1
|
Yeshna, Singh M, Monika, Kumar A, Garg V, Jhawat V. Pathophysiology and emerging therapeutic strategies for cervical spondylosis: The role of pro-inflammatory mediators, kinase inhibitors, and Organogel based drug delivery systems. Int Immunopharmacol 2025; 151:114350. [PMID: 40010157 DOI: 10.1016/j.intimp.2025.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Cervical spondylosis is a prevalent ailment characterized by chronic wear and degenerative changes affecting the cervical spine, leading to various clinical syndromes such as axial neck pain, cervical myelopathy, and cervical radiculopathy. The pathophysiology of the development of cervical alterations is multifaceted, with alterations in the normal physiology and pathogenesis of intervertebral disc degeneration. The involvement of pro-inflammatory mediators, such as interleukin-1, tumor necrosis factor-α, interleukin-4, interleukin-6, and interleukin-10, in the pathological processes associated with intervertebral disc degeneration offers potential therapeutic targets. The review also introduces kinase inhibitors as potential treatments for cervical spondylosis. Protein kinase inhibitors, including mitogen-activated protein kinase (MAPK), Janus kinase (JAK), and spleen tyrosine kinase (SYK), are explored for their anti-inflammatory properties. The article discusses their potential in modulating inflammatory signaling cascades and presents them as attractive candidates for treating immune-mediated disorders. Inhibitors of Nuclear Factor-κB, p38 MAPK, Jun-N terminal kinase (JNK), and Extracellular signal-regulated kinase (ERK) have shown efficacy in suppressing inflammatory responses, offering potential avenues for intervention in this prevalent condition. Organogels are semi-solid materials formed by trapping an organic solvent within a three-dimensional cross-linked network. They hold considerable potential in drug delivery, especially in enhancing drug solubility, facilitating controlled release, and improving skin penetration. These properties of organogels can help treat or alleviate the symptoms of cervical spondylosis.
Collapse
Affiliation(s)
- Yeshna
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Singh
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Ashok Kumar
- Faculty of Pharmacy, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Vandana Garg
- Department of Pharmaceutical Science, MD University, Rohtak, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| |
Collapse
|
2
|
Tuncer C, Eminoğlu EM, Yağlı ÖE, Baş G, Topal AS, Onur E, Özdemir H, Yılmaz ŞG, Ovalı GY, Temiz C. The Relationship Between ADAMTS-4 and ADAMTS-5 Enzyme Levels in Patients With Degenerative Disc Disease: A Prospective Biochemical Study. JOR Spine 2025; 8:e70037. [PMID: 39781089 PMCID: PMC11707618 DOI: 10.1002/jsp2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Study Design Prospective biochemical study of comparison of A Disintegrin and Metalloproteinase with Thrombospondin motifs-4 (ADAMTS-4) and A Disintegrin and Metalloproteinase with Thrombospondin motifs 5 (ADAMTS5) levels in preoperative and postoperative venous blood, as well as in disc tissue obtained during surgery, in patients undergoing surgery for intervertebral disc disease, with enzyme levels in venous blood from a control group. Objective To compare the levels of ADAMTS-4 and ADAMTS-5 between patients with degenerative intervertebral discs and a healthy control group, aiming to identify biomarkers associated with intervertebral disc degeneration. Literature Although numerous studies have investigated the relationship between ADAMTS-4 and ADAMTS-5 enzymes and degeneration in experimental rat models and human tissues, no study has correlated their serum levels with intervertebral disc degeneration. Method and Materials Venous blood samples were obtained preoperatively and postoperatively from 41 patients (age: 42 ± 9.7 years, range 20-63) diagnosed with intervertebral disc disease. The affected disc levels were L4-L5 in 22 patients and L5-S1 in 19 patients. These patients were selected based on surgical indications due to radicular pain that persisted after an adequate course of conservative management, without any non-neurological deficit. Disc tissue samples were also obtained during surgery. Additionally, venous blood samples were collected from a control group with no diagnosed diseases, and lumbar MRIs of the control group showed no significant signs of degeneration. ADAMTS-4 and ADAMTS-5 levels were measured using the ELISA method on samples obtained after centrifugation of the collected blood and tissue specimens. Results The level of ADAMTS-4 in patient serum was found to be lower compared to the control group, while the level of ADAMTS-5 was higher in the patient serum and lower in the control group. Conclusion Elevated levels of ADAMTS-5 in the blood may be associated with intervertebral disc degeneration.
Collapse
Affiliation(s)
- Cansu Tuncer
- Department of Neurosurgery, Sorgun State HospitalYozgatTurkey
| | - Emin Mehmet Eminoğlu
- Department of NeurosurgeryCelal Bayar University, Faculty of MedicineManisaTurkey
| | - Ömer Emre Yağlı
- Department of Neurosurgery, Grandmedical HospitalManisaTurkey
| | - Gülçin Baş
- Department of Neurosurgeryİstanbul University‐Cerrahpaşa Cerrahpaşa Faculty of MedicineİstanbulTurkey
| | | | - Ece Onur
- Department of Medical BiochemistryCelal Bayar University, Faculty of MedicineManisaTurkey
| | - Habib Özdemir
- Department of Medical BiochemistryCelal Bayar University, Faculty of MedicineManisaTurkey
| | - Şemsi Güliz Yılmaz
- Department of RadiologyCelal Bayar University, Faculty of MedicineManisaTurkey
| | - Gülgün Yılmaz Ovalı
- Department of RadiologyCelal Bayar University, Faculty of MedicineManisaTurkey
| | - Cüneyt Temiz
- Department of NeurosurgeryCelal Bayar University, Faculty of MedicineManisaTurkey
| |
Collapse
|
3
|
Ma Y, Yu X, Li W, Guan J, Qiu Z, Xu L, Feng N, Jiang G, Yue X. Animal Models of Internal Endplate Injury-Induced Intervertebral Disc Degeneration: A Systematic Review. J INVEST SURG 2024; 37:2400478. [PMID: 39255967 DOI: 10.1080/08941939.2024.2400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To systematically review relevant animal models of disk degeneration induced through the endplate injury pathway and to provide suitable animal models for exploring the intrinsic mechanisms and treatment of disk degeneration. DESIGN PubMed, Web of Science, Cochrane and other databases were searched for literature related to animal models of disk degeneration induced by the endplate injury pathway from establishment to August 2024, and key contents in the literature were screened and extracted to analyze and evaluate each type of animal model using the literature induction method. RESULTS Fifteen animal experimental studies were finally included in the literature, which can be categorized into direct injury models and indirect injury models, of which direct injury models include transvertebral injury models and transpedicular approach injury models, and indirect injury models include endplate ischemia models and vertebral fracture-induced endplate injury models. The direct injury models have a minimum observation period of 2 months and a maximum of 32 wk. All direct injury models were successful in causing disk degeneration, and the greater the number of interventions, the greater the degree of disk degeneration caused. The observation period for the indirect injury models varied from 4 wk to 70 wk. Of the 9 studies, only one study was unsuccessful in inducing disk degeneration, and this was the first animal study in this research to attempt to intervene on the endplate to cause disk degeneration. CONCLUSION The damage to the direct injury model is more immediate and controllable in extent and can effectively lead to disk degeneration. The indirect injury models do not directly damage the endplate structure, making it easier to observe the physiological and pathological condition of the endplate and associated structures of the disk. None of them can completely simulate the corresponding process of endplate injury-induced disk degeneration in humans, and there is no uniform clinical judgment standard for this type of model. The most appropriate animal model still needs further exploration and discovery.
Collapse
Affiliation(s)
- Yukun Ma
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Li
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jianbin Guan
- Department of Orthopaedic, Xi'an Honghui Hospital, Xi'an, China
| | - Ziye Qiu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Luchun Xu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ningning Feng
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guozheng Jiang
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinliang Yue
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Xia Q, Zhao Y, Dong H, Mao Q, Zhu L, Xia J, Weng Z, Liao W, Hu Z, Yi J, Feng S, Jiang Y, Xin Z. Progress in the study of molecular mechanisms of intervertebral disc degeneration. Biomed Pharmacother 2024; 174:116593. [PMID: 38626521 DOI: 10.1016/j.biopha.2024.116593] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.
Collapse
Affiliation(s)
- Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, Hubei Province 443003, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
5
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
6
|
Zhou Z, Qin W, Zhang P, He J, Cheng Z, Gong Y, Zhu G, Liang D, Ren H, Jiang X, Sun Y. Potential molecular targets and drugs for basement membranes-related intervertebral disk degeneration through bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:772. [PMID: 37784117 PMCID: PMC10544312 DOI: 10.1186/s12891-023-06891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Through bioinformatics analysis to identify the hub genes of Intervertebral disc degeneration (IVDD) associated with basement membranes (BMs) and find out the potential molecular targets and drugs for BMs-related annulus fibrosus (AF) degeneration based on bioinformatic analysis and molecular approach. METHODS Intervertebral disc degeneration (IVDD) related targets were obtained from GeneCards, DisGenet and OMIM databases. BMs related genes were obtained from Basement membraneBASE database. The intersection targets were identified and subjected to protein-to-protein interaction (PPI) construction via STRING. Hub genes were identified and conducted Gene ontology (GO) and pathway enrichment analysis through MCODE and Clue GO in Cytospace respectively. DSigDB database was retrieved to predict therapeutic drugs and molecular docking was performed through PyMOL, AutoDock 1.5.6 to verify the binding energy between the drug and the different expressed hub genes. Finally, GSE70362 from GEO database was obtained to verify the different expression and correlation of each hub gene for AF degeneration. RESULTS We identified 41 intersection genes between 3 disease targets databases and Basement membraneBASE database. PPI network revealed 25 hub genes and they were mainly enriched in GO terms relating to glycosaminoglycan catabolic process, the TGF-β signaling pathway. 4 core targets were found to be significant via comparison of microarray samples and they showed strong correlation. The molecular docking results showed that the core targets have strong binding energy with predicting drugs including chitosamine and retinoic acid. CONCLUSIONS In this study, we identified hub genes, pathways, potential targets, and drugs for treatment in BMs-related AF degeneration and IVDD.
Collapse
Affiliation(s)
- Zelin Zhou
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Weicheng Qin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Peng Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Jiahui He
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhaojun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yan Gong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Guangye Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yuping Sun
- Pingshan General Hospital, Southern Medical University, Shenzhen, Guangdong, P.R. China.
- Pingshan District People's Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China.
