1
|
Kennedy DG, O’Mahony AM, Culligan EP, O’Driscoll CM, Ryan KB. Strategies to Mitigate and Treat Orthopaedic Device-Associated Infections. Antibiotics (Basel) 2022; 11:1822. [PMID: 36551479 PMCID: PMC9774155 DOI: 10.3390/antibiotics11121822] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic device implants play a crucial role in restoring functionality to patients suffering from debilitating musculoskeletal diseases or to those who have experienced traumatic injury. However, the surgical implantation of these devices carries a risk of infection, which represents a significant burden for patients and healthcare providers. This review delineates the pathogenesis of orthopaedic implant infections and the challenges that arise due to biofilm formation and the implications for treatment. It focuses on research advancements in the development of next-generation orthopaedic medical devices to mitigate against implant-related infections. Key considerations impacting the development of devices, which must often perform multiple biological and mechanical roles, are delineated. We review technologies designed to exert spatial and temporal control over antimicrobial presentation and the use of antimicrobial surfaces with intrinsic antibacterial activity. A range of measures to control bio-interfacial interactions including approaches that modify implant surface chemistry or topography to reduce the capacity of bacteria to colonise the surface, form biofilms and cause infections at the device interface and surrounding tissues are also reviewed.
Collapse
Affiliation(s)
- Darragh G. Kennedy
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Eamonn P. Culligan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | | | - Katie B. Ryan
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
2
|
Tafur D, Cabrera DA, Salavarrieta J, Olarte CM, Pesántez RF. Alternative Fixation in Osteoporotic Fractures. CURRENT GERIATRICS REPORTS 2017. [DOI: 10.1007/s13670-017-0211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Abstract
The effective management of articular impacted fractures requires the successful elevation of the osteochondral fragment to eliminate joint incongruency and the stable fixation of the fragments providing structural support to the articular surface.The anatomical restoration of the joint can be performed either with elevation through a cortical window, through balloon-guided osteoplasty or direct visualisation of the articular surface.Structural support of the void created in the subchondral area can be achieved through the use of bone graft materials (autologous tricortical bone), or synthetic bone graft substitutes.In the present study, we describe the available techniques and materials that can be used in treating impacted osteochondral fragments with special consideration of their epidemiology and treatment options. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160072. Originally published online at www.efortopenreviews.org.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK
| | - Peter V. Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, and NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, LS7 4SA Leeds, West Yorkshire, Leeds, UK
| |
Collapse
|
4
|
Van Lieshout EMM, Alt V. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence? Injury 2016; 47 Suppl 1:S43-6. [PMID: 26768291 DOI: 10.1016/s0020-1383(16)30011-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substitutes are often used for stabilizing the implant and for providing a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials are available. Products generally contain hydroxyapatite, tricalcium phosphate, dicalcium phosphate, calcium phosphate cement, calcium sulfate (plaster of Paris), or combinations of the above. Products have been used for the treatment of osteoporotic fractures of the proximal humerus, distal radius, vertebra, hip, and tibia plateau. Although there is generally consensus that screw augmentation increased the biomechanical properties and implant stability, the results of using these products for void filling are not unequivocal. In osteoporotic patients, Bone Morphogenetic Proteins (BMPs) have the potential impact to improve fracture healing by augmenting the impaired molecular and cellular mechanisms. However, the clinical evidence on the use of BMPs in patients with osteoporotic fractures is poor as there are no published clinical trials, case series or case studies. Even pre-clinical literature on in vitro and in vivo data is weak as most articles focus on the beneficial role for BMPs for restoration of the underlying pathophysiological factors of osteoporosis but do not look at the specific effects on osteoporotic fracture healing. Limited data on animal experiments suggest stimulation of fracture healing in ovariectomized rats by the use of BMPs. In conclusion, there is only limited data on the clinical relevance and optimal indications for the use of bone graft substitute materials and BMPs on the treatment of osteoporotic fractures despite the clinical benefits of these materials in other clinical indications. Given the general compromised outcome in osteoporotic fractures and limited alternatives for enhancement of fracture healing, clinicians and researchers should focus on this important topic and provide more data in this field in order to enable a sound clinical use of these materials in osteoporotic fractures.
