1
|
Pathobiology, Severity, and Risk Stratification of Pediatric Acute Respiratory Distress Syndrome: From the Second Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2023; 24:S12-S27. [PMID: 36661433 DOI: 10.1097/pcc.0000000000003156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review the literature for studies published in children on the pathobiology, severity, and risk stratification of pediatric acute respiratory distress syndrome (PARDS) with the intent of guiding current medical practice and identifying important areas for future research related to severity and risk stratification. DATA SOURCES Electronic searches of PubMed and Embase were conducted from 2013 to March 2022 by using a combination of medical subject heading terms and text words to capture the pathobiology, severity, and comorbidities of PARDS. STUDY SELECTION We included studies of critically ill patients with PARDS that related to the severity and risk stratification of PARDS using characteristics other than the oxygenation defect. Studies using animal models, adult only, and studies with 10 or fewer children were excluded from our review. DATA EXTRACTION Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize relevant evidence and develop recommendations for clinical practice. There were 192 studies identified for full-text extraction to address the relevant Patient/Intervention/Comparator/Outcome questions. One clinical recommendation was generated related to the use of dead space fraction for risk stratification. In addition, six research statements were generated about the impact of age on acute respiratory distress syndrome pathobiology and outcomes, addressing PARDS heterogeneity using biomarkers to identify subphenotypes and endotypes, and use of standardized ventilator, physiologic, and nonpulmonary organ failure measurements for future research. CONCLUSIONS Based on an extensive literature review, we propose clinical management and research recommendations related to characterization and risk stratification of PARDS severity.
Collapse
|
2
|
Glas GJ, Horn J, van der Hoeven SM, Hollmann MW, Cleffken B, Colpaert K, Juffermans NP, Knape P, Loef BG, Mackie DP, Malbrain M, Muller J, Reidinga AC, Preckel B, Schultz MJ. Changes in ventilator settings and ventilation-induced lung injury in burn patients-A systematic review. Burns 2019; 46:762-770. [PMID: 31202528 DOI: 10.1016/j.burns.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Ventilation strategies aiming at prevention of ventilator-induced lung injury (VILI), including low tidal volumes (VT) and use of positive end-expiratory pressures (PEEP) are increasingly used in critically ill patients. It is uncertain whether ventilation practices changed in a similar way in burn patients. Our objective was to describe applied ventilator settings and their relation to development of VILI in burn patients. DATA SOURCES Systematic search of the literature in PubMed and EMBASE using MeSH, EMTREE terms and keywords referring to burn or inhalation injury and mechanical ventilation. STUDY SELECTION Studies reporting ventilator settings in adult or pediatric burn or inhalation injury patients receiving mechanical ventilation during the ICU stay. DATA EXTRACTION Two authors independently screened abstracts of identified studies for eligibility and performed data extraction. DATA SYNTHESIS The search identified 35 eligible studies. VT declined from 14 ml/kg in studies performed before to around 8 ml/kg predicted body weight in studies performed after 2006. Low-PEEP levels (<10 cmH2O) were reported in 70% of studies, with no changes over time. Peak inspiratory pressure (PIP) values above 35 cmH2O were frequently reported. Nevertheless, 75% of the studies conducted in the last decade used limited maximum airway pressures (≤35 cmH2O) compared to 45% of studies conducted prior to 2006. Occurrence of barotrauma, reported in 45% of the studies, ranged from 0 to 29%, and was more frequent in patients ventilated with higher compared to lower airway pressures. CONCLUSION This systematic review shows noticeable trends of ventilatory management in burn patients that mirrors those in critically ill non-burn patients. Variability in available ventilator data precluded us from drawing firm conclusions on the association between ventilator settings and the occurrence of VILI in burn patients.