- Rehabilitation Department, Pingshan District People's Hospital, Shenzhen, P.R. China.
| |
Collapse
|
7
|
Zhang C, Joseph KM, Khan NM, Diaz‐Hernandez ME, Drissi H, Illien‐Junger S. PHLPP1 deficiency protects against age-related intervertebral disc degeneration. JOR Spine 2022; 5:e1224. [PMID: 36601379 PMCID: PMC9799085 DOI: 10.1002/jsp2.1224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is strongly associated with low back pain and is highly prevalent in the elderly population. Hallmarks of IVD degeneration include cell loss and extracellular matrix degradation. The PH domain leucine-rich-repeats protein phosphatase (PHLPP1) is highly expressed in diseased cartilaginous tissues where it is linked to extracellular matrix degradation. This study explored the ability of PHLPP1 deficiency to protect against age-related spontaneous IVD degeneration. Methods Lumbar IVDs of global Phlpp1 knockout (KO) and wildtype (WT) mice were collected at 5 months (young) and 20 months (aged). Picrosirius red-alcian blue staining (PR-AB) was performed to examine IVD structure and histological score. The expression of aggrecan, ADAMTS5, KRT19, FOXO1 and FOXO3 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human nucleus pulposus (NP) samples were obtained from patients diagnosed with IVD degeneration. PHLPP1 knockdown in human degenerated NP cells was conducted using small interfering RNA (siRNA) transfection. The expression of PHLPP1 regulated downstream targets was analyzed via immunoblot and real time quantitative PCR. Results Histological analysis showed that Phlpp1 KO decreased the prevalence and severity of age-related IVD degeneration. The deficiency of PHLPP1 promoted the increased expression of NP phenotypic marker KRT19, aggrecan and FOXO1, and decreased levels of ADMATS5 and cell apoptosis in the NP of aged mice. In degenerated human NP cells, PHLPP1 knockdown induced FOXO1 protein levels while FOXO1 inhibition offset the beneficial effects of PHLPP1 knockdown on KRT19 gene and protein expression. Conclusions Our findings indicate that Phlpp1 deficiency protected against NP phenotypic changes, extracellular matrix degradation, and cell apoptosis in the process of IVD degeneration, probably through FOXO1 activation, making PHLPP1 a promising therapeutic target for treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nazir M. Khan
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
8
|
Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1058251. [PMID: 36452213 PMCID: PMC9702580 DOI: 10.3389/fbioe.2022.1058251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most universal pathogenesis of low back pain (LBP), a prevalent and costly medical problem across the world. Persistent low back pain can seriously affect a patient's quality of life and even lead to disability. Furthermore, the corresponding medical expenses create a serious economic burden to both individuals and society. Intervertebral disc degeneration is commonly thought to be related to age, injury, obesity, genetic susceptibility, and other risk factors. Nonetheless, its specific pathological process has not been completely elucidated; the current mainstream view considers that this condition arises from the interaction of multiple mechanisms. With the development of medical concepts and technology, clinicians and scientists tend to intervene in the early or middle stages of intervertebral disc degeneration to avoid further aggravation. However, with the aid of modern delivery systems, it is now possible to intervene in the process of intervertebral disc at the cellular and molecular levels. This review aims to provide an overview of the main mechanisms associated with intervertebral disc degeneration and the delivery systems that can help us to improve the efficacy of intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Cui S, Li W, Teixeira GQ, Neidlinger‐Wilke C, Wilke H, Haglund L, Ouyang H, Richards RG, Grad S, Alini M, Li Z. Neoepitope fragments as biomarkers for different phenotypes of intervertebral disc degeneration. JOR Spine 2022; 5:e1215. [PMID: 36203866 PMCID: PMC9520770 DOI: 10.1002/jsp2.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background During the intervertebral disc (IVD) degeneration process, initial degenerative events occur at the extracellular matrix level, with the appearance of neoepitope peptides formed by the cleavage of aggrecan and collagen. This study aims to elucidate the spatial and temporal alterations of aggrecan and collagen neoepitope level during IVD degeneration. Methods Bovine caudal IVDs were cultured under four different conditions to mimic different degenerative situations. Samples cultured after 1- or 8-days were collected for analysis. Human IVD samples were obtained from patients diagnosed with lumbar disc herniation (LDH) or adolescent idiopathic scoliosis (AIS). After immunohistochemical (IHC) staining of Aggrecanase Cleaved C-terminus Aggrecan Neoepitope (NB100), MMP Cleaved C-terminus Aggrecan Neoepitope (MMPCC), Collagen Type 1α1 1/4 fragment (C1α1) and Collagenase Cleaved Type I and II Collagen Neoepitope (C1,2C), staining optical density (OD)/area in extracellular matrix (OECM) and pericellular zone (OPCZ) were analyzed. Conditioned media of the bovine IVD was collected to measure protein level of inflammatory cytokines and C1,2C. Results For the bovine IVD sections, the aggrecan MMPCC neoepitope was accumulated in nucleus pulposus (NP) and cartilage endplate (EP) regions following mechanical overload in the one strike model after long-term culture; as for the TNF-α induced degeneration, the OECM and OPCZ of collagen C1,2C neoepitope was significantly increased in the outer AF region after long-term culture; moreover, the C1,2C was only detected in conditioned medium from TNF-α injection + Degenerative loading group after 8 days of culture. LDH patients showed higher MMPCC OECM in NP and higher C1,2C OECM in AF region compared with AIS patients. Conclusions In summary, aggrecan and collagen neoepitope profiles showed degeneration induction trigger- and region-specific differences in the IVD organ culture models. Different IVD degeneration types are correlated with specific neoepitope expression profiles. These neoepitopes may be helpful as biomarkers of ECM degradation in early IVD degeneration and indicators of different degeneration phenotypes.
Collapse
Affiliation(s)
- Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Wenyue Li
- AO Research Institute DavosDavosSwitzerland
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHainingChina
| | - Graciosa Q. Teixeira
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm)Ulm UniversityUlmGermany
| | - Cornelia Neidlinger‐Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm)Ulm UniversityUlmGermany
| | - Hans‐Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, Centre for Trauma Research Ulm (ZTF Ulm)Ulm UniversityUlmGermany
| | - Lisbet Haglund
- Department of Surgery and Shriners Hospital for ChildrenMcGill UniversityMontrealCanada
| | - Hongwei Ouyang
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHainingChina
| | - R. Geoff Richards
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | | | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
10
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
11
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
12
|
Impact of Microenvironmental Changes during Degeneration on Intervertebral Disc Progenitor Cells: A Comparison with Mesenchymal Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9040148. [PMID: 35447707 PMCID: PMC9025850 DOI: 10.3390/bioengineering9040148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc (IVD) degeneration occurs with natural ageing and is linked to low back pain, a common disease. As an avascular tissue, the microenvironment inside the IVD is harsh. During degeneration, the condition becomes even more compromised, presenting a significant challenge to the survival and function of the resident cells, as well as to any regeneration attempts using cell implantation. Mesenchymal stem cells (MSCs) have been proposed as a candidate stem cell tool for IVD regeneration. Recently, endogenous IVD progenitor cells have been identified inside the IVD, highlighting their potential for self-repair. IVD progenitor cells have properties similar to MSCs, with minor differences in potency and surface marker expression. Currently, it is unclear how IVD progenitor cells react to microenvironmental factors and in what ways they possibly behave differently to MSCs. Here, we first summarized the microenvironmental factors presented in the IVD and their changes during degeneration. Then, we analyzed the available studies on the responses of IVD progenitor cells and MSCs to these factors, and made comparisons between these two types of cells, when possible, in an attempt to achieve a clear understanding of the characteristics of IVD progenitor cells when compared to MSCs; as well as, to provide possible clues to cell fate after implantation, which may facilitate future manipulation and design of IVD regeneration studies.
Collapse
|
13
|
Huang J, Zhou Q, Ren Q, Luo L, Ji G, Zheng T. Endoplasmic reticulum stress associates with the development of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1094394. [PMID: 36714579 PMCID: PMC9877331 DOI: 10.3389/fendo.2022.1094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important player in various intracellular signaling pathways that regulate cellular functions in many diseases. Intervertebral disc degeneration (IDD), an age-related degenerative disease, is one of the main clinical causes of low back pain. Although the pathological development of IDD is far from being fully elucidated, many studies have been shown that ER stress (ERS) is involved in IDD development and regulates various processes, such as inflammation, cellular senescence and apoptosis, excessive mechanical loading, metabolic disturbances, oxidative stress, calcium homeostasis imbalance, and extracellular matrix (ECM) dysregulation. This review summarizes the formation of ERS and the potential link between ERS and IDD development. ERS can be a promising new therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Liliang Luo
- Department of Orthopedics, Shangyou Hospital of traditional Chinese Medicine, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tiansheng Zheng,
| |
Collapse
|
14
|
The expression of metalloproteinases in the lumbar disc correlates strongly with Pfirrmann MRI grades in lumbar spinal fusion patients. BRAIN AND SPINE 2022; 2:100872. [PMID: 36248158 PMCID: PMC9560696 DOI: 10.1016/j.bas.2022.100872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/07/2023]
Abstract
Introduction Increased catabolism of the extracellular matrix is observed under degenerative disc disease (DDD). The cleavage of extracellular matrix proteins in the nucleus pulposus (NP) by either matrix metalloproteinases (MMPs) or a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs) is believed to be involved in the degeneration, but the mechanisms are not known. Research question Here, we examine the correlation between expression of several MMPs and ADAMTSs subtypes in lumbar discs from 34 patients with low back pain (LBP) undergoing 1-2 level lumbar fusion surgery (L4/L5 and/or L5/S1) for DDD with or without spondylolisthesis. Materials and Methods The mRNA levels of MMPs (subtypes 1, 2, 3, 10, and 13) and ADAMTSs (subtypes 1, 4, and 5) were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR) and correlated to the Pfirrmann magnetic resonance imaging classification system (grade I-V) of lumbar DDD. Results We find a highly significant positive correlation between Pfirrmann grades and the gene expression of MMP1 (r=0.67, p=0.0001), MMP3 (r=0.61, p=0.0002), MMP10 (r=0.6701, p=0.0001), MMP13 (r=0.48, p=0.004), ADAMTS1 (r=0.67, p=0.0001), and ADAMTS5 (r=0.53, p=0.0017). The similar regulation of these transcript suggests their involvement in disc degeneration. Interestingly, a post hoc analysis (uncorrected p-values) also demonstrated a positive correlation between expression of TNF-α, IL-6 and both ADAMTSs/MMPs and the Pfirrmann grades. Discussion and Conclusion These findings show that disc degradation in DDD is strongly associated with the expression of some metalloproteinases. An imbalance between catabolism and anabolism of IVD matrix components. MMPs and ADAMTSs are expressed in the NP, and their expression levels increase with degeneration grade. Our results suggest that inflammatory cytokines participate in the regulation of MMPs and ADAMTSs.