Collapse
Affiliation(s)
- Esther M M Van Lieshout
- Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Volker Alt
- Department of Trauma, Hand and Reconstructive Surgery Giessen University Hospital Giessen-Marburg, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany.
| |
Collapse
|
5
|
Baker KC, Maerz T, Saad H, Shaheen P, Kannan RM. In vivo bone formation by and inflammatory response to resorbable polymer-nanoclay constructs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015. [PMID: 26220733 DOI: 10.1016/j.nano.2015.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Tosounidis TH, Castillo R, Kanakaris NK, Giannoudis PV. Common complications in hip fracture surgery: Tips/tricks and solutions to avoid them. Injury 2015; 46 Suppl 5:S3-11. [PMID: 26298022 DOI: 10.1016/j.injury.2015.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Surgical management of hip fractures in elderly people is challenging and complications relating to surgery could be devastating. They often lead to reoperation and revision surgery and can be associated with significantly increased morbidity and mortality. The most common surgical complications after internal fixation of hip fractures include cut-out, nonunion, Z-effect/medial migration, periimplant failure and avascular necrosis. High quality surgical fixation is of outmost importance to avoid surgical complications. This article presents the aetiology, risk factors and incidence of perioperative and post-fracture fixation complications. Technical tips and tricks for a successful fixation as well as the contemporary evidence surrounding the augmentation of osteoporotic bone fixation in internal fixation of hip fractures are discussed.
Collapse
Affiliation(s)
- Theodoros H Tosounidis
- Academic Department of Trauma & Orthopaedic Surgery, University of Leeds, Clarendon Wing, Floor A, Great George Street, Leeds General Infirmary, LS1 3EX Leeds, UK; NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, Leeds, West Yorkshire, Leeds LS7 4SA, UK
| | - Raul Castillo
- Academic Department of Trauma & Orthopaedic Surgery, University of Leeds, Clarendon Wing, Floor A, Great George Street, Leeds General Infirmary, LS1 3EX Leeds, UK
| | - Nikolaos K Kanakaris
- Academic Department of Trauma & Orthopaedic Surgery, University of Leeds, Clarendon Wing, Floor A, Great George Street, Leeds General Infirmary, LS1 3EX Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedic Surgery, University of Leeds, Clarendon Wing, Floor A, Great George Street, Leeds General Infirmary, LS1 3EX Leeds, UK; NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, Leeds, West Yorkshire, Leeds LS7 4SA, UK.
| |
Collapse
|
7
|
Kim MS, Kovacevic D, Milks RA, Jun BJ, Rodriguez E, DeLozier KR, Derwin KA, Iannotti JP. Bone Graft Substitute Provides Metaphyseal Fixation for a Stemless Humeral Implant. Orthopedics 2015; 38:e597-603. [PMID: 26186322 DOI: 10.3928/01477447-20150701-58] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023]
Abstract
Stemless humeral fixation has become an alternative to traditional total shoulder arthroplasty, but metaphyseal fixation may be compromised by the quality of the trabecular bone that diminishes with age and disease, and augmentation of the fixation may be desirable. The authors hypothesized that a bone graft substitute (BGS) could achieve initial fixation comparable to polymethylmethacrylate (PMMA) bone cement. Fifteen fresh-frozen human male humerii were randomly implanted using a stemless humeral prosthesis, and metaphyseal fixation was augmented with either high-viscosity PMMA bone cement (PMMA group) or a magnesium-based injectable BGS (OsteoCrete; Bone Solutions Inc, Dallas, Texas) (OC group). Both groups were compared with a control group with no augmentation. Initial stiffness, failure load, failure displacement, failure cycle, and total work were compared among groups. The PMMA and OC groups showed markedly higher failure loads, failure displacements, and failure cycles than the control group (P<.01). There were no statistically significant differences in initial stiffness, failure load, failure displacement, failure cycle, or total work between the PMMA and OC groups. The biomechanical properties of magnesium-based BGS fixation compared favorably with PMMA bone cement in the fixation of stemless humeral prostheses and may provide sufficient initial fixation for this clinical application. Future work will investigate the long-term remodeling characteristics and bone quality at the prosthetic-bone interface in an in vivo model to evaluate the clinical efficacy of this approach.