Collapse
Affiliation(s)
- Gerie J Glas
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Anesthesiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands.
| | - Janneke Horn
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Intensive Care, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Sophia M van der Hoeven
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Intensive Care, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Anesthesiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Berry Cleffken
- Department of Intensive Care, Maasstad Hospital, Rotterdam, The Netherlands
| | - Kirsten Colpaert
- Department of Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Anesthesiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Paul Knape
- Department of Intensive Care, Red Cross Hospital, Beverwijk, The Netherlands
| | - Bert G Loef
- Department of Intensive Care, Martini Hospital, Groningen, The Netherlands
| | - David P Mackie
- Department of Intensive Care, Red Cross Hospital, Beverwijk, The Netherlands
| | - Manu Malbrain
- Department of Intensive Care, University Hospital Brussels, Jette, Belgium
| | - Jan Muller
- Department of Intensive Care, University Hospital Gasthuisberg, Leuven, Belgium
| | - Auke C Reidinga
- Department of Intensive Care, Martini Hospital, Groningen, The Netherlands
| | - Benedikt Preckel
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Anesthesiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands; Department of Intensive Care, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abstract
This article summarizes research conducted over the last decade in the field of inhalation injury in thermally injured patients. This includes brief summaries of the findings of the 2006 State of the Science meeting with regard to inhalation injury, and of the subsequent 2007 Inhalation Injury Consensus Conference. The reviewed studies are categorized in to five general areas: diagnosis and grading; mechanical ventilation; systemic and inhalation therapy; mechanistic alterations; and outcomes.
Collapse
|
5
|
Invasive Mechanical Ventilation and Mortality in Pediatric Hematopoietic Stem Cell Transplantation: A Multicenter Study. Pediatr Crit Care Med 2016; 17:294-302. [PMID: 26910477 DOI: 10.1097/pcc.0000000000000673] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To establish the current respiratory practice patterns in pediatric hematopoietic stem cell transplant patients and investigate their associations with mortality across multiple centers. DESIGN Retrospective cohort between 2009 and 2014. SETTING Twelve children's hospitals in the United States. PATIENTS Two hundred twenty-two pediatric allogeneic hematopoietic stem cell transplant recipients with acute respiratory failure using invasive mechanical ventilation. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS PICU mortality of our cohort was 60.4%. Mortality at 180 days post PICU discharge was 74%. Length of PICU stay prior to initiation of invasive mechanical ventilation was significantly lower in survivors, and the odds of mortality increased for longer length of PICU stay prior to intubation. A total of 91 patients (41%) received noninvasive ventilation at some point during their PICU stay prior to intubation. Noninvasive ventilation use preintubation was associated with increased mortality (odds ratio, 2.1; 95% CI, 1.2-3.6; p = 0.010). Patients ventilated longer than 15 days had higher odds of death (odds ratio, 2.4; 95% CI, 1.3-4.2; p = 0.004). Almost 40% of patients (n = 85) were placed on high-frequency oscillatory ventilation with a mortality of 76.5% (odds ratio, 3.3; 95% CI, 1.7-6.5; p = 0.0004). Of the 20 patients who survived high-frequency oscillatory ventilation, 18 were placed on high-frequency oscillatory ventilation no later than the third day of invasive mechanical ventilation. In this subset of 85 patients, transition to high-frequency oscillatory ventilation within 2 days of the start of invasive mechanical ventilation resulted in a 76% decrease in the odds of death compared with those who transitioned to high-frequency oscillatory ventilation later in the invasive mechanical ventilation course. CONCLUSIONS This study suggests that perhaps earlier more aggressive critical care interventions in the pediatric hematopoietic stem cell transplant patient with respiratory failure requiring invasive mechanical ventilation may offer an opportunity to improve outcomes.
Collapse
|
6
|
Abstract
The diverse medical disciplines that are involved in the care of burn patients is reflected in the robust and varied scientific and clinical research of burn injury. In the calendar year of 2013, over 1000 articles were published in peer-reviewed journals in the area of burn injury. This review summarizes select, interesting, and potentially influential articles in areas of critical care, epidemiology, infection, inhalation injury, nutrition and metabolism, pain and pruritus, psychology, reconstruction and rehabilitation, and wounds.
Collapse
|