Collapse
|
15
|
Croft AS, Roth Y, Oswald KAC, Ćorluka S, Bermudez-Lekerika P, Gantenbein B. In Situ Cell Signalling of the Hippo-YAP/TAZ Pathway in Reaction to Complex Dynamic Loading in an Intervertebral Disc Organ Culture. Int J Mol Sci 2021; 22:ijms222413641. [PMID: 34948441 PMCID: PMC8707270 DOI: 10.3390/ijms222413641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, a dysregulation of the Hippo-YAP/TAZ pathway has been correlated with intervertebral disc (IVD) degeneration (IDD), as it plays a key role in cell survival, tissue regeneration, and mechanical stress. We aimed to investigate the influence of different mechanical loading regimes, i.e., under compression and torsion, on the induction and progression of IDD and its association with the Hippo-YAP/TAZ pathway. Therefore, bovine IVDs were assigned to one of four different static or complex dynamic loading regimes: (i) static, (ii) "low-stress", (iii) "intermediate-stress", and (iv) "high-stress" regime using a bioreactor. After one week of loading, a significant loss of relative IVD height was observed in the intermediate- and high-stress regimes. Furthermore, the high-stress regime showed a significantly lower cell viability and a significant decrease in glycosaminoglycan content in the tissue. Finally, the mechanosensitive gene CILP was significantly downregulated overall, and the Hippo-pathway gene MST1 was significantly upregulated in the high-stress regime. This study demonstrates that excessive torsion combined with compression leads to key features of IDD. However, the results indicated no clear correlation between the degree of IDD and a subsequent inactivation of the Hippo-YAP/TAZ pathway as a means of regenerating the IVD.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
| | - Ysaline Roth
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
| | - Katharina A. C. Oswald
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Slavko Ćorluka
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (A.S.C.); (Y.R.); (K.A.C.O.); (S.Ć.); (P.B.-L.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-88-15
| |
Collapse
|
16
|
Cui H, Du X, Liu C, Chen S, Cui H, Liu H, Wang J, Zheng Z. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte 2021; 10:201-215. [PMID: 33853482 PMCID: PMC8057091 DOI: 10.1080/21623945.2021.1910155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visfatin reportedly induces the expression of proinflammatory cytokines. Severe grades of intervertebral disc disease (IVDD) exhibit higher expression of visfatin than mild ones. However, the direct relationship between visfatin and IVDD remains to be elucidated. This study aimed to clarify whether stimulation of visfatin in IVDD is mediated by IL-6. To investigate the role of visfatin in IVDD, a rat model of anterior disc puncture was established by injecting visfatin or PBS using a 27-gauge needle. Results revealed an obvious aggravation of the histological morphology of IVDD in the visfatin group. On treating human NP cellswith visfatin, the levels of collagenII and aggrecan decreased and those of matrix metallopeptidase 3 and IL-6 gradually increased. A rapid increase in ERK, JNK, and p38 phosphorylation was also noted after visfatin treatment. Compared to those treated with visfatin alone, NP cells pretreated with ERK1/2, JNK, and p38 inhibitors or siRNA targeting p38, ERK, and JNK exhibited a significant suppression of IL-6. Our data represent the first evidence that visfatin promotes IL-6 expression in NP cells via the JNK/ERK/p38-MAPK signalling pathways. Further, our findings suggest epidural fat and visfatin as potential therapeutic targets for controlling IVDD-associated inflammation.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xianfa Du
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shunlun Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haowen Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Pain Research Center, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
17
|
Che YJ, Hou JJ, Guo JB, Liang T, Zhang W, Lu Y, Yang HL, Hao YF, Luo ZP. Low energy extracorporeal shock wave therapy combined with low tension traction can better reshape the microenvironment in degenerated intervertebral disc regeneration and repair. Spine J 2021; 21:160-177. [PMID: 32800896 DOI: 10.1016/j.spinee.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Low-tension traction is more effective than high-tension traction in restoring the height and rehydration of a degenerated disc and to some extent the bony endplate. This might better reshape the microenvironment for disc regeneration and repair. However, the repair of the combination of endplate sclerosis, osteophyte formation, and even collapse leading to partial or nearly complete occlusion of the nutrient channel is greatly limited. PURPOSE To evaluate the effectiveness of low-intensity extracorporeal shock wave therapy (ESWT) combined with low tension traction for regeneration and repair of moderately and severely degenerated discs; to explore the possible mechanism of action. STUDY DESIGN Animal study of a rat model of degenerated discs. METHODS A total of thirty-five 6-month old male Sprague-Dawley rats were randomly assigned to one of five groups (n=7, each group). In Group A (model group), caudal vertebrae were immobilized using a custom-made external device to fix four caudal vertebrae (Co7-Co10) whereas Co8-Co9 underwent 4 weeks of compression to induce moderate disc degeneration. In Group B (experimental control group), as in Group A, disc degeneration was successfully induced after which the fixed device was removed for 8 weeks of self-recovery. The remaining three groups of rats represented the intervention Groups (C-E): after successful generation of disc degeneration in Group C (com - 4w/tra - 4w) and Group D (com - 4w/ESWT), as described for group A, low-tension traction (in-situ traction) or low-energy ESWT was administered for 4 weeks (ESWT parameters: intensity: 0.15 Mpa; frequency: 1 Hz; impact: 1,000 each time; once/week, 4 times in total); Group E (com - 4w/tra - 4w/ESWT): disc degeneration as described for group A, low-tension traction combined with low-energy ESWT was conducted (ESWT parameters as Group D). After experimentation, caudal vertebrae were harvested and disc height, T2 signal intensity, disc morphology, total glycosaminoglycan (GAG) content, gene expression, structure of the Co8-Co9 bony endplates and elastic moduli of the discs were measured. RESULTS After continuous low-tension traction, low energy ESWT intervention or combined intervention, the degenerated discs effectively recovered their height and became rehydrated. However, the response in Group D was weaker than in the other intervention groups in terms of restoration of intervertebral disc (IVD) height, whereas Group E was superior in disc rehydration. Tissue regeneration was evident in Groups C to E using different interventions. No apparent tissue regeneration was observed in the experimental control group (Group B). The histological scores of the three intervention groups (Groups C-E) were lower than those of Groups A or B (p<.0001), and the scores of Groups C and E were significantly lower than those of Group D (p<.05), but not Group C versus Group E (p>.05). Compared with the intervention groups (Groups C-E), total GAG content of the nucleus pulposus (NP) in Group B did not increase significantly (p>.05). There was also no significant difference in the total GAG content between Groups A and B (p>.05). Of the three intervention groups, the recovery of NP GAG content was greatest in Group E. The expression of collagen I and II, and aggrecan in the annulus fibrosus (AF) was up-regulated (p<.05), whereas the expression of MMP-3, MMP-13, and ADAMTS-4 was down-regulated (p<.05). Of the groups, Group E displayed the greatest degree of regulation. The trend in regulation of gene expression in the NP was essentially consistent with that of the AF, of which Group E was the greatest. In the intervention groups (Groups C-E), compared with Group A, the pore structure of the bony endplate displayed clear changes. The number of pores in the endplate in Groups C to E was significantly higher than in Group A (p<.0001), among which Group C versus Group D (p=.9724), and Group C versus Group E (p=.0116). There was no significant difference between Groups A and B (p=.5261). In addition, the pore diameter also increased, the trend essentially the same as that of pore density. There was no significant difference between the three intervention groups (p=.7213). It is worth noting that, compared with Groups A and B, peripheral pore density and size in Groups D and E of the three intervention groups recovered significantly. The elastic modulus and diameter of collagen fibers in the AF and NP varied with the type of intervention. Low tension traction combined with ESWT resulted in the greatest impact on the diameter and modulus of collagen fibers. CONCLUSIONS Low energy ESWT combined with low tension traction provided a more stable intervertebral environment for the regeneration and repair of moderate and severe degenerative discs. Low energy ESWT promoted the regeneration of disc matrix by reducing MMP-3, MMP-13, and ADAMTS-4 resulting in inhibition of collagen degradation. Although axial traction promoted the recovery of height and rehydration of the IVD, combined with low energy ESWT, the micro-nano structure of the bony endplate underwent positive reconstruction, tension in the annulus of the AF and nuclear stress of the NP declined, and the biomechanical microenvironment required for IVD regeneration and repair was reshaped.
Collapse
Affiliation(s)
- Yan-Jun Che
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China; Department of Orthopedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, People's Republic of China
| | - Jun-Jun Hou
- Department of Geriatrics, Xinghu Hospital, SuZhou industrial park, Suzhou, Jiangsu, People's Republic of China; Department of Endocrinology, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, People's Republic of China
| | - Jiang-Bo Guo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Ting Liang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Wen Zhang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of SooChow University, Suzhou, Jiangsu, People's Republic of China
| | - Hui-Lin Yang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China
| | - Yue Feng Hao
- Orthopedics and Sports medicine center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, Jiangsu, People's Republic of China
| | - Zong-Ping Luo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu 215007, People's Republic of China.
| |
Collapse
|
18
|
Fiani B, Jarrah R, Wong A, Alamah A, Runnels J. Repetitive Traumatic Discopathy in the Modern-Era Tennis Player. Cureus 2020; 12:e9783. [PMID: 32953299 PMCID: PMC7491697 DOI: 10.7759/cureus.9783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease is more prevalent among athletes than the general population. Repetitive traumatic discopathy is a pattern of injury that has been described in athletes participating in sports that impart repetitive mechanical forces on the lumbar spine. Hence, tennis players may be particularly susceptible to repetitive traumatic discopathy due to the fast-paced nature of the modern tennis match. Recent biomechanical studies have identified the lumbar spine as the focal point of motion during tennis strokes, and the lumbar spine is notably the most frequent location of injury observed in tennis players. In this comprehensive review, we examine current evidence and discuss the epidemiology, pathophysiology, biomechanics, diagnosis, and treatment of repetitive traumatic discopathy in tennis players. Additionally, we outline considerations for rehabilitation and return to the tennis court after operative management.
Collapse
|
19
|
Biczo A, Szita J, McCall I, Varga PP, Lazary A. Association of vitamin D receptor gene polymorphisms with disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:596-604. [PMID: 31768839 DOI: 10.1007/s00586-019-06215-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Numerous candidate genes and single-nucleotide polymorphisms (SNPs) have been identified in the background of lumbar disc degeneration (LDD). However, in most of these underpowered studies, definitions of LDD are inconsistent; moreover, many of the findings have not been replicated and are contradictory. Our aim was to characterize LDD by well-defined phenotypes and possible endophenotypes and analyse the association between these and candidate vitamin D receptor (VDR) gene polymorphisms on a large (N = 1426) dataset. METHODS Seven candidate VDR SNPs were genotyped. Individual association, haplotype and gene-gene interaction analyses were performed. All degenerative endophenotypes were significantly associated with one or more candidate VDR gene variants. RESULTS Haplotype analyses confirmed the association between the 3'-end VDR variants (BsmI, ApaI, TaqI) and Modic changes as well as the relationship of 5'-end variants (Cdx2, A1012G) with endplate defects. We also found significant interactions between the 3'- and 5'-end regulatory regions and endplate defects. Based on our results, VDR and its gene variants are highly associated with specific degenerative LDD endophenotypes. CONCLUSION Understanding relationships between phenotype and gene variants is crucial for describing the pathways leading to the multifactorial, polygenic degeneration process and LDD-related conditions. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Adam Biczo
- National Center for Spinal Disorders, Kiralyhago Street 1, Budapest, 1126, Hungary.,Semmelweis University School of Ph.D. Studies, Ulloi Street 26, Budapest, 1086, Hungary
| | - Julia Szita
- National Center for Spinal Disorders, Kiralyhago Street 1, Budapest, 1126, Hungary.,Semmelweis University School of Ph.D. Studies, Ulloi Street 26, Budapest, 1086, Hungary
| | - Iain McCall
- Department of Diagnostic Imaging, The Robert Jones & Agnes Hunt Orthopaedic and District Hospital, Gobowen, Oswestry, SY10 7AG, UK
| | - Peter Pal Varga
- National Center for Spinal Disorders, Kiralyhago Street 1, Budapest, 1126, Hungary
| | | | - Aron Lazary
- National Center for Spinal Disorders, Kiralyhago Street 1, Budapest, 1126, Hungary.
