1
|
Jacxsens L, Biot L, Escera C, Gilles A, Cardon E, Van Rompaey V, De Hertogh W, Lammers MJW. Frequency-Following Responses in Sensorineural Hearing Loss: A Systematic Review. J Assoc Res Otolaryngol 2024; 25:131-147. [PMID: 38334887 PMCID: PMC11018579 DOI: 10.1007/s10162-024-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
PURPOSE This systematic review aims to assess the impact of sensorineural hearing loss (SNHL) on various frequency-following response (FFR) parameters. METHODS Following PRISMA guidelines, a systematic review was conducted using PubMed, Web of Science, and Scopus databases up to January 2023. Studies evaluating FFRs in patients with SNHL and normal hearing controls were included. RESULTS Sixteen case-control studies were included, revealing variability in acquisition parameters. In the time domain, patients with SNHL exhibited prolonged latencies. The specific waves that were prolonged differed across studies. There was no consensus regarding wave amplitude in the time domain. In the frequency domain, focusing on studies that elicited FFRs with stimuli of 170 ms or longer, participants with SNHL displayed a significantly smaller fundamental frequency (F0). Results regarding changes in the temporal fine structure (TFS) were inconsistent. CONCLUSION Patients with SNHL may require more time for processing (speech) stimuli, reflected in prolonged latencies. However, the exact timing of this delay remains unclear. Additionally, when presenting longer stimuli (≥ 170 ms), patients with SNHL show difficulties tracking the F0 of (speech) stimuli. No definite conclusions could be drawn on changes in wave amplitude in the time domain and the TFS in the frequency domain. Patient characteristics, acquisition parameters, and FFR outcome parameters differed greatly across studies. Future studies should be performed in larger and carefully matched subject groups, using longer stimuli presented at the same intensity in dB HL for both groups, or at a carefully determined maximum comfortable loudness level.
Collapse
Affiliation(s)
- Laura Jacxsens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium.
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Lana Biot
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Carles Escera
- Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Brainlab - Cognitive, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Catalonia, Spain
| | - Annick Gilles
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Emilie Cardon
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Willem De Hertogh
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc J W Lammers
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Easwar V, Purcell D, Wright T. Predicting Hearing aid Benefit Using Speech-Evoked Envelope Following Responses in Children With Hearing Loss. Trends Hear 2023; 27:23312165231151468. [PMID: 36946195 PMCID: PMC10034298 DOI: 10.1177/23312165231151468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 03/23/2023] Open
Abstract
Electroencephalography could serve as an objective tool to evaluate hearing aid benefit in infants who are developmentally unable to participate in hearing tests. We investigated whether speech-evoked envelope following responses (EFRs), a type of electroencephalography-based measure, could predict improved audibility with the use of a hearing aid in children with mild-to-severe permanent, mainly sensorineural, hearing loss. In 18 children, EFRs were elicited by six male-spoken band-limited phonemic stimuli--the first formants of /u/ and /i/, the second and higher formants of /u/ and /i/, and the fricatives /s/ and /∫/--presented together as /su∫i/. EFRs were recorded between the vertex and nape, when /su∫i/ was presented at 55, 65, and 75 dB SPL using insert earphones in unaided conditions and individually fit hearing aids in aided conditions. EFR amplitude and detectability improved with the use of a hearing aid, and the degree of improvement in EFR amplitude was dependent on the extent of change in behavioral thresholds between unaided and aided conditions. EFR detectability was primarily influenced by audibility; higher sensation level stimuli had an increased probability of detection. Overall EFR sensitivity in predicting audibility was significantly higher in aided (82.1%) than unaided conditions (66.5%) and did not vary as a function of stimulus or frequency. EFR specificity in ascertaining inaudibility was 90.8%. Aided improvement in EFR detectability was a significant predictor of hearing aid-facilitated change in speech discrimination accuracy. Results suggest that speech-evoked EFRs could be a useful objective tool in predicting hearing aid benefit in children with hearing loss.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders & Waisman
Center, University of
Wisconsin–Madison, Madison, USA
- National
Acoustic Laboratories, Macquarie
University, Sydney, New South Wales, Australia
| | - David Purcell
- School of Communication Sciences and Disorders,
Western
University, London, Canada
- National Centre for Audiology, Western
University, London, Canada
| | - Trevor Wright
- Department of Communication Sciences and Disorders & Waisman
Center, University of
Wisconsin–Madison, Madison, USA
| |
Collapse
|
3
|
