1
|
He S, Teagle HFB, Buchman CA. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic. Front Neurosci 2017; 11:339. [PMID: 28690494 PMCID: PMC5481377 DOI: 10.3389/fnins.2017.00339] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.
Collapse
Affiliation(s)
- Shuman He
- Center for Hearing Research, Boys Town National Research HospitalOmaha, NE, United States
| | - Holly F. B. Teagle
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington UniversitySt. Louis, MO, United States
| |
Collapse
|
2
|
Fine I, Boynton GM. Pulse trains to percepts: the challenge of creating a perceptually intelligible world with sight recovery technologies. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140208. [PMID: 26240423 PMCID: PMC4528820 DOI: 10.1098/rstb.2014.0208] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 11/12/2022] Open
Abstract
An extraordinary variety of sight recovery therapies are either about to begin clinical trials, have begun clinical trials, or are currently being implanted in patients. However, as yet we have little insight into the perceptual experience likely to be produced by these implants. This review focuses on methodologies, such as optogenetics, small molecule photoswitches and electrical prostheses, which use artificial stimulation of the retina to elicit percepts. For each of these technologies, the interplay between the stimulating technology and the underlying neurophysiology is likely to result in distortions of the perceptual experience. Here, we describe some of these potential distortions and discuss how they might be minimized either through changes in the encoding model or through cortical plasticity.
Collapse
Affiliation(s)
- Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3
|
Goldsworthy RL. Correlations Between Pitch and Phoneme Perception in Cochlear Implant Users and Their Normal Hearing Peers. J Assoc Res Otolaryngol 2015; 16:797-809. [PMID: 26373936 DOI: 10.1007/s10162-015-0541-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/30/2015] [Indexed: 11/29/2022] Open
Abstract
This study examined correlations between pitch and phoneme perception for nine cochlear implant users and nine normal hearing listeners. Pure tone frequency discrimination thresholds were measured for frequencies of 500, 1000, and 2000 Hz. Complex tone fundamental frequency (F0) discrimination thresholds were measured for F0s of 110, 220, and 440 Hz. The effects of amplitude and frequency roving were measured under the rationale that individuals who are robust to such perturbations would perform better on phoneme perception measures. Phoneme identification was measured using consonant and vowel materials in quiet, in stationary speech-shaped noise (SSN), in spectrally notched SSN, and in temporally gated SSN. Cochlear implant pure tone frequency discrimination thresholds ranged between 1.5 and 9.9 %, while cochlear implant complex tone F0 discrimination thresholds ranged between 2.6 and 28.5 %. On average, cochlear implant users had 5.3 dB of masking release for consonants and 8.4 dB of masking release for vowels when measured in temporally gated SSN compared to stationary SSN. Correlations with phoneme identification measures were generally higher for complex tone discrimination measures than for pure tone discrimination measures. Correlations with phoneme identification measures were also generally higher for pitch perception measures that included amplitude and frequency roving. The strongest correlations were observed for measures of complex tone F0 discrimination with phoneme identification in temporally gated SSN. The results of this study suggest that musical training or signal processing strategies that improve F0 discrimination should improve consonant identification in fluctuating noise.
Collapse
|
4
|
Fine I, Cepko CL, Landy MS. Vision research special issue: Sight restoration: Prosthetics, optogenetics and gene therapy. Vision Res 2015; 111:115-23. [PMID: 25937376 DOI: 10.1016/j.visres.2015.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Connie L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
5
|
Goehring JL, Neff DL, Baudhuin JL, Hughes ML. Pitch ranking, electrode discrimination, and physiological spread of excitation using current steering in cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:3159. [PMID: 25480063 PMCID: PMC4257956 DOI: 10.1121/1.4900634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
The first objective of this study was to determine whether adaptive pitch-ranking and electrode-discrimination tasks with cochlear-implant (CI) recipients produce similar results for perceiving intermediate "virtual-channel" pitch percepts using current steering. Previous studies have not examined both behavioral tasks in the same subjects with current steering. A second objective was to determine whether a physiological metric of spatial separation using the electrically evoked compound action potential spread-of-excitation (ECAP SOE) function could predict performance in the behavioral tasks. The metric was the separation index (Σ), defined as the difference in normalized amplitudes between two adjacent ECAP SOE functions, summed across all masker electrodes. Eleven CII or 90 K Advanced Bionics (Valencia, CA) recipients were tested using pairs of electrodes from the basal, middle, and apical portions of the electrode array. The behavioral results, expressed as d', showed no significant differences across tasks. There was also no significant effect of electrode region for either task. ECAP Σ was not significantly correlated with pitch ranking or electrode discrimination for any of the electrode regions. Therefore, the ECAP separation index is not sensitive enough to predict perceptual resolution of virtual channels.