| |
Collapse
|
20
|
Krupkova O, Greutert H, Boos N, Lemcke J, Liebscher T, Wuertz-Kozak K. Expression and activity of hyaluronidases HYAL-1, HYAL-2 and HYAL-3 in the human intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:605-615. [PMID: 31758257 DOI: 10.1007/s00586-019-06227-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Hyaluronic acid plays an essential role in water retention of the intervertebral disc (IVD) and thus provides flexibility and shock absorbance in the spine. Hyaluronic acid gets degraded by hyaluronidases (HYALs), and some of the resulting fragments were previously shown to induce an inflammatory and catabolic response in human IVD cells. However, no data currently exist on the expression and activity of HYALs in IVD health and disease. METHODS Gene expression, protein expression and activity of HYALs were determined in human IVD biopsies with different degrees of degeneration (n = 50 total). Furthermore, freshly isolated human IVD cells (n = 23 total) were stimulated with IL-1β, TNF-α or H2O2, followed by analysis of HYAL-1, HYAL-2 and HYAL-3 gene expression. RESULTS Gene expression of HYAL-1 and protein expression of HYAL-2 significantly increased in moderate/severe disc samples when compared to samples with no or low IVD degeneration. HYAL activity was not significantly increased due to high donor-donor variation, but seemed overall higher in the moderate/severe group. An inflammatory environment, as seen during IVD disease, did not affect HYAL-1, HYAL-2 or HYAL-3 expression, whereas exposure to oxidative stress (100 µM H2O2) upregulated HYAL-2 expression relative to untreated controls. CONCLUSION Although HYAL-1, HYAL-2 and HYAL-3 are all expressed in the IVD, HYAL-2 seems to have the highest pathophysiological relevance. Nonetheless, further studies will be needed to comprehensively elucidate its significance and to determine its potential as a therapeutic target. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093, Zurich, Switzerland
| | - Helen Greutert
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093, Zurich, Switzerland
| | - Norbert Boos
- Prodorso Spine Center, Walchestrasse 15, 8006, Zurich, Switzerland
| | - Johannes Lemcke
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Str. 7, 12683, Berlin, Germany
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Str. 7, 12683, Berlin, Germany
| | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093, Zurich, Switzerland. .,Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 160 Lomb Memorial Drive Bldg. 73, Rochester, NY, 14623, USA. .,Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Harlachinger Str. 51, 81547, Munich, Germany.
| |
Collapse
|
21
|
Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PLoS One 2019; 14:e0222188. [PMID: 31513634 PMCID: PMC6742346 DOI: 10.1371/journal.pone.0222188] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Environmental and endogenous factors under genetic predisposition are considered to initiate the human intervertebral disc (IVD) degeneration. DNA methylation is an essential mechanism to ensure cell-specific gene expression for normal development and tissue stability. Aberrant epigenetic alterations play a pivotal role in several diseases, including osteoarthritis. However, epigenetic alternations, including DNA methylation, in IVD degeneration have not been evaluated. The purpose of this study was to comprehensively compare the genome-wide DNA methylation profiles of human IVD tissues, specifically nucleus pulpous (NP) tissues, with early and advanced stages of disc degeneration. METHODS Human NP tissues were used in this study. The samples were divided into two groups: early stage degeneration (n = 8, Pfirrmann's MRI grade: I-III) and advanced stage degeneration (n = 8, grade: IV). Genomic DNA was processed for genome-wide DNA methylation profiling using the Infinium MethylationEPIC BeadChip array. Extraction of raw methylation data, clustering and scatter plot of each group values of each sample were performed using a methylation module in GenomeStudio software. The identification of differentially methylated loci (DMLs) and the Gene Ontology (GO) analysis were performed using R software with the ChAMP package. RESULTS Unsupervised hierarchical clustering revealed that early and advanced stage degenerated IVD samples segregated into two main clusters by their DNA methylome. A total of 220 DMLs were identified between early and advanced disc degeneration stages. Among these, four loci were hypomethylated and 216 loci were hypermethylated in the advanced disc degeneration stage. The GO enrichment analysis of genes containing DMLs identified two significant GO terms for biological processes, hemophilic cell adhesion and cell-cell adhesion. CONCLUSIONS We conducted a genome-wide DNA methylation profile comparative study and observed significant differences in DNA methylation profiles between early and advanced stages of human IVD degeneration. These results implicate DNA methylation in the process of human IVD degeneration.
Collapse
|
22
|
Zhang K, Xue C, Lu N, Ren P, Peng H, Wang Y, Wang Y. Mechanical loading mediates human nucleus pulposus cell viability and extracellular matrix metabolism by activating of NF-κB. Exp Ther Med 2019; 18:1587-1594. [PMID: 31410113 PMCID: PMC6676187 DOI: 10.3892/etm.2019.7744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lower back pain is one of the most frequent complaints in US orthopedic outpatient departments. Intervertebral disc degeneration (IDD) is an important cause of lower back pain. Previous studies have found that mechanical loading was associated with IDD, but the underlying mechanism remains unclear. In the present study, a human nucleus pulposus cell line was used to establish an in vitro mechanical loading model. Mechanical loading, western blot analysis, quantitative PCR, ELISA, cell viability assay and IHC staining were used in the current study. It was found that a short loading time of 4 h followed by a long period of rest (20 h) exerted protective effects against matrix degradation in nucleus pulposus cells, whilst a longer loading time of 20 h followed by a shorter period of rest (4 h) resulted in cell apoptosis and extracellular matrix (ECM) degradation. Excessive mechanical loading may induce ECM degradation by activation of the NF-κB signaling pathway. Taken together, these findings demonstrated that whilst moderate mechanical loading exerted beneficial effects on nucleus pulposus cells, excessive mechanical loading inhibited human nucleus pulposus cell viability and promoted ECM degradation by activating NF-κB.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Chao Xue
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Ning Lu
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Peng Ren
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Haiwen Peng
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Yao Wang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Yan Wang
- Department of Orthopedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| |
Collapse
|
23
|
Krock E, Millecamps M, Anderson KM, Srivastava A, Reihsen TE, Hari P, Sun YR, Jang SH, Wilcox GL, Belani KG, Beebe DS, Ouellet J, Pinto MR, Kehl LJ, Haglund L, Stone LS. Interleukin-8 as a therapeutic target for chronic low back pain: Upregulation in human cerebrospinal fluid and pre-clinical validation with chronic reparixin in the SPARC-null mouse model. EBioMedicine 2019; 43:487-500. [PMID: 31047862 PMCID: PMC6558025 DOI: 10.1016/j.ebiom.2019.04.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Low back pain (LBP) is the leading global cause of disability and is associated with intervertebral disc degeneration (DD) in some individuals. However, many adults have DD without LBP. Understanding why DD is painful in some and not others may unmask novel therapies for chronic LBP. The objectives of this study were to a) identify factors in human cerebrospinal fluid (CSF) associated with chronic LBP and b) examine their therapeutic utility in a proof-of-concept pre-clinical study. Methods Pain-free human subjects without DD, pain-free human subjects with DD, and patients with chronic LBP linked to DD were recruited and lumbar MRIs, pain and disability levels were obtained. CSF was collected and analyzed by multiplex cytokine assay. Interleukin-8 (IL-8) expression was confirmed by ELISA in CSF and in intervertebral discs. The SPARC-null mouse model of progressive, age-dependent DD and chronic LBP was used for pre-clinical validation. Male SPARC-null and control mice received systemic Reparixin, a CXCR1/2 (receptors for IL-8 and murine analogues) inhibitor, for 8 weeks. Behavioral signs of axial discomfort and radiating pain were assessed. Following completion of the study, discs were excised and cultured, and conditioned media was evaluated with a protein array. Findings IL-8 was elevated in CSF of chronic LBP patients with DD compared to pain-free subjects with or without DD. Chronic inhibition with reparixin alleviated low back pain behaviors and attenuated disc inflammation in SPARC-null mice. Interpretation These studies suggest that the IL-8 signaling pathway is a viable therapy for chronic LBP. Fund Supported by NIH, MMF, CIHR and FRQS.
Collapse
Affiliation(s)
- Emerson Krock
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Kathleen M Anderson
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Akanksha Srivastava
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yue Ran Sun
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Seon Ho Jang
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jean Ouellet
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Quebec H3A 1G1, Canada; Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec H4A 0A9, Canada
| | | | - Lois J Kehl
- Minnesota Head & Neck Pain Clinic, St. Paul, MN 55114, USA.
| | - Lisbet Haglund
- McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Quebec H3A 1G1, Canada; Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec H4A 0A9, Canada.
| | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Anesthesia Research Unit, Montreal, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Pharmacology and Therapeutics, Montreal, Quebec H3A 1G1, Canada.
| |
Collapse
|
24
|
Hodgkinson T, Shen B, Diwan A, Hoyland JA, Richardson SM. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019; 2:e1045. [PMID: 31463459 PMCID: PMC6686806 DOI: 10.1002/jsp2.1045] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor to chronic low back pain and disability, leading to imbalance between anabolic and catabolic processes, altered extracellular matrix composition, loss of tissue hydration, inflammation, and impaired mechanical functionality. Current treatments aim to manage symptoms rather than treat underlying pathology. Therefore, IVD degeneration is a target for regenerative medicine strategies. Research has focused on understanding the molecular process of degeneration and the identification of various factors that may have the ability to halt and even reverse the degenerative process. One such family of growth factors, the growth differentiation factor (GDF) family, have shown particular promise for disc regeneration in in vitro and in vivo models of IVD degeneration. This review outlines our current understanding of IVD degeneration, and in this context, aims to discuss recent advancements in the use of GDF family members as anabolic factors for disc regeneration. An increasing body of evidence indicates that GDF family members are central to IVD homeostatic processes and are able to upregulate healthy nucleus pulposus cell marker genes in degenerative cells, induce mesenchymal stem cells to differentiate into nucleus pulposus cells and even act as chemotactic signals mobilizing resident cell populations during disc injury repair. The understanding of GDF signaling and its interplay with inflammatory and catabolic processes may be critical for the future development of effective IVD regeneration therapies.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Bojiang Shen
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ashish Diwan
- St. George Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation TrustManchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
25
|
Snuggs JW, Day RE, Bach FC, Conner MT, Bunning RAD, Tryfonidou MA, Le Maitre CL. Aquaporin expression in the human and canine intervertebral disc during maturation and degeneration. JOR Spine 2019; 2:e1049. [PMID: 31463463 PMCID: PMC6686802 DOI: 10.1002/jsp2.1049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
The intervertebral disc (IVD) is a highly hydrated tissue, the rich proteoglycan matrix imbibes water, enabling the disc to withstand compressive loads. During aging and degeneration increased matrix degradation leads to dehydration and loss of function. Aquaporins (AQP) are a family of transmembrane channel proteins that selectively allow the passage of water in and out of cells and are responsible for maintaining water homeostasis in many tissues. Here, the expression of all 13 AQPs at gene and protein level was investigated in human and canine nondegenerate and degenerate IVDs to develop an understanding of the role of AQPs during degeneration. Furthermore, in order to explore the transition of notochordal cells (NCs) towards nucleus pulposus (NP) cells, AQP expression was investigated in canine IVDs enriched in NCs to understand the role of AQPs in IVD maturation. AQP0, 1, 2, 3, 4, 5, 6, 7, and 9 were expressed at gene and protein level in both nondegenerate and degenerate human NP tissue. AQP2 and 7 immunopositivity increased with degeneration in human NP tissue, whereas AQP4 expression decreased with degeneration in a similar way to AQP1 and 5 shown previously. All AQP proteins that were identified in human NP tissue were also expressed in canine NP tissue. AQP2, 5, 6, and 9 were found to localize to vacuole-like membranes and cell membranes in NC cells. In conclusion, AQPs were abundantly expressed in human and canine IVDs. The expression of many AQP isotypes potentially alludes to multifaceted functions related to adaption of NP cells to the conditions they encounter within their microenvironment in health and degeneration. The presence of AQPs within the IVD may suggest an adaptive role for these water channels during the development and maintenance of the healthy, mature IVD.