Boothalingam S, Easwar V, Bross A. External and middle ear influence on envelope following responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2794. [PMID: 36456277 DOI: 10.1121/10.0015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Considerable between-subject variability in envelope following response (EFR) amplitude limits its clinical translation. Based on a pattern of lower amplitude and larger variability in the low (<1.2 kHz) and high (>8 kHz), relative to mid (1-3 kHz) frequency carriers, we hypothesized that the between-subject variability in external and middle ear (EM) contribute to between-subject variability in EFR amplitude. It is predicted that equalizing the stimulus reaching the cochlea by accounting for EM differences using forward pressure level (FPL) calibration would at least partially improve response amplitude and reduce between-subject variability. In 21 young normal hearing adults, EFRs of four modulation rates (91, 96, 101, and 106 Hz) were measured concurrently from four frequency bands [low (0.091-1.2 kHz), mid (1-3 kHz), high (4-5.4 kHz), and very high (vHigh; 8-9.4 kHz)], respectively, with 12 harmonics each. The results indicate that FPL calibration in-ear and in a coupler leads to larger EFR amplitudes in the low and vHigh frequency bands relative to conventional coupler root-mean-square calibration. However, improvement in variability was modest with FPL calibration. This lack of a statistically significant improvement in variability suggests that the dominant source of variability in EFR amplitude may arise from cochlear and/or neural processing.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Department of Communication Sciences and Disorders, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Abigail Bross
- Department of Communication Sciences and Disorders, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
4
|
Easwar V, Purcell D, Lasarev M, McGrath E, Galloy M. Speech-Evoked Envelope Following Responses in Children and Adults. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:4009-4023. [PMID: 36129844 DOI: 10.1044/2022_jslhr-22-00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE Envelope following responses (EFRs) could be useful for objectively evaluating audibility of speech in children who are unable to participate in routine clinical tests. However, relative to adults, the characteristics of EFRs elicited by frequency-specific speech and their utility in predicting audibility in children are unknown. METHOD EFRs were elicited by the first (F1) and second and higher formants (F2+) of male-spoken vowels /u/ and /i/ and by fricatives /ʃ/ and /s/ in the token /suʃi/ presented at 15, 35, 55, 65, and 75 dB SPL. The F1, F2+, and fricatives were low-, mid-, and high-frequency dominant, respectively. EFRs were recorded between the vertex and the nape from twenty-three 6- to 17-year-old children and 21 young adults with normal hearing. Sensation levels of stimuli were estimated based on behavioral thresholds. RESULTS In children, amplitude decreased with age for /ʃ/-elicited EFRs but remained stable for low- and mid-frequency stimuli. As a group, EFR amplitude and phase coherence did not differ from that of adults. EFR sensitivity (proportion of audible stimuli detected) and specificity (proportion of inaudible stimuli not detected) did not vary between children and adults. Consistent with previous work, EFR sensitivity increased with stimulus frequency and level. The type of statistical indicator used for EFR detection did not influence accuracy in children. CONCLUSIONS Adultlike EFRs in 6- to 17-year-old typically developing children suggest mature envelope encoding for low- and mid-frequency stimuli. EFR sensitivity and specificity in children, when considering a wide range of stimulus levels and audibility, are ~77% and ~92%, respectively. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21136171.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders and Waisman Center, University of Wisconsin-Madison
- National Acoustic Laboratories, Sydney, New South Wales, Australia
| | - David Purcell
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
| | - Emma McGrath
- Department of Communication Sciences and Disorders and Waisman Center, University of Wisconsin-Madison
| | - Mary Galloy
- Department of Communication Sciences and Disorders and Waisman Center, University of Wisconsin-Madison
| |
Collapse
|
5
|
Easwar V, Purcell D, Eeckhoutte MV, Aiken SJ. The Influence of Male- and Female-Spoken Vowel Acoustics on Envelope-Following Responses. Semin Hear 2022; 43:223-239. [PMID: 36313043 PMCID: PMC9605803 DOI: 10.1055/s-0042-1756165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
The influence of male and female vowel characteristics on the envelope-following responses (EFRs) is not well understood. This study explored the role of vowel characteristics on the EFR at the fundamental frequency (f0) in response to the vowel /ε/ (as in "head"). Vowel tokens were spoken by five males and five females and EFRs were measured in 25 young adults (21 females). An auditory model was used to estimate changes in auditory processing that might account for talker effects on EFR amplitude. There were several differences between male and female vowels in relation to the EFR. For male talkers, EFR amplitudes were correlated with the bandwidth and harmonic count of the first formant, and the amplitude of the trough below the second formant. For female talkers, EFR amplitudes were correlated with the range of f0 frequencies and the amplitude of the trough above the second formant. The model suggested that the f0 EFR reflects a wide distribution of energy in speech, with primary contributions from high-frequency harmonics mediated from cochlear regions basal to the peaks of the first and second formants, not from low-frequency harmonics with energy near f0. Vowels produced by female talkers tend to produce lower-amplitude EFR, likely because they depend on higher-frequency harmonics where speech sound levels tend to be lower. This work advances auditory electrophysiology by showing how the EFR evoked by speech relates to the acoustics of speech, for both male and female voices.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders & Waisman Center, University of Wisconsin, Madison
- Department of Communication Sciences, National Acoustic Laboratories, Sydney, Australia
| | - David Purcell
- National Center for Audiology, School of Communication Sciences and Disorders, Western University, London, Canada
| | - Maaike Van Eeckhoutte
- Division of Hearing Systems, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Copenhagen Hearing and Balance Centre - Ear, Nose, Throat and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- National Center for Audiology, Western University, London, Canada
| | - Steven J. Aiken
- School of Communication Sciences and Disorders, Departments of Surgery and Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| |
Collapse
|