Collapse
|
8
|
Nguyen DT, Burg KJL. Bone tissue engineering and regenerative medicine: targeting pathological fractures. J Biomed Mater Res A 2014; 103:420-9. [PMID: 24677448 DOI: 10.1002/jbm.a.35139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022]
Abstract
Patients with bone diseases have the highest risk of sustaining fractures and of suffering from nonunion bone healing due to tissue degeneration. Current fracture management strategies are limited in design and functionality and do not effectively promote bone healing within a diseased bone environment. Fracture management approaches include pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and nonunions. To target fragility fractures, fracture management strategies should include bioactive bone substitutes designed for the pathological environment. However, the clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating the physiological in vitro bone environment to predict clinical effectiveness of the engineered bone. An in vitro test system can facilitate reduction of implant failures and non-unions in fragility fractures.
Collapse
Affiliation(s)
- Duong T Nguyen
- Department of Bioengineering and Institute for Biological Interfaces of Engineering, Clemson University, Clemson, South Carolina
| | | |
Collapse
|
9
|
Abstract
Healing fractures resulting from osteoporosis or cancer remains a significant clinical challenge. In these populations, healing is often impaired not only due to age and disease, but also by other therapeutic interventions such as radiation, steroids, and chemotherapy. Despite substantial improvements in the treatment of osteoporosis over the last few decades, osteoporotic fractures are still a major clinical challenge in the elderly population due to impaired healing. Similar fractures with impaired healing are also prevalent in cancer patients, especially those with tumor growing in bone. Treatment options for cancer patients are further complicated by the fact that bone anabolic therapies are contraindicated in patients with tumors. Therefore, many patients undergo surgery to repair the fracture, and bone grafts are often used to stabilize orthopedic implants and provide a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials have been investigated as bone grafts for repair of osteoporotic fractures, including calcium phosphate bone cements, resorbable polymers, and allograft or autograft bone. In order to re-establish normal bone repair, bone grafts have been augmented with anabolic agents, such as mesenchymal stem cells or recombinant human bone morphogenetic protein-2. These developing approaches to bone grafting are anticipated to improve the clinical management of osteoporotic and cancer-induced fractures.
Collapse
Affiliation(s)
- Julie A Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, USA,
| | | |
Collapse
|
10
|
Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J Funct Biomater 2012; 3:382-97. [PMID: 24955539 PMCID: PMC4047943 DOI: 10.3390/jfb3020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/27/2012] [Accepted: 05/17/2012] [Indexed: 11/28/2022] Open
Abstract
Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), β-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45S®, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.
Collapse
|
11
|
Mechanical characterization of bone graft substitute ceramic cements. Injury 2012; 43:266-71. [PMID: 21371707 DOI: 10.1016/j.injury.2011.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/07/2011] [Accepted: 02/08/2011] [Indexed: 02/02/2023]
Abstract
The aim of this laboratory work was to study the compressive and flexural characteristics of various commercially available bone graft substitute (BGS) ceramic cements, in their initial as-mixed condition, and compare them to polymethylmethacrylate (PMMA). The tested biomaterials were two different calcium phosphate cements, two different calcium sulphate cements, one nanocrystalline hydroxyapatite and one PMMA cement. All biomaterials were prepared according to manufacturers instructions and the methodology described in ISO 5833 (2002) for acrylic bone cement was followed, as the one closest approaching in vivo requirements. All BGS cements had a brittle behaviour and when subjected to mechanical stress they all failed under sudden crack propagations in their bulk. Both in compression and bending, all BGS cements failed under loads lower than those of PMMA. In compression, the calcium sulphate extra strength cement showed a strength value of approximately 60% of PMMA, the other cements following at a distance. In bending, all BGS cements showed strengths below 22% of PMMA. However, due to limited number and fragility of specimens, calculated bending strengths can only be considered as indicative figures with limited comparative value. The results of this in vitro study showed a varying mechanical performance between tested BGS ceramic cements, whilst all of them exhibited lower compression and bending strength than the selected PMMA. These findings, of course, cannot be directly extrapolated to surgical or clinical implications, since the adopted in vitro context does not necessarily reflect the actual in vivo conditions met by such biomaterials.