Collapse
Affiliation(s)
- Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Rebecca E. Day
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Matthew T. Conner
- Faculty of Science and EngineeringUniversity of WolverhamptonWolverhamptonUK
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
26
|
Gao ST, Xu T, Xun CH, Liang WD, Cao R, Mao C, Sheng WB. Significant association of IL-6-572G/C, IL-6-597G/A, and IL-6-174G/C polymorphisms and susceptibility to lumbar degenerative disease: A meta-analysis. Clin Neurol Neurosurg 2018; 175:40-46. [PMID: 30326328 DOI: 10.1016/j.clineuro.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To assess and synthesize the current evidence on the association of interleukin-6 (IL-6)-572 G/C, IL-6-597 G/A, and IL-6-174 G/C polymorphisms and risk of lumbar degenerative disease (LDD). PATIENTS AND METHODS Five electronic databases including PubMed, EMBASE, Web of Science, CNKI and Wanfang were systematically searched for potential studies previous to August 10, 2018. Summary odds ratio (OR) and corresponding 95% confidence interval (95%CI) were calculated to evaluate the association. RESULTS Nine case-control studies comprising 1519 cases and 1887 controls were obtained for the meta-analysis. For IL-6-572 G/C, IL-6-597 G/A, and IL-6-174 G/C polymorphisms, there were seven, six, and seven studies eventually included in the meta-analysis respectively. The findings indicated that the three polymorphisms had significant associations with risk of LDD: for IL-6-572 G/C, G vs. C, OR = 1.37, 95%CI 1.11-1.69, P = 0.004; for IL-6-597 G/A, G vs. A, OR = 1.38, 95 %CI 1.16-1.65, P = 0.000; for IL-6-174 G/C, G vs. C, OR = 1.63, 95%CI 1.15-2.29, P = 0.006. CONCLUSION The present meta-analysis found IL-6-572 G/C, IL-6-597 G/A, and IL-6-174 G/C polymorphisms were significantly associated with increased risk of LDD susceptibility.
Collapse
Affiliation(s)
- Shu-Tao Gao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| | - Tao Xu
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| | - Chuan-Hui Xun
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| | - Wei-Dong Liang
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| | - Rui Cao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| | - Cao Mao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| | - Wei-Bin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, 830054, China.
| |
Collapse
|
27
|
Suyama K, Sakai D, Hirayama N, Nakamura Y, Matsushita E, Terayama H, Qu N, Tanaka O, Sakabe K, Watanabe M. Effects of interleukin-17A in nucleus pulposus cells and its small-molecule inhibitors for intervertebral disc disease. J Cell Mol Med 2018; 22:5539-5551. [PMID: 30207057 PMCID: PMC6201370 DOI: 10.1111/jcmm.13828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/07/2018] [Indexed: 01/05/2023] Open
Abstract
Intervertebral discs (IVD) degeneration, which is caused by ageing or mechanical stress, leads to IVD disease, including back pain and sciatica. The cytokine interleukin (IL)-17A is elevated in NP cells during IVD disease. Here we explored the pharmacotherapeutic potential of IL-17A for the treatment of IVD disease using small-molecule inhibitors that block binding of IL-17A to the IL-17A receptor (IL-17RA). Treatment of NP cells with IL-17A increased expression of cyclooxygenase-2 (COX-2), IL-6, matrix metalloproteinase (MMP)-3 and MMP-13. These increases were suppressed by an IL-17A-neutralizing antibody, and small molecules that were identified as inhibitors by binding to the IL-17A-binding region of IL-17RA. IL-17A signalling also altered sulphated glycosaminoglycan deposition and spheroid colony formation, while treatment with small-molecule inhibitors of IL-17A attenuated this response. Furthermore, mitogen-activated protein kinase pathways were activated by IL-17A stimulation and induced IL-6 and COX-2 expression, while small-molecule inhibitors of IL-17A suppressed their expression. Taken together, these results show that IL-17A is a valid target for IVD disease therapy and that small-molecule inhibitors that inhibit the IL-17A-IL-17RA interaction may be useful for pharmacotherapy of IVD disease.
Collapse
Affiliation(s)
- Kaori Suyama
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Noriaki Hirayama
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
| | - Yoshihiko Nakamura
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Hayato Terayama
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Ning Qu
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Osamu Tanaka
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Kou Sakabe
- Department of Anatomy and Cellular biology, Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
28
|
Low back pain and disc degeneration are decreased following chronic toll-like receptor 4 inhibition in a mouse model. Osteoarthritis Cartilage 2018; 26:1236-1246. [PMID: 29908959 DOI: 10.1016/j.joca.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration is a leading cause of chronic low back pain (LBP) but current treatment is limited. Toll-like receptors (TLRs) on disc cells are activated by endogenous extracellular matrix (ECM) fragments and modulate degeneration in vitro. This study investigated whether inhibiting TLR4 slows disc degeneration and reduces behavioral signs of LBP in vivo. DESIGN 7-9-month old wild-type and secreted protein acidic and rich in cysteine (SPARC)-null (a model of disc degeneration and LBP) male mice were treated with TAK-242 (TLR4 inhibitor) once, and following a 10-day washout, mice were treated 3 times/week for 8 weeks. Behavioral signs of axial discomfort and radiating leg pain were assessed weekly with the grip force assay and acetone test, respectively. Following treatment, pain-related spinal cord changes were evaluated and lumbar discs were excised and cultured. Cytokine secretion from discs was evaluated with protein arrays. RESULTS SPARC-null mice displayed elevated signs of axial and radiating pain at baseline compared to wild-type. Chronic, but not acute, TLR4 inhibition reduced behavioral signs of pain compared to vehicle. SPARC-null mice have increased calcitonin gene-related peptide (CGRP)- and glial fibrillary acidic protein (GFAP)-immunoreactivity (astrocyte marker) in the dorsal horn compared to wild-type, which is reduced by chronic TLR4 inhibition. Ex vivo degenerating discs from SPARC-null mice secrete increased levels of many pro-inflammatory cytokines, which chronic TLR4 inhibition reduced. CONCLUSION Chronic TLR4 inhibition decreased behavioral signs of LBP, pain-related neuroplasticity and disc inflammation in SPARC-null mice. TAK-242 inhibits TLR4 activation within discs, as evidenced by decreases in cytokine release. Therefore, TLRs are potential therapeutic targets to slow disc degeneration and reduce pain.
Collapse
|
29
|
Aggrecan-like biomimetic proteoglycans (BPGs) composed of natural chondroitin sulfate bristles grafted onto a poly(acrylic acid) core for molecular engineering of the extracellular matrix. Acta Biomater 2018; 75:93-104. [PMID: 29753911 DOI: 10.1016/j.actbio.2018.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Biomimetic proteoglycans (BPGs) were designed to mimic the three-dimensional (3D) bottlebrush architecture of natural extracellular matrix (ECM) proteoglycans, such as aggrecan. BPGs were synthesized by grafting native chondroitin sulfate bristles onto a synthetic poly(acrylic acid) core to form BPGs at a molecular weight of approximately ∼1.6 MDa. The aggrecan mimics were characterized chemically, physically, and structurally, confirming the 3D bottlebrush architecture as well as a level of water uptake, which is greater than that of the natural proteoglycan, aggrecan. Aggrecan mimics were cytocompatible at physiological concentrations. Fluorescently labeled BPGs were injected into the nucleus pulposus of the intervertebral disc ex vivo and were retained in tissue before and after static loading and equilibrium conditioning. BPGs infiltrated the tissue, distributed and integrated with the ECM on a molecular scale, in the absence of a bolus, thus demonstrating a new molecular approach to tissue repair: molecular matrix engineering. Molecular matrix engineering may compliment or offer an acellular alternative to current regenerative medicine strategies. STATEMENT OF SIGNIFICANCE Aggrecan is a natural biomolecule that is essential for connective tissue hydration and mechanics. Aggrecan is composed of negatively charged chondroitin sulfate bristles attached to a protein core in a bottlebrush configuration. With age and degeneration, enzymatic degradation of aggrecan outpaces cellular synthesis resulting in a loss of this important molecule. We demonstrate a novel biomimetic molecule composed of natural chondroitin sulfate bristles grafted onto an enzymatically-resistant synthetic core. Our molecule mimics a 3D architecture and charge density of the natural aggrecan, can be delivered via a simple injection and is retained in tissue after equilibrium conditioning and loading. This novel material can serve as a platform for molecular repair, drug delivery and tissue engineering in regenerative medicine approaches.
Collapse
|
30
|
Kouroumalis A, Mavrogonatou E, Savvidou OD, Papagelopoulos PJ, Pratsinis H, Kletsas D. Major traits of the senescent phenotype of nucleus pulposus intervertebral disc cells persist under the specific microenvironmental conditions of the tissue. Mech Ageing Dev 2018; 177:118-127. [PMID: 29778758 DOI: 10.1016/j.mad.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023]
Abstract
Intervertebral discs (IVDs) are the joints of the spine, mainly consisting of extracellular matrix (ECM) with a low number of cells embedded therein. Low cellularity stems from nutrient deprivation due to the lack of blood supply, as well as from the hypoxic and hyperosmotic conditions prevailing in the tissue. Intervertebral disc degeneration (IDD) has been firmly connected with low back pain, a major age-related disease, whereas degenerated discs have been characterized by increased proteolytic activity and accumulation of senescent cells. While the catabolic phenotype of senescent IVD cells has been documented, whether this phenotype is preserved under the harsh conditions met in the IVD milieu has never been investigated. Here we showed that a combination of low glucose, hypoxia, high osmolality and absence of serum is anti-proliferative for young disc cells. In addition, we demonstrated for the first time that classical senescence markers, namely p16INK4a, p21WAF1 and ICAM-1, remain up-regulated in senescent cells under these conditions. Finally, up-regulation of the main senescence-associated ECM degrading enzymes, i.e. MMP-1, -2 and -3 was maintained in this strict environment. Conservation of IVD cells' senescent phenotype under the actual conditions these cells are confronted with in vivo further supports their possible implication in IDD.