Collapse
Affiliation(s)
- Jenny L Goehring
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| | - Donna L Neff
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| | - Jacquelyn L Baudhuin
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| | - Michelle L Hughes
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| |
Collapse
|
6
|
Effect of electrode impedance on spread of excitation and pitch perception using electrically coupled "dual-electrode" stimulation. Ear Hear 2014; 36:e50-6. [PMID: 25250960 DOI: 10.1097/aud.0000000000000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES In newer-generation Cochlear Ltd. cochlear implants, two adjacent electrodes can be electrically coupled to produce a single contact or "dual electrode" (DE). The goal of the present study was to evaluate whether relatively large impedance differences (>3.0 kOhms) between coupled electrodes affect the excitation pattern and pitch percepts produced by the DE. DESIGN Fifteen electrode pairs in six recipients were tested. Neural spread-of-excitation patterns and pitch perception were measured for adjacent physical electrodes (PEs) and the resulting DE to determine if the lower-impedance PE in the pair dominates the DE response pattern. The results were compared with a "normative sample" (impedance differences <3.0 kOhms) from two earlier studies. RESULTS In general, spread-of-excitation patterns for DEs more closely approximated those of the lower-impedance PE in each pair. The DE was more easily distinguished in pitch from the higher-impedance PE than the lower-impedance PE. The electrically evoked compound action potential and perceptual results generally differed from those of the normative group. CONCLUSIONS Impedance differences between adjacent PEs should be considered if DE stimulation is implemented in future research studies or clinical coding strategies.
Collapse
|
7
|
Goehring JL, Neff DL, Baudhuin JL, Hughes ML. Pitch ranking, electrode discrimination, and physiological spread-of-excitation using Cochlear's dual-electrode mode. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:715-727. [PMID: 25096106 PMCID: PMC4144258 DOI: 10.1121/1.4884881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
This study compared pitch ranking, electrode discrimination, and electrically evoked compound action potential (ECAP) spatial excitation patterns for adjacent physical electrodes (PEs) and the corresponding dual electrodes (DEs) for newer-generation Cochlear devices (Cochlear Ltd., Macquarie, New South Wales, Australia). The first goal was to determine whether pitch ranking and electrode discrimination yield similar outcomes for PEs and DEs. The second goal was to determine if the amount of spatial separation among ECAP excitation patterns (separation index, Σ) between adjacent PEs and the PE-DE pairs can predict performance on the psychophysical tasks. Using non-adaptive procedures, 13 subjects completed pitch ranking and electrode discrimination for adjacent PEs and the corresponding PE-DE pairs (DE versus each flanking PE) from the basal, middle, and apical electrode regions. Analysis of d' scores indicated that pitch-ranking and electrode-discrimination scores were not significantly different, but rather produced similar levels of performance. As expected, accuracy was significantly better for the PE-PE comparison than either PE-DE comparison. Correlations of the psychophysical versus ECAP Σ measures were positive; however, not all test/region correlations were significant across the array. Thus, the ECAP separation index is not sensitive enough to predict performance on behavioral tasks of pitch ranking or electrode discrimination for adjacent PEs or corresponding DEs.
Collapse
Affiliation(s)
- Jenny L Goehring
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| | - Donna L Neff
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| | - Jacquelyn L Baudhuin
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| | - Michelle L Hughes
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, Nebraska 68131
| |
Collapse
|
8
|
Goldsworthy RL, Delhorne LA, Desloge JG, Braida LD. Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:867-876. [PMID: 25096120 PMCID: PMC4144183 DOI: 10.1121/1.4887453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 06/10/2014] [Accepted: 06/19/2014] [Indexed: 06/01/2023]
Abstract
This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.
Collapse
Affiliation(s)
- Raymond L Goldsworthy
- Research & Development, Sensimetrics Corporation, 14 Summer Street, Suite 305, Malden, Massachusetts 02148
| | - Lorraine A Delhorne
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 36-791, Cambridge, Massachusetts 02139
| | - Joseph G Desloge
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 36-791, Cambridge, Massachusetts 02139
| | - Louis D Braida
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 36-791, Cambridge, Massachusetts 02139
| |
Collapse
|
9
|
Hughes ML, Stille LJ, Baudhuin JL, Goehring JL. ECAP spread of excitation with virtual channels and physical electrodes. Hear Res 2013; 306:93-103. [PMID: 24095669 DOI: 10.1016/j.heares.2013.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/12/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
The primary goal of this study was to evaluate physiological spatial excitation patterns for stimulation of adjacent physical electrodes and intermediate virtual channels. Two experiments were conducted that utilized electrically evoked compound action potential (ECAP) spread-of-excitation (SOE) functions obtained with the traditional forward-masking subtraction method. These two experiments examined spatial excitation patterns for virtual-channel maskers and probes, respectively. In Experiment 1, ECAP SOE patterns were obtained for maskers applied to physical electrodes and virtual channels to determine whether virtual-channel maskers yield SOE patterns similar to those predicted from physical electrodes. In Experiment 2, spatial separation of SOE functions was compared for two adjacent physical probe electrodes and the intermediate virtual channel to determine the extent to which ECAP SOE patterns for virtual-channel probes are spatially separate from those obtained with physical electrodes. Data were obtained for three electrode regions (basal, middle, apical) for 35 ears implanted with Cochlear (N = 16) or Advanced Bionics (N = 19) devices. Results from Experiment 1 showed no significant difference between predicted and measured ECAP amplitudes for Advanced Bionics subjects. Measured ECAP amplitudes for virtual-channel maskers were significantly larger than the predicted amplitudes for Cochlear subjects; however, the difference was <2 μV and thus is likely not clinically significant. Results from Experiment 2 showed that the probe set in the apical region demonstrated the least amount of spatial separation amongst SOE functions, which may be attributed to more uniform nerve survival patterns, closer electrode spacing, and/or the tapered geometry of the cochlea. As expected, adjacent physical probes demonstrated greater spatial separation than for comparisons between each physical probe and the intermediate virtual channel. Finally, the virtual-channel SOE functions were generally weighted toward the basal electrode in the pair.
