 10.1016/j.heares.2022.108565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Idiopathic sudden sensorineural hearing loss (ISSNHL) is a condition affecting 5-30 per 100,000 individuals with the potential to significantly reduce one's quality of life. The true incidence of this condition is not known because it often goes undiagnosed and/or recovers within a few days. ISSNHL is defined as a ≥30 dB loss of hearing over 3 consecutive audiometric octaves within 3 days with no known cause. The disorder is typically unilateral and most of the cases spontaneously recover to functional hearing within 30 days. High frequency losses, ageing, and vertigo are associated with a poorer prognosis. Multiple causes of ISSNHL have been postulated and the most common are vascular obstruction, viral infection, or labyrinthine membrane breaks. Corticosteroids are the standard treatment option but this practice is not without opposition. Post mortem analyses of temporal bones of ISSNHL cases have been inconclusive. This report analyzed ISSNHL studies administering corticosteroids that met strict inclusion criteria and identified a number of methodologic shortcomings that compromise the interpretation of results. We discuss the issues and conclude that the data do not support present treatment practices. The current status on ISSNHL calls for a multi-institutional, randomized, double-blind trial with validated outcome measures to provide science-based treatment guidance.
Collapse
|
11
|
Suresh CH, Krishnan A. Frequency-Following Response to Steady-State Vowel in Quiet and Background Noise Among Marching Band Participants With Normal Hearing. Am J Audiol 2022; 31:719-736. [PMID: 35944059 DOI: 10.1044/2022_aja-21-00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Human studies enrolling individuals at high risk for cochlear synaptopathy (CS) have reported difficulties in speech perception in adverse listening conditions. The aim of this study is to determine if these individuals show a degradation in the neural encoding of speech in quiet and in the presence of background noise as reflected in neural phase-locking to both envelope periodicity and temporal fine structure (TFS). To our knowledge, there are no published reports that have specifically examined the neural encoding of both envelope periodicity and TFS of speech stimuli (in quiet and in adverse listening conditions) among a sample with loud-sound exposure history who are at risk for CS. METHOD Using scalp-recorded frequency-following response (FFR), the authors evaluated the neural encoding of envelope periodicity (FFRENV) and TFS (FFRTFS) for a steady-state vowel (English back vowel /u/) in quiet and in the presence of speech-shaped noise presented at +5- and 0 dB SNR. Participants were young individuals with normal hearing who participated in the marching band for at least 5 years (high-risk group) and non-marching band group with low-noise exposure history (low-risk group). RESULTS The results showed no group differences in the neural encoding of either the FFRENV or the first formant (F1) in the FFRTFS in quiet and in noise. Paradoxically, the high-risk group demonstrated enhanced representation of F2 harmonics across all stimulus conditions. CONCLUSIONS These results appear to be in line with a music experience-dependent enhancement of F2 harmonics. However, due to sound overexposure in the high-risk group, the role of homeostatic central compensation cannot be ruled out. A larger scale data set with different noise exposure background, longitudinal measurements with an array of behavioral and electrophysiological tests is needed to disentangle the nature of the complex interaction between the effects of central compensatory gain and experience-dependent enhancement.
Collapse
Affiliation(s)
- Chandan H Suresh
- Department of Communication Disorders, California State University, Los Angeles
| | | |
Collapse
|
12
|
Kaf WA, Turntine M, Jamos A, Smurzynski J. Examining the Profile of Noise-Induced Cochlear Synaptopathy Using iPhone Health App Data and Cochlear and Brainstem Electrophysiological Responses to Fast Clicks Rates. Semin Hear 2022; 43:197-222. [PMID: 36313044 PMCID: PMC9605806 DOI: 10.1055/s-0042-1756164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Little is known about objective classifying of noise exposure risk levels in personal listening device (PLD) users and electrophysiologic evidence of cochlear synaptopathy at very fast click rates. The aim of the study was to objectively classify noise exposure risk using iPhone Health app and identify signs of cochlear synaptopathy using behavioral and electrophysiologic measures. Thirty normal-hearing females (aged 18-26 years) were grouped based on their iPhone Health app's 6-month listening level and noise exposure data into low-risk and high-risk groups. They were assessed using a questionnaire, extended high-frequency (EHF) audiometry, QuickSIN test, distortion-product otoacoustic emission (DPOAE), and simultaneous recording of electrocochleography (ECochG) and auditory brainstem response (ABR) at three click rates (19.5/s, 97.7/s, 234.4/s). A series of ANOVAs and independent samples t -test were conducted for group comparison. Both groups had within-normal EHF hearing thresholds and DPOAEs. However, the high-risk participants were over twice as likely to suffer from tinnitus, had abnormally large summating potential to action potential amplitude and area ratios at fast rates, and had slightly smaller waves I and V amplitudes. The high-risk group demonstrated a profile of behavioral and objective signs of cochlear synaptopathy based on ECochG and ABR recordings at fast click rates. The findings in this study suggest that the iPhone Health app may be a useful tool for further investigation into cochlear synaptopathy in PLD users.
Collapse
Affiliation(s)
- Wafaa A. Kaf
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, Missouri
| | - Madison Turntine
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, Missouri
| | - Abdullah Jamos
- Department of Communication Sciences and Disorders, Missouri State University, Springfield, Missouri
| | - Jacek Smurzynski
- Department of Audiology and Speech-Language Pathology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
13
|
Ripley S, Xia L, Zhang Z, Aiken SJ, Wang J. Animal-to-Human Translation Difficulties and Problems With Proposed Coding-in-Noise Deficits in Noise-Induced Synaptopathy and Hidden Hearing Loss. Front Neurosci 2022; 16:893542. [PMID: 35720689 PMCID: PMC9199355 DOI: 10.3389/fnins.2022.893542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Noise induced synaptopathy (NIS) and hidden hearing loss (NIHHL) have been hot topic in hearing research since a massive synaptic loss was identified in CBA mice after a brief noise exposure that did not cause permanent threshold shift (PTS) in 2009. Based upon the amount of synaptic loss and the bias of it to synapses with a group of auditory nerve fibers (ANFs) with low spontaneous rate (LSR), coding-in-noise deficit (CIND) has been speculated as the major difficult of hearing in subjects with NIS and NIHHL. This speculation is based upon the idea that the coding of sound at high level against background noise relies mainly on the LSR ANFs. However, the translation from animal data to humans for NIS remains to be justified due to the difference in noise exposure between laboratory animals and human subjects in real life, the lack of morphological data and reliable functional methods to quantify or estimate the loss of the afferent synapses by noise. Moreover, there is no clear, robust data revealing the CIND even in animals with the synaptic loss but no PTS. In humans, both positive and negative reports are available. The difficulty in verifying CINDs has led a re-examination of the hypothesis that CIND is the major deficit associated with NIS and NIHHL, and the theoretical basis of this idea on the role of LSR ANFs. This review summarized the current status of research in NIS and NIHHL, with focus on the translational difficulty from animal data to human clinicals, the technical difficulties in quantifying NIS in humans, and the problems with the SR theory on signal coding. Temporal fluctuation profile model was discussed as a potential alternative for signal coding at high sound level against background noise, in association with the mechanisms of efferent control on the cochlea gain.
Collapse
Affiliation(s)
- Sara Ripley
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Li Xia
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Steve J. Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Jian Wang
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, NS, Canada
- Department of Otolaryngology-Head and Neck Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|