Collapse
Affiliation(s)
- Anastasios Kouroumalis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Olga D Savvidou
- The First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Medical School, ATTIKON University Hospital, Athens, Greece
| | - Panayiotis J Papagelopoulos
- The First Department of Orthopaedic Surgery, National and Kapodistrian University of Athens, Medical School, ATTIKON University Hospital, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
31
|
Cong L, Tu G, Liang D. A systematic review of the relationship between the distributions of aggrecan gene VNTR polymorphism and degenerative disc disease/osteoarthritis. Bone Joint Res 2018; 7:308-317. [PMID: 29922449 PMCID: PMC5987698 DOI: 10.1302/2046-3758.74.bjr-2017-0207.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objectives Degenerative disc disease (DDD) and osteoarthritis (OA) are relatively frequent causes of disability amongst the elderly; they constitute serious socioeconomic costs and significantly impair quality of life. Previous studies to date have found that aggrecan variable number of tandem repeats (VNTR) contributes both to DDD and OA. However, current data are not consistent across studies. The purpose of this study was to evaluate systematically the relationship between aggrecan VNTR, and DDD and/or OA. Methods This study used a highly sensitive search strategy to identify all published studies related to the relationship between aggrecan VNTR and both DDD and OA in multiple databases from January 1996 to December 2016. All identified studies were systematically evaluated using specific inclusion and exclusion criteria. Cochrane methodology was also applied to the results of this study. Results The final selection of seven studies was comprehensively evaluated and includes results for 2928 alleles. The most frequent allele among all the studies was allele 27. After comparing the distributions of each allele with others, statistically significant differences have been found in the distribution of the alleles by the two groups, with an over-representation of allele (A)21 (disease: 3.22%, control: 0.44%). Thus, carrying A21 increased the risk of DDD. Such an association was not found to be statistically significant when considering the risk of OA. Conclusions The findings suggest that VNTR A21 seems to be associated with higher risk to DDD, however, such an association may not be statistically significant regarding the risk of OA. Cite this article: L. Cong, G. Tu, D. Liang. A systematic review of the relationship between the distributions of aggrecan gene VNTR polymorphism and degenerative disc disease/osteoarthritis. Bone Joint Res 2018;7:308–317. DOI: 10.1302/2046-3758.74.BJR-2017-0207.R1
Collapse
Affiliation(s)
- L Cong
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - G Tu
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - D Liang
- Department of Orthopaedic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Wang H, Hao P, Zhang H, Xu C, Zhao J. MicroRNA-223 inhibits lipopolysaccharide-induced inflammatory response by directly targeting Irak1 in the nucleus pulposus cells of intervertebral disc. IUBMB Life 2018; 70:479-490. [PMID: 29707878 DOI: 10.1002/iub.1747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
This study was aimed to research the effect of miR-223 on the inflammatory responses induced by lipopolysaccharide (LPS) in nucleus pulposus (NP) cells of rat intervertebral disc. Isolated rat NP cells were induced by LPS. Reverse transcriptase quantitative real-time polymerase chain reaction was used to detect gene expression. To detect protein expression, Western blot and enzyme-linked immunosorbent assay experiments were applied. The putative targeting relationship between miR-223 and Irak1 was determined using dual-luciferase reporter gene assay. We found that miR-223 was downregulated in LPS-induced NP cells. MiR-223 upregulated the expression of extracellular matrix-related genes (Aggrecan and Collagen II). Matrix degrading enzymes (ADAMTS4, ADAMTS5, MMP3 and MMP13), NO reaction-associated proteins (PGE2, COX-2 and INOS) and the expression of nuclear factor (NF)-κB signaling-related proteins were downregulated after miR-233 overexpression. In addition, luciferase reporter assays demonstrated that miR-223 directly targeted Irak1. MiR-223 overexpression could inhibit NF-κB signaling by targeting Irak1, and finally suppress the LPS-induced inflammation in NP cells. © 2018 IUBMB Life, 70(6):479-490, 2018.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Pan Hao
- Department of Spinal and Joint Surgery, Jinan Central Hospital, Jinan, Shandong, China
| | - Hu Zhang
- Department of Nursing, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Cuiping Xu
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Junyan Zhao
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
33
|
Shu CC, Melrose J. The adolescent idiopathic scoliotic IVD displays advanced aggrecanolysis and a glycosaminoglycan composition similar to that of aged human and ovine IVDs. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2102-2113. [PMID: 29441417 DOI: 10.1007/s00586-018-5515-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE The present study was designed to ascertain how altered biomechanics in adolescent idiopathic scoliotic (AIS) intervertebral discs (IVDs) affected tissue compositions and aggrecan processing compared to age matched and aged human IVDs. Newborn, 2- and 10-year-old ovine IVDs were also examined. METHODS Aggrecan populations were separated by Sepharose CL2B chromatography, composite agarose polyacrylamide gel electrophoresis (CAPAGE) and identified by immunoblotting. The KS and CS content of IVD tissue extracts from AIS IVDs were compared with age-matched normal adolescent IVDs and with old human IVDs. Extracts from newborn, 2- and 10-year-old ovine IVDs were also examined in a similar manner. RESULTS Adolescent idiopathic scoliotic IVD Aggrecan populations shared similar levels of polydispersity and aggregatability with hyaluronan as old IVD proteoglycans. CAPAGE demonstrated three aggrecan populations in AIS, aged human and ovine IVDs increased polydispersity and mobility in CAPAGE. AIS IVDs had GAG compositions similar to aged human and ovine IVDs. Sulphated KS (5-D-4) and chondroitin-6-sulphate, 3-B-3(+) were markers of tissue maturation, and chondroitin-4-sulphate, 2-B-6(+) was prominent in immature IVDs but its levels were lower in mature IVDs. DISCUSSION Sulphated KS and 3-B-3(+) CS were prominently associated with IVD maturation and AIS IVDs, while the 2-B-6(+) CS isomer was associated with immature IVD tissues. The polydispersity of aggrecan in AIS IVDs, which was similar to in old human and ovine IVDs, reflected altered processing in the AIS IVDs in response to the biomechanical microenvironments the disc cells were exposed to in AIS IVDs. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Research Laboratories, Level 10 Kolling Institute of Medical Research (B6), North Sydney Area Health Authority, University of Sydney at the Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Level 10 Kolling Institute of Medical Research (B6), North Sydney Area Health Authority, University of Sydney at the Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia. .,Department of Surgery, Northern Clinical School, University of Sydney, Sydney, Australia. .,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
34
|
Huang Y, Jiang T, Chen J, Yin GY, Fan J. Effects of kartogenin on the attenuated nucleus pulposus cell degeneration of intervertebral discs induced by interleukin-1β and tumor necrosis factor-α. Int J Mol Med 2017; 41:749-756. [PMID: 29207013 PMCID: PMC5752177 DOI: 10.3892/ijmm.2017.3283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/15/2017] [Indexed: 12/25/2022] Open
Abstract
Cytokines are the main cause of intervertebral disc degeneration. Kartogenin (KGN) is found to protect chondrocytes from cytokines. To explore whether KGN can slow down the degeneration on intervertebral discs following exposure to interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF‑α), the expression of type II collagen (Col II) and aggrecan were detected by immunofluorescence, immunohistochemistry and tissue staining. An in vitro model of disc degeneration using human nucleus pulposus cells (hNPCs) and ex vivo culture of mouse intervertebral discs organs under the actions of inflammatory cytokines were used, and the expression of Col II and aggrecan in hNPCs were detected by semi-quantitative western blot analysis, and the mRNA expression of the genes than encode Col II and aggrecan were detected by reverse transcription‑quantitative polymerase chain reaction (RT-qPCR). The results indicated that the expression of Col II and aggrecan was reduced in the degeneration models. However, the protein expressions of Col II and aggrecan were significantly elevated in hNPCs and the mouse intervertebral discs following addition of KGN. RT-qPCR results revealed that the mRNA expression of Col II and aggrecan was increased in hNPCs and mouse intervertebral discs following treatment with KGN. Thus, KGN effectively increased the expression of Col II and aggrecan in hNPCs and slowed the degeneration of intervertebral discs stimulated by IL-1β and TNF-α.
Collapse
Affiliation(s)
- Yao Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Guo-Yong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
35
|
ADAMTS5 Deficiency Protects Mice From Chronic Tobacco Smoking-induced Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2017; 42:1521-1528. [PMID: 28570296 PMCID: PMC5633483 DOI: 10.1097/brs.0000000000002258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN ADAMTS5-deficient and wild type (WT) mice were chronically exposed to tobacco smoke to investigate effects on intervertebral disc degeneration (IDD). OBJECTIVE The aim of this study was to demonstrate a role for ADAMTS5 in mediating tobacco smoking-induced IDD. SUMMARY OF BACKGROUND DATA We previously demonstrated that chronic tobacco smoking causes IDD in mice because, in part, of proteolytic destruction of disc aggrecan. However, it was unknown which matrix proteinase(s) drive these detrimental effects. METHODS Three-month-old WT (C57BL/6) and ADAMTS5 mice were chronically exposed to tobacco smoke (four cigarettes/day, 5 day/week for 6 months). ADAMTS-mediated cleavage of disc aggrecan was analyzed by Western blot. Disc total glycosaminoglycan (GAG) content was assessed by dimethyl methylene blue assay and safranin O/fast green histology. Vertebral osteoporosity was measured by microcomputed tomography. Human nucleus pulposus (hNP) cell cultures were also exposed directly to tobacco smoke extract (TSE), a condensate containing the water-soluble compounds inhaled by smokers, to measure ADAMTS5 expression and ADAMTS-mediated cleavage of aggrecan. Activation of nuclear factor (NF)-κB, a family of transcription factors essential for modulating the cellular response to stress, was measured by immunofluorescence assay. RESULTS Genetic depletion of ADAMTS5 prevented vertebral bone loss, substantially reduced loss of disc GAG content, and completely obviated ADAMTS-mediated proteolysis of disc aggrecan within its interglobular domain (IGD) in mice following exposure to tobacco smoke. hNP cell cultures exposed to TSE also resulted in upregulation of ADAMTS5 protein expression and a concomitant increase in ADAMTS-mediated cleavage within aggrecan IGD. Activation of NF-κB, known to be required for ADAMTS5 gene expression, was observed in both TSE-treated hNP cell cultures and disc tissue of tobacco smoke-exposed mice. CONCLUSION The findings demonstrate that ADAMTS5 is the primary aggrecanase mediating smoking-induced disc aggrecanolysis and IDD. Mouse models of chronic tobacco smoking are important and useful for probing the mechanisms of disc aggrecan catabolism and IDD. LEVEL OF EVIDENCE N/A.
