1
|
Li F, Cao Z, Li K, Huang K, Yang C, Li Y, Zheng C, Ye Y, Zhou T, Peng H, Liu J, Wang C, Xie K, Tang Y, Wang L. Cryogenic 3D Printing of ß-TCP/PLGA Composite Scaffolds Incorporated With BpV (Pic) for Treating Early Avascular Necrosis of Femoral Head. Front Bioeng Biotechnol 2022; 9:748151. [PMID: 35118053 PMCID: PMC8804314 DOI: 10.3389/fbioe.2021.748151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023] Open
Abstract
Avascular necrosis of femoral head (ANFH) is a disease that is characterized by structural changes and collapse of the femoral head. The exact causes of ANFH are not yet clear, but small advances in etiopathogenesis, diagnosis and treatment are achieved. In this study, ß-tricalcium phosphate/poly lactic-co-glycolic acid composite scaffolds incorporated with bisperoxovanadium [bpV (pic)] (bPTCP) was fabricated through cryogenic 3D printing and were utilized to treat rat models with early ANFH, which were constructed by alcohol gavage for 6 months. The physical properties of bPTCP scaffolds and in vitro bpV (pic) release from the scaffolds were assessed. It was found that the sustained release of bpV (pic) promoted osteogenic differentiation and inhibited adipose differentiation of bone marrow-derived mesenchymal stem cells. Micro-computed tomography scanning and histological analysis confirmed that the progression of ANFH in rats was notably alleviated in bPTCP scaffolds. Moreover, it was noted that the bPTCP scaffolds inhibited phosphatase and tensin homolog and activated the mechanistic target of rapamycin signaling. The autophagy induced by bPTCP scaffolds could partially prevent apoptosis, promote osteogenesis and angiogenesis, and hence eventually prevent the progression of ANFH, suggesting that the bPTCP scaffold are promising candidate to treat ANFH.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Zhifu Cao
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Kai Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ke Huang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ye Li
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Chuanchuan Zheng
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
| | - Yulu Ye
- Youjiang Medical University for Nationalities, Baise, China
| | - Tingjie Zhou
- Youjiang Medical University for Nationalities, Baise, China
| | - Haoqiang Peng
- Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Baise, China
- Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, China
- *Correspondence: Jia Liu, ; Chong Wang, ; Yujin Tang,
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jia Liu, ; Chong Wang, ; Yujin Tang,
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Youjiang Medical University for Nationalities, Baise, China
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Baise, China
- Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, China
- *Correspondence: Jia Liu, ; Chong Wang, ; Yujin Tang,
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Wang ZL, He RZ, Tu B, He JS, Cao X, Xia HS, Ba HL, Wu S, Peng C, Xiong K. Drilling Combined with Adipose-derived Stem Cells and Bone Morphogenetic Protein-2 to Treat Femoral Head Epiphyseal Necrosis in Juvenile Rabbits. Curr Med Sci 2018; 38:277-288. [PMID: 30074186 DOI: 10.1007/s11596-018-1876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/24/2017] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the effects of drilling through the growth plate and using adipose-derived stem cells (ADSCs) and bone morphogenetic protein-2 (BMP-2) to treat femoral head epiphyseal ischemic necrosis, which can be done in juvenile rabbits. Passagefour bromodeoxyuridine (BrdU)-labeled ADSCs were cultured, assayed with MTT to determine their viability and stained with alizarin red dye to determine their osteogenic ability. Two-month-old, healthy male rabbits (1.2 to 1.4 kg, n=45) underwent ischemic induction and were randomly divided into five groups (group A: animal model control; group B: drilling; group C: drilling & ADSCs; group D: drilling & BMP-2; and group E: drilling & ADSCs & BMP-2). Magnetic resonance imaging (MRI), X-ray imaging, hematoxylin and eosin staining and BrdU immunofluorescence detection were applied 4, 6 and 10 weeks after treatment. Approximately 90% of the ADSCs were labeled with BrdU and showed good viability and osteogenic ability. Similar results were observed in the rabbits in groups C and E at weeks 6 and 10. The animals of groups C and E demonstrated normal hip structure and improved femoral epiphyseal quotients and trabecular areas compared with those of the groups A and B (P<0.01). Group D demonstrated improved femoral epiphyseal quotients and trabecular areas compared with those of groups A and B (P<0.05). In summary, drilling through the growth plate combined with ADSC and BMP-2 treatments induced new bone formation and protected the femoral head epiphysis from collapsing in a juvenile rabbit model of femoral head epiphyseal ischemic necrosis.
Collapse
Affiliation(s)
- Zi-Li Wang
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Rong-Zhen He
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Bin Tu
- Department of Orthopaedics, Leping City People's Hospital, Leping, 333399, China
| | - Jin-Shen He
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Han-Song Xia
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hong-Liang Ba
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Song Wu
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Cheng Peng
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Li D, Yang Z, Wei Z, Kang P. Efficacy of bisphosphonates in the treatment of femoral head osteonecrosis: A PRISMA-compliant meta-analysis of animal studies and clinical trials. Sci Rep 2018; 8:1450. [PMID: 29362430 PMCID: PMC5780480 DOI: 10.1038/s41598-018-19884-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine whether bisphosphonates exert an effect on preventing femoral head collapse after osteonecrosis of the femoral head (ONFH) in an animal model and in clinical trials. A systematic literature search was performed for studies published up to January 2017. Twenty-three articles (16 animal studies, seven clinical trials) were included in the meta-analysis. We found that the bisphosphonate group obtained significant improvement in epiphyseal quotients (MD = 15.32; 95% CI, 9.25-21.39) and provided better performance on bone volume (SMD = 1.57; 95% CI, 0.94-2.20), trabecular number (SMD = 1.30; 95% CI, 0.80-1.79), trabecular thickness (SMD = 0.77; 95% CI, 0.10-1.43) and trabecular separation (SMD = -1.44; 95% CI, -1.70 to -0.58) in the animal model. However, the bisphosphonate group did not achieve better results in pain score, Harris score, the occurrence rate of femoral head collapse, or total hip arthroplasty in the clinical trials. In conclusion, despite bisphosphonates significantly improving bone remodeling outcomes in animal models, no significant efficacy was observed in the treatment of ONFH in the clinical studies. Further studies are required to solve the discordant outcomes between the animal and clinical studies.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Zhun Wei
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|