1
|
Kim S, Schroeder M, Bharadwaj HM. Effect of digital noise-reduction processing on subcortical speech encoding and relationship to behavioral outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620630. [PMID: 39554128 PMCID: PMC11565834 DOI: 10.1101/2024.10.28.620630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Perceptual benefits from digital noise reduction (NR) vary among individuals with different noise tolerance and sensitivity to distortions introduced in NR-processed speech; however, the physiological bases of the variance are understudied. Here, we developed objective measures of speech encoding in the ascending pathway as candidate measures of individual noise tolerance and sensitivity to NR-processed speech using the brainstem responses to speech syllable /da/. The speech-evoked brainstem response was found to be sensitive to the addition of noise and NR processing. The NR effects on the consonant and vowel portion of the responses were robustly quantified using response-to-response correlation metrics and spectral amplitude ratios, respectively. Further, the f0 amplitude ratios between conditions correlated with behavioral accuracy with NR. These findings suggest that investigating the NR effects on bottom-up speech encoding using brainstem measures is feasible and that individual subcortical encoding of NR-processed speech may relate to individual behavioral outcomes with NR.
Collapse
Affiliation(s)
- Subong Kim
- Department of Communication Sciences and Disorders, Montclair State University, Montclair, NJ, USA
| | - Mary Schroeder
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Hari M. Bharadwaj
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Jacxsens L, Biot L, Escera C, Gilles A, Cardon E, Van Rompaey V, De Hertogh W, Lammers MJW. Frequency-Following Responses in Sensorineural Hearing Loss: A Systematic Review. J Assoc Res Otolaryngol 2024; 25:131-147. [PMID: 38334887 PMCID: PMC11018579 DOI: 10.1007/s10162-024-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
PURPOSE This systematic review aims to assess the impact of sensorineural hearing loss (SNHL) on various frequency-following response (FFR) parameters. METHODS Following PRISMA guidelines, a systematic review was conducted using PubMed, Web of Science, and Scopus databases up to January 2023. Studies evaluating FFRs in patients with SNHL and normal hearing controls were included. RESULTS Sixteen case-control studies were included, revealing variability in acquisition parameters. In the time domain, patients with SNHL exhibited prolonged latencies. The specific waves that were prolonged differed across studies. There was no consensus regarding wave amplitude in the time domain. In the frequency domain, focusing on studies that elicited FFRs with stimuli of 170 ms or longer, participants with SNHL displayed a significantly smaller fundamental frequency (F0). Results regarding changes in the temporal fine structure (TFS) were inconsistent. CONCLUSION Patients with SNHL may require more time for processing (speech) stimuli, reflected in prolonged latencies. However, the exact timing of this delay remains unclear. Additionally, when presenting longer stimuli (≥ 170 ms), patients with SNHL show difficulties tracking the F0 of (speech) stimuli. No definite conclusions could be drawn on changes in wave amplitude in the time domain and the TFS in the frequency domain. Patient characteristics, acquisition parameters, and FFR outcome parameters differed greatly across studies. Future studies should be performed in larger and carefully matched subject groups, using longer stimuli presented at the same intensity in dB HL for both groups, or at a carefully determined maximum comfortable loudness level.
Collapse
Affiliation(s)
- Laura Jacxsens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium.
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Lana Biot
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Carles Escera
- Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Brainlab - Cognitive, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Catalonia, Spain
| | - Annick Gilles
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Emilie Cardon
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Willem De Hertogh
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marc J W Lammers
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Resonant Labs Antwerp, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|