Collapse
|
36
|
Abstract
STUDY DESIGN Experimental in vivo and in vitro study of intervertebral disc (IVD) degeneration and the mechanism exploration. OBJECTIVE This report aims to verify the expression of Sirt1 in IVD degeneration of different grades and explore its potential mechanism in human nucleus pulposus cells. SUMMARY OF BACKGROUND DATA Silent mating type information regulator 2 homolog 1 (Sirt1) has draw immense attention because of its influence on a variety of aging-related diseases. The present study is a continuation and complement of our former in vivo study of Sirt1 and its role in puncture-induced rodent disc degeneration model. METHODS Sirt1 protein expression level and histological morphology were evaluated in the discs of different degeneration levels, which is graded according to the Pfirrmann grading scale. Then the mRNA and protein expression levels of type II collagen, MMP-13, ADAMTS-5, p21, p16, cell proliferation, and apoptosis ratio were tested in vitro nucleus pulposus cells that expressed different levels of Sirt1 by reverse transcription polymerase chain reaction, western blot analysis, CCK-8 assay, and flow cytometry analysis. RESULTS Sirt1 protein expression level decreased in the discs of high Pfirrmann grade and the score of histological morphology of human intervertebral disc is consistent with the Pfirrmann grade. Besides, when resveratrol activated Sirt1, nucleus pulposus cells proliferation increased while the cell apoptosis ratio decreased; the expression of type II collagen increased while MMP-13, ADAMTS-5 decreased. It showed the opposite results when the cells were transfected by Sirt1 siRNA. In addition, the expression of both p21 and p16 decreased when Sirt1 was activated. CONCLUSION Sirt1 is a protective mediator in IVD degeneration and the expression of Sirt1 decreases in degenerative disc. Activation of Sirt1 works on suppressing cellular senescence, promoting cell proliferation, and restraining the apoptosis of nucleus pulposus cells. LEVEL OF EVIDENCE N/A.
Collapse
|
37
|
Wu X, Wang K, Hua W, Li S, Liu X, Liu W, Song Y, Zhang Y, Shao Z, Yang C. Down-regulation of islet amyloid polypeptide expression induces death of human annulus fibrosus cells via mitochondrial and death receptor pathways. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1479-1491. [PMID: 28433710 DOI: 10.1016/j.bbadis.2017.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
Islet amyloid polypeptide (IAPP) exerts its biological effects by participating in the regulation of glucose metabolism and cell apoptosis. The main goal of the present study was to investigate the expression of IAPP in degenerated intervertebral disc tissue and IAPP's modulation of extracellular matrix (ECM) catabolic and anabolic genes in human AF cells. We found that the expression of IAPP, the calcitonin receptor, and receptor activity modifying protein decreased considerably in AF cells during the progression of intervertebral disc degeneration (IDD). Meanwhile, transfection with pLV-siIAPP decreased the expression of IAPP and its receptors and reduced glucose uptake and the expression of aggrecan, Col2A1, and BG. Down-regulation of IAPP also induced a significant increase in reactive oxygen species generation in AF cells, along with a decrease in matrix metalloproteinases and an increase in the concentration of cellular Ca2+, ultimately leading to death. Further analysis revealed that siIAPP intervention promoted the release of cytochrome c from mitochondria, resulting in the activation of Caspase-3 and Caspase-9. In contrast, significantly decreased expression of Caspase-3 and Caspase-9 was observed in AF cells transfected with pLV-IAPP. The concentrations of Fas and FasL proteins were significantly decreased in AF cells transfected with PLV-IAPP, while activation of the Fas/FasL system and cell death were induced by siIAPP intervention. Mechanistically, AMPK/Akt-mTOR signaling pathways were involved. In conclusion, down-regulation of IAPP expression induces the death of human AF cells via mitochondrial and death receptor pathways, potentially offering a novel therapeutic target for the treatment of IDD.
Collapse
Affiliation(s)
- Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianzhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
38
|
Resistin Promotes Intervertebral Disc Degeneration by Upregulation of ADAMTS-5 Through p38 MAPK Signaling Pathway. Spine (Phila Pa 1976) 2016; 41:1414-1420. [PMID: 26974833 DOI: 10.1097/brs.0000000000001556] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Rat nucleus pulposus (NP) cells were activated with resistin with or without p38 mitogen-activated protein kinase (MAPK) pathway inhibition. The expression of a disintegrin and metalloprotease with thrombospondin motif-5 (ADAMTS-5), which plays an important role in intervertebral disc degeneration (IDD), was determined. OBJECTIVE The aim of this study was to demonstrate whether resistin can influence the ADAMTS-5 expression and to further investigate the underlying mechanisms. SUMMARY OF BACKGROUND DATA Obesity has been demonstrated to promote IDD, whereas the exact mechanism remains poorly understood. Resistin, as an important adipokine, is increased with obesity and has been shown to play pro-inflammatory and catabolic role in cartilage metabolism. However, the effect of resistin on the catabolic enzymes within NP cells remains unknown. METHODS We exposed NP cells to resistin, and the transcriptional activity, gene expression, and protein levels of ADAMTS-5 were measured by luciferase reporter assay, qRT-polymerase chain reaction, immunofluorescence, and western blot, respectively. The activation of p38 MAPK pathways was detected using western blot analysis. RESULTS Resistin had no effect on cell viability. Resistin increased ADAMTS-5 expression in rat NP cells time and dose dependently. The p38 MAPK signaling pathway was activated after exposure to resistin. Treatment with p38 inhibitor decreased the upregulation of ADAMTS-5 by resistin. CONCLUSION The current study, for the first time, investigated the role of resistin in ADAMTS-5 regulation in IDD. These findings provide novel evidence supporting the causative role of obesity in IDD, which is important to develop novel preventative or therapeutic treatment in disc degenerative disorders. LEVEL OF EVIDENCE N/A.
Collapse
|
39
|
Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Creemers LB, Cross AK, Le Maitre CL. Class 3 semaphorins expression and association with innervation and angiogenesis within the degenerate human intervertebral disc. Oncotarget 2016; 6:18338-54. [PMID: 26286962 PMCID: PMC4621894 DOI: 10.18632/oncotarget.4274] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Nerve and blood vessel ingrowth during intervertebral disc degeneration, is thought to be a major cause of low back pain, however the regulation of this process is poorly understood. Here, we investigated the expression and regulation of a subclass of axonal guidance molecules known as the class 3 semaphorins, and their receptors; plexins and neuropilins within human NP tissue and their regulation by pro-inflammatory cytokines. Importantly this determined whether semaphorin expression was associated with the presence of nerves and blood vessels in tissues from human intervertebral discs. The study demonstrated that semaphorin3A, 3C, 3D, 3E and 3F and their receptors were expressed by native NP cells and further demonstrated their expression was regulated by IL-1β but to a lesser extent by IL-6 and TNFα. This is the first study to identify sema3C, sema3D and their receptors within the nucleus pulposus of intervertebral discs. Immunopositivity shows significant increases in semaphorin3C, 3D and their receptor neuropilin-2 in degenerate samples which were shown to contain nerves and blood vessels, compared to non-degenerate samples without nerves and blood vessels. Therefore data presented here suggests that semaphorin3C may have a role in promoting innervation and vascularisation during degeneration, which may go on to cause low back pain.
Collapse
Affiliation(s)
- Abbie L A Binch
- Sheffield Hallam University, Sheffield, South Yorkshire, United Kingdom
| | - Ashley A Cole
- Sheffield Teaching Hospitals, Sheffield, South Yorkshire, United Kingdom
| | - Lee M Breakwell
- Sheffield Teaching Hospitals, Sheffield, South Yorkshire, United Kingdom
| | | | - Neil Chiverton
- Sheffield Teaching Hospitals, Sheffield, South Yorkshire, United Kingdom
| | - Laura B Creemers
- Universitair Medisch Centrum, Orthopaedics Department, Utrecht, Netherlands
| | - Alison K Cross
- Sheffield Hallam University, Sheffield, South Yorkshire, United Kingdom
| | | |
Collapse
|
40
|
Li Y, Li K, Mao L, Han X, Zhang K, Zhao C, Zhao J. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc. PeerJ 2016; 4:e1992. [PMID: 27190710 PMCID: PMC4867702 DOI: 10.7717/peerj.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kang Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lu Mao
- Spine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Li Y, Li K, Han X, Mao C, Zhang K, Zhao T, Zhao J. The imbalance between TIMP3 and matrix-degrading enzymes plays an important role in intervertebral disc degeneration. Biochem Biophys Res Commun 2016; 469:507-14. [DOI: 10.1016/j.bbrc.2015.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022]
|
42
|
Krock E, Currie JB, Weber MH, Ouellet JA, Stone LS, Rosenzweig DH, Haglund L. Nerve Growth Factor Is Regulated by Toll-Like Receptor 2 in Human Intervertebral Discs. J Biol Chem 2015; 291:3541-51. [PMID: 26668319 DOI: 10.1074/jbc.m115.675900] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1β (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1β gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1β treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo.
Collapse
Affiliation(s)
- Emerson Krock
- From the Orthopeadic Research Laboratory, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill Scoliosis and Spine Research Group
| | - J Brooke Currie
- From the Orthopeadic Research Laboratory, Faculty of Medicine
| | | | - Jean A Ouellet
- Alan Edwards Centre for Research on Pain, McGill Scoliosis and Spine Research Group
| | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill Scoliosis and Spine Research Group, Integrated Program in Neuroscience, Departments of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, and Faculty of Dentistry, McGill University, Montreal Quebec H3G 1A4, Canada
| | - Derek H Rosenzweig
- From the Orthopeadic Research Laboratory, Faculty of Medicine, McGill Scoliosis and Spine Research Group
| | - Lisbet Haglund
- From the Orthopeadic Research Laboratory, Faculty of Medicine, McGill Scoliosis and Spine Research Group,
| |
Collapse
|
43
|
de Vries SAH, van Doeselaar M, Meij BP, Tryfonidou MA, Ito K. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture. Tissue Eng Part A 2015; 22:103-10. [PMID: 26421447 DOI: 10.1089/ten.tea.2015.0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue, in which the NCCM ultimately should exert its effect. The objective of this study is to test whether NCCM stimulates NPCs within their native environment, and whether combined stimulation with NCCM and addition of BMSCs has a synergistic effect on extracellular matrix production. METHODS Bovine NP tissue was cultured in an artificial annulus in base medium (BM), porcine NCCM, or BM supplemented with 1 μg/mL Link N. Furthermore, BM and NCCM samples were injected with 10(6) BMSCs per NP sample. Samples were cultured for 4 weeks, and analyzed for biochemical contents (water, glycosaminoglycan [GAG], hydroxyproline, and DNA), gene expression (COL1A1, COL2A1, ACAN, and SOX9), and histology by Safranin O/Fast Green staining. RESULTS Culture in NCCM resulted in increased proteoglycan content compared to day 0 and BM, similar to Link N. However, only minor differences in gene expression compared to day 0 were observed. Addition of BMSCs did not result in increased GAG content, and surprisingly, DNA content in BMSC-injected groups was not higher than in the other groups after 4 weeks of culture. DISCUSSION This study shows that, indeed, NCCM is capable of stimulating NPC matrix production within the NP environment. The lack of increased DNA content in the BMSC-injected groups indicates that BMSCs have died over time. Identification of the bioactive factors in NCCM is crucial for further development of an NCCM-based treatment for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Stefan A H de Vries
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Marina van Doeselaar
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Björn P Meij
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Keita Ito
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands .,3 Department of Orthopedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
44
|
Yang H, Gao F, Li X, Wang J, Liu H, Zheng Z. TGF-β1 antagonizes TNF-α induced up-regulation of matrix metalloproteinase 3 in nucleus pulposus cells: role of the ERK1/2 pathway. Connect Tissue Res 2015; 56:461-8. [PMID: 26075533 DOI: 10.3109/03008207.2015.1054030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tumor necrosis factor-α (TNF-α) has been shown to have a catabolic effect on intervertebral disc degeneration (IVDD), including increasing MMP3 expression and subsequent extracellular matrix (ECM) degradation. In contrast, transforming growth factor-β1 (TGF-β1) has an anabolic effect on nucleus pulposus (NP) cells. However, the anti-catabolic effect of TGF-β1 under inflammatory condition is unknown. The aim of this study was to demonstrate whether TGF-β1 can reverse TNF-α-induced MMP3 increase in NP cells and to further investigate the underlying mechanisms. The transcriptional activity, gene expression, and protein levels of MMP3 were measured by luciferase reporter assay, qRT-PCR and western blot, respectively. TNF-α increased MMP3 expression in rat NP cells time and dose dependently. TGF-β1 could abolish TNF-α-mediated up-regulation of collagen I and MMP3 expression, and down-regulate aggrecan and collagen II expression. The ERK1/2 signaling pathway was activated after exposure to TGF-β1. Treatment with ERK1/2 inhibitors (PD98059 and U0126) abolished the antagonistic effect of TGF-β1 on TNF-α mediated catabolic responses. These findings provide novel evidence supporting the anti-catabolic role of TGF-β1 in IVDD, which is important for the potential clinical application of TGF-β1 in disc degenerative disorders.