Collapse
Affiliation(s)
- Michelle L Hughes
- Boys Town National Research Hospital, Lied Learning and Technology Center, 425 North 30th Street, Omaha, NE 68131, USA.
| | | | | | | |
Collapse
|
10
|
Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol 2013; 14:781-90. [PMID: 23695303 DOI: 10.1007/s10162-013-0395-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022] Open
Abstract
Simultaneous stimulation on two contacts (current steering) creates intermediate pitches between the physical contacts in cochlear implants. All recent studies on current steering have focused on Most Comfortable Loudness levels and not at low stimulation levels. This study investigates the efficacy of dual electrode stimulation at lower levels, thereby focusing on the requirements to correct for threshold variations. With a current steered signal, threshold levels were determined on 4 different electrode pairs for 7 different current steering coefficients (α). This was done psychophysically in twelve postlingually deafened cochlear implant (HiRes90K, HiFocus1J) users and, in a computer model, which made use of three different neural morphologies. The analysis on the psychophysical data taking all subjects into account showed that in all conditions there was no significant difference between the threshold level of the physical contacts and the intermediate created percepts, eliminating the need for current corrections at these very low levels. The model data showed unexpected drops in threshold in the middle of the two physical contacts (both contacts equal current). Results consistent with this prediction were obtained for a subset of 5 subjects for the apical pair with wider spacing (2.2 mm). Further analysis showed that this decrease was only observed in subjects with a long duration of deafness. For current steering on adjacent contacts, the results from the psychophysical experiments were in line with the results from computational modelling. However, the dip in the threshold profile could only be replicated in the computational model with surviving peripheral processes without an unmyelinated terminal. On the basis of this result, we put forward that the majority of the surviving spiral ganglion cells in the cochlea in humans with a long duration of deafness still retain peripheral processes, but have lost their unmyelinated terminals.
Collapse
|
11
|
Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation. Ear Hear 2012; 33:367-76. [PMID: 22048258 DOI: 10.1097/aud.0b013e318234efd5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine how simultaneous dual-electrode stimulation (DES) can be optimized for the individual patient to deliver better sound quality and speech recognition. DES was compared with single-electrode stimulation (SES) with respect to the site of stimulation (X) in the cochlea, the spread of excitation (SOE), and channel interaction. Second, it was investigated whether the number of intermediate pitches created with DES can be predicted from SOE, channel interaction measures, current distribution in the cochlea, or distance of the electrode to the medial wall. DESIGN Twelve users of the HiRes90K cochlear implant with HiFocus1J electrode were randomly selected to participate in this study. Electrode contacts were selected based on their location in the cochlea as determined by multislice computed tomography, viz. 120 degrees (basal), 240 degrees (middle), and 360 degrees (apical) from the round window. The number of intermediate pitches with simultaneous DES was assessed with a three-alternative forced choice pitch discrimination experiment. The channel interactions between two single-electrode contacts and two DES pairs were determined with a threshold detection experiment (three-alternative forced choice). The eCAP-based SOE method with fixed probe and variable masker was used to determine the location of the neurons responding to a single-electrode contact or dual-electrode contact stimulus. Furthermore, the intracochlear electrical fields were determined with the Electrical Field Imaging tool kit. RESULTS DES was not different from SES in terms of channel interaction and SOE. The X of DES was 0.54 electrode contacts more basal compared with SES stimulation, which was not different from the predicted shift of 0.5. SOE and current distribution were significantly different for the three locations in the cochlea but showed no correlation with the number of perceivable pitches. A correlation was found between channel interaction and the number of intermediate pitches along the array within a patient, not between patients. CONCLUSION SES and DES are equivalent with regard to SOE and channel interaction. The excitation site of DES has the predicted displacement compared with the excitation region induced by the neighboring single-electrode contact. Unfortunately, no predictor for the number of intermediate pitches was found.
Collapse
|