Collapse
|
12
|
Baker KC, Manitiu M, Bellair R, Gratopp CA, Herkowitz HN, Kannan RM. Supercritical carbon dioxide processed resorbable polymer nanocomposite bone graft substitutes. Acta Biomater 2011; 7:3382-9. [PMID: 21640204 DOI: 10.1016/j.actbio.2011.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 11/25/2022]
Abstract
The development of synthetic bone graft substitutes is an intense area of research due to the complications associated with the harvest of autogenous bone and concerns about the supply of allogenic bone. Porous resorbable polymers have been used extensively in hard tissue engineering applications, but currently lack load-bearing capacity. Supercritical carbon dioxide (scCO(2)) processing is used as a novel method to simultaneously impart a porous structure and disperse a nano-clay in a resorbable polymer matrix suitable for load-bearing applications. Porous resorbable polylactic acid (PLA)/cloisite clay nanocomposite constructs prepared using scCO(2) processing exhibit a 2.5-fold increase in compressive strength compared with pure polymer constructs. The resulting mechanical properties are comparable with human cancellous and cortico-cancellous bone. In addition to the significant improvements in mechanical properties, the nanocomposite constructs display a biocompatibility greater than that of polystyrene culture plate controls. Furthermore, calcium phosphate-rich deposits could clearly be seen on the surface of the constructs, as well as at the center of the cultured constructs, indicating that osteoblasts are able to penetrate the porous network of the nanocomposite constructs. Cellular infiltration of these constructs is important for their in vivo use as bone graft substitutes. The diameter of the pores suggests that these constructs would also support neovascularization, which is integral for nutrient transport.
Collapse
|
13
|
Kim JK, Koh YD, Kook SH. Effect of calcium phosphate bone cement augmentation on volar plate fixation of unstable distal radial fractures in the elderly. J Bone Joint Surg Am 2011; 93:609-14. [PMID: 21471414 DOI: 10.2106/jbjs.j.00613] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Calcium phosphate bone cement increases the stability of implant-bone constructs in patients with an osteoporotic fracture. The purpose of this randomized study was to determine whether augmentation of volar locking plate fixation with calcium phosphate bone cement has any benefit over volar locking plate fixation alone in patients older than sixty-five years of age who have an unstable distal radial fracture. METHODS Forty-eight patients (fifty unstable distal radial fractures) were recruited for this study. The mean patient age was seventy-three years. Surgical procedures were randomized between volar locking plate fixation alone (Group 1) and volar locking plate fixation with injection of calcium phosphate bone cement (Group 2). The patients were assessed clinically at three and twelve months postoperatively. Clinical assessments included determinations of grip strength, wrist motion, wrist pain, modified Mayo wrist scores, and Disabilities of the Arm, Shoulder and Hand (DASH) scores. Radiographic evaluations were performed immediately postoperatively and at one year following surgery. The adequacy of the reduction was assessed by measuring radial inclination, volar angulation, and ulnar variance. RESULTS The two groups were comparable with regard to age, sex, fracture type, injury mechanism, and bone mineral density. No significant differences were observed between the groups with regard to the clinical outcomes at the three or twelve-month follow-up examination. No significant intergroup differences in radiographic outcomes were observed immediately after surgery or at the one-year follow-up visit. Furthermore, no complication-related differences were observed, and there were no nonunions. CONCLUSIONS Augmentation of metaphyseal defects with calcium phosphate bone cement after volar locking plate fixation offered no benefit over volar locking plate fixation alone in elderly patients with an unstable distal radial fracture.
Collapse
Affiliation(s)
- Jae Kwang Kim
- Department of Orthopedic Surgery, School of Medicine, Ewha Womans University, Seoul, South Korea.
| | | | | |
Collapse
|