Collapse
Affiliation(s)
- Hao Yang
- a Department of Spine Surgery , Beijing Jishuitan Hospital, Peking University , Xinjiekou Dongjie , Beijing , China .,b Department of Spine Surgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Fei Gao
- c Department of Orthopaedic Surgery , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , and
| | - Xiang Li
- d Department of Orthopaedics , The First People's Hospital of Taizhou , Taizhou , China
| | - Jianru Wang
- b Department of Spine Surgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Hui Liu
- b Department of Spine Surgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhaomin Zheng
- b Department of Spine Surgery , The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
45
|
Sun Z, Yin Z, Liu C, Liang H, Jiang M, Tian J. IL-1β promotes ADAMTS enzyme-mediated aggrecan degradation through NF-κB in human intervertebral disc. J Orthop Surg Res 2015; 10:159. [PMID: 26438479 PMCID: PMC4594913 DOI: 10.1186/s13018-015-0296-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Background The purpose of this study is to investigate IL-1β regulation of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4 and ADAMTS-5) expression through nuclear factor kappa B (NF-κB) in human nucleus pulposus (NP) cells. Methods qRT-PCR and Western blot were used to measure ADAMTS expression. Transfections and gene silencing were used to determine the role of NF-κB on cytokine-mediated ADAMTS expression and its role in aggrecan degradation. Results IL-1β increased ADAMTS expression in NP cells. Treatment with NF-κB inhibitors abolished the inductive effect of the cytokines on ADAMTS expression. Silencing of p65 confirmed their role in IL-1β-dependent ADAMTS-4 and ADAMTS-5 expression and aggrecan degradation. Conclusions By controlling the activation of NF-κB signaling, IL-1β modulates the expression of ADAMTS in NP cells. To our knowledge, this is the first study that shows the contribution of both ADAMTS-4 and ADAMTS-5 to aggrecan degradation in human NP cells.
Collapse
Affiliation(s)
- Zhongyi Sun
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - Zhanmin Yin
- Spine and Joint Surgery, Central Hospital of Tai An, Shandong, China.
| | - Chao Liu
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - He Liang
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - Minbo Jiang
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| | - Jiwei Tian
- Department of Orthopedics, School of Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, 100, Haining Road, Shanghai, 200080, China.
| |
Collapse
|
46
|
Henriksson HB, Papadimitriou N, Tschernitz S, Svala E, Skioldebrand E, Windahl S, Junevik K, Brisby H. Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region. Tissue Cell 2015; 47:439-55. [DOI: 10.1016/j.tice.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
|
47
|
Wang WJ, Yu XH, Wang C, Yang W, He WS, Zhang SJ, Yan YG, Zhang J. MMPs and ADAMTSs in intervertebral disc degeneration. Clin Chim Acta 2015; 448:238-46. [PMID: 26162271 DOI: 10.1016/j.cca.2015.06.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with low back pain, a leading cause of musculoskeletal disability worldwide. The major components of extracellular matrix (ECM) within the discs are type II collagen (Col II) and aggrecan. Excessive destruction of ECM, especially loss of Col II and aggrecan, plays a critical role in promoting the occurrence and development of IDD. Matrix metalloproteinases (MMPs) and a disintegrin and metalloprotease with thrombospondin motifs (ADAMTSs) are primary enzymes that degrade collagens and aggrecan. There is a large and growing body of evidence that many members of MMPs and ADAMTSs are highly expressed in degenerative IVD tissue and cells, and are closely involved in ECM breakdown and the process of disc degeneration. In contrast, targeting these enzymes has shown promise for promoting ECM repair and mitigating disc regeneration. In the current review, after a brief description regarding the biology of MMPs and ADAMTSs, we mainly focus on their expression profiles, roles and therapeutic potential in IDD. A greater understanding of the catabolic pathways involved in IDD will help to develop potential prophylactic or regenerative biological treatment for degenerative disc disease in the future.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
48
|
Ye W, Zhou J, Markova DZ, Tian Y, Li J, Anderson DG, Shapiro IM, Risbud MV. Xylosyltransferase-1 expression is refractory to inhibition by the inflammatory cytokines tumor necrosis factor α and IL-1β in nucleus pulposus cells: novel regulation by AP-1, Sp1, and Sp3. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:485-95. [PMID: 25476526 PMCID: PMC4305180 DOI: 10.1016/j.ajpath.2014.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022]
Abstract
We investigated whether expression of xylosyltransferase-1 (XT-1), a key enzyme in glycosaminoglycan biosynthesis, is responsive to disk degeneration and to inhibition by the inflammatory cytokines tumor necrosis factor α and IL-1β in nucleus pulposus (NP) cells. Analysis of human NP tissues showed that XT-1 expression is unaffected by degeneration severity; XT-1 and Jun, Fos, and Sp1 mRNA were positively correlated. Cytokines failed to inhibit XT-1 promoter activity and expression. However, cytokines decreased activity of XT-1 promoters containing deletion and mutation of the -730/-723 bp AP-1 motif, prompting us to investigate the role of AP-1 and Sp1/Sp3 in the regulation of XT-1 in healthy NP cells. Overexpression and suppression of AP-1 modulated XT-1 promoter activity. Likewise, treatment with the Sp1 inhibitors WP631 and mithramycin A or cotransfection with the plasmid DN-Sp1 decreased XT-1 promoter activity. Inhibitors of AP-1 and Sp1 and stable knockdown of Sp1 and Sp3 resulted in decreased XT-1 expression in NP cells. Genomic chromatin immunoprecipitation analysis showed AP-1 binding to motifs located at -730/-723 bp and -684/-677 bp and Sp1 binding to -227/-217 bp and -124/-114 bp in XT-1 promoter. These results suggest that XT-1 expression is refractory to the disease process and to inhibition by inflammatory cytokines and that signaling through AP-1, Sp1, and Sp3 is important in the maintenance of XT-1 levels in NP cells.
Collapse
Affiliation(s)
- Wei Ye
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ye Tian
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - D Greg Anderson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Complete sequencing and characterization of equine aggrecan. Vet Comp Orthop Traumatol 2015; 28:79-87. [PMID: 25632964 DOI: 10.3415/vcot-14-05-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To fully sequence and characterize equine aggrecan and confirm conservation of major aggrecanase, calpain and matrix metalloproteinase (MMP) cleavage sites. METHODS Reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends were used to generate clones that encompassed the complete equine aggrecan sequence. Clones were sequenced and compared with the equine genome database to determine intron-exon boundaries. RESULTS The aggrecan gene spans over 61 kb on chromosome 1 and is encoded by 17 exons. Two major variants of aggrecan were cloned; one containing 8187 bp (2728 amino acids) and a second sequence of 8061 nucleotides (2686 amino acids). The variation was due to a CS1 domain polymorphism. Both sequences are substantially larger than predicted by the genomic database; 11 CS1 repeat elements are absent in the database sequence. The equine amino acid sequence was compared with human, bovine and murine sequences. Globular domains 1, 2 and 3 are highly conserved (overall identity over 80%). Equine CS1 is considerably larger than in other species and, therefore, is the least conserved domain (an overall amino acid identity of 22%). Previously defined aggrecanase, calpain and MMP cleavage sites were identified. Western blotting of chondrocyte culture samples showed complex post-secretion processing. CLINICAL SIGNIFICANCE The complete equine aggrecan sequence will support more in-depth research on aggrecan processing and degradation in equine articular cartilage and other musculoskeletal tissues.
Collapse
|
50
|
Luo Y, Zhang L, Wang WY, Hu QF, Song HP, Zhang YZ. The inhibitory effect of salmon calcitonin on intervertebral disc degeneration in an ovariectomized rat model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1691-701. [PMID: 25304649 DOI: 10.1007/s00586-014-3611-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Intervertebral disc degeneration related to postmenopausal osteoporosis is an important issue in spinal disorder research. This study aimed to investigate the effects of salmon calcitonin (sCT), as an antiresorptive medication, on lumbar intervertebral disc degeneration using a rat ovariectomy (OVX) model. METHODS Thirty 3-month-old female Sprague-Dawley rats were randomly divided into three groups: the sham-operated (Sham) group and two ovariectomized groups treated with vehicle (OVX+V) or sCT (OVX+CT; 16 IU/kg, sc) on alternate days for 6 months. Treatment began after OVX and continued for 6 months. At the end of the experiment, bone mineral density (BMD), micro-CT analysis, biomechanical testing, histology, and immunohistochemistry were performed for all groups. RESULTS Salmon calcitonin significantly maintained vertebrae BMD, percent bone volume, and biomechanical strength, when compared with the OVX+V group. The changes of mucoid degeneration in the nucleus pulposus and calcification in the middle cartilage endplate were more moderate in the OVX+CT group compared with the OVX+V group, and immunohistochemistry revealed a significant increase in aggrecan and type II collagen expressions, but marked reductions in matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 expressions in the OVX+CT group. CONCLUSIONS Salmon calcitonin treatment was effective in delaying the process of the disc degeneration in OVX rats. The underlying mechanisms may be related to preservation of structural integrity and function of vertebrae, and affecting extracellular matrix metabolism by modulating the expressions of MMPs, aggrecan and type II collagen to protect the disc from degeneration.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|