1
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
2
|
De Salvatore S, Ruzzini L, Longo UG, Marino M, Greco A, Piergentili I, Costici PF, Denaro V. Exploring the association between specific genes and the onset of idiopathic scoliosis: a systematic review. BMC Med Genomics 2022; 15:115. [PMID: 35590413 PMCID: PMC9118580 DOI: 10.1186/s12920-022-01272-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Idiopathic Scoliosis (IS) is the most common spinal deformity in adolescents, accounting for 80% of all spinal deformities. However, the etiology remains uncertain in most cases, being identified as Adolescent Idiopathic Scoliosis (AIS). IS treatments range from observation and sport to bracing or surgery. Several risk factors including sex and familiarity, have been linked with IS. Although there are still many uncertainties regarding the cause of this pathology, several studies report a greater incidence of the defect in families in which at least one other first degree relative is affected. This study systematically reviews the available literature to identify the most significant genes or variants related to the development and onset of IS. Methods The research question was formulated using a PIOS approach on the following databases: Medline, Embase, Cinahl, Scopus, Web of Science and Google Scholar. The search was performed from July to August 2021, and articles from the inception of the database to August 2021 were searched. Results 24 of the 919 initially identified studies were included in the present review. The 24 included studies observed a total of 16,316 cases and 81,567 controls. All the considered studies stated either the affected gene and/or specific SNPs. CHD7, SH2B1, ESR, CALM1, LBX1, MATN1, CHL1, FBN1 and FBN2 genes were associated with IS development. Conclusions Although association can be found in some candidate genes the field of research regarding genetic association with the onset of IS still requires more information.
Collapse
Affiliation(s)
- Sergio De Salvatore
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Laura Ruzzini
- Department of Orthopedics, Children's Hospital Bambino Gesù, 00165, Palidoro, Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy. .,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Martina Marino
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alessandra Greco
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Ilaria Piergentili
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Pier Francesco Costici
- Department of Orthopedics, Children's Hospital Bambino Gesù, 00165, Palidoro, Rome, Italy
| | - Vincenzo Denaro
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
3
|
Wang W, Chen T, Liu Y, Wang S, Yang N, Luo M. Predictive value of single-nucleotide polymorphisms in curve progression of adolescent idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2311-2325. [PMID: 35434775 DOI: 10.1007/s00586-022-07213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Genetic diagnosis is a promising approach because several single-nucleotide polymorphisms (SNPs) associated with adolescent idiopathic scoliosis (AIS) progression have been reported. We review the predictive value of SNPs in curve progression of adolescent idiopathic scoliosis. METHODS We reviewed DNA-based prognostic testing to predict curve progression. Then, the multiple polymorphisms in loci related to AIS progression were also reviewed, and we elucidated the predictive value of SNPs from four functional perspectives, including endocrine metabolism, neuromuscular system, cartilage and extracellular matrix, enzymes, and cytokines. RESULTS The ScoliScores were less successful predictors than expected, and the weak power of predictive SNPs might account for its failure. Susceptibility loci in ESR1, ESR2, GPER, and IGF1, which related to endocrine metabolism, have been reported to predict AIS progression. Neuromuscular imbalance might be a potential mechanism of scoliosis, and SNPs in LBX1, NTF3, and SOCS3 have been reported to predict the curve progression of AIS. Susceptibility loci in SOX9, MATN1, AJAP1, MMP9, and TIMP2, which are related to cartilage and extracellular matrix, are also potentially related to AIS progression. Enzymes and cytokines play essential roles in regulating bone metabolism and embryonic development. SNPs in BNC2, SLC39A8, TGFB1, IL-6, IL-17RC, and CHD7 were suggested as predictive loci for AIS curve progression. CONCLUSIONS Many promising SNPs have been identified to predict the curve progression of AIS. However, conflicting results from replication studies and different ethnic groups hamper their reliability. Convincing SNPs from multiethnic populations and functional verification are needed.
Collapse
Affiliation(s)
- Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Tailong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Yibin Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Songsong Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Ningning Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China. .,Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China.
| | - Ming Luo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Zaydman AM, Strokova EL, Pahomova NY, Gusev AF, Mikhaylovskiy MV, Shevchenko AI, Zaidman MN, Shilo AR, Subbotin VM. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med Hypotheses 2021; 151:110585. [PMID: 33932710 DOI: 10.1016/j.mehy.2021.110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 2-3% of children. Numerous hypotheses on etiologic/causal factors of AIS were investigated, but all failed to identify therapeutic targets and hence failed to offer a cure. Therefore, currently there are only two options to minimize morbidity of the patients suffering AIS: bracing and spinal surgery. From the beginning of 1960th, spinal surgery, both fusion and rod placement, became the standard of management for progressive adolescent idiopathic spine deformity. However, spinal surgery is often associated with complications. These circumstances motivate AIS scientific community to continue the search for new etiologic and causal factors of AIS. While the role of the genetic factors in AIS pathogenesis was investigated intensively and universally recognized, these studies failed to nominate mutation of a particular gene or genes combination responsible for AIS development. More recently epigenetic factors were suggested to play causal role in AIS pathogenesis. Sharing this new approach, we investigated scoliotic vertebral growth plates removed during vertebral fusion (anterior surgery) for AIS correction. In recent publications we showed that cells from the convex side of human scoliotic deformities undergo normal chondrogenic/osteogenic differentiation, while cells from the concave side acquire a neuronal phenotype. Based on these facts we hypothesized that altered neural crest cell migration in early embryogenesis can be the etiological factor of AIS. In particular, we suggested that neural crest cells failed to migrate through the anterior half of somites and became deposited in sclerotome, which in turn produced chondrogenic/osteogenic-insufficient vertebral growth plates. To test this hypothesis we conducted experiments on chicken embryos with arrest neural crest cell migration by inhibiting expression of Paired-box 3 (Pax3) gene, a known enhancer and promoter of neural crest cells migration and differentiation. The results showed that chicken embryos treated with Pax3 siRNA (microinjection into the neural tube, 44 h post-fertilization) progressively developed scoliotic deformity during maturation. Therefore, this analysis suggests that although adolescent idiopathic scoliosis manifests in children around puberty, the real onset of the disease is of epigenetic nature and takes place in early embryogenesis and involves altered neural crest cells migration. If these results confirmed and further elaborated, the hypothesis may shed new light on the etiology and pathogenesis of AIS.
Collapse
Affiliation(s)
- Alla M Zaydman
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Elena L Strokova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Nataliya Y Pahomova
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Arkady F Gusev
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Mikhail V Mikhaylovskiy
- Novosibirsk Research Institute of Traumatology and Orthopaedics named after Ya.L. Tsivyan, Novosibirsk, Russia
| | - Alexander I Shevchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences", Novosibirsk, Russia
| | | | - Andrey R Shilo
- Novosibirsk Zoo named after R.A. Shilo, Novosibirsk, Russia
| | - Vladimir M Subbotin
- Arrowhead Pharmaceuticals Inc., Madison WI, USA; University of Pittsburgh, Pittsburgh PA, USA; University of Wisconsin, Madison WI, USA.
| |
Collapse
|
5
|
Li J, Yang Z, Yu M. Association study of single nucleotide polymorphism in tryptophan hydroxylase 1 gene with adolescent idiopathic scoliosis: A meta-analysis. Medicine (Baltimore) 2021; 100:e23733. [PMID: 33545939 PMCID: PMC7837909 DOI: 10.1097/md.0000000000023733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis is a common spinal deformity among children and adolescents worldwide with its etiology uncertain. Over a decade, a single nucleotide polymorphism rs10488682 in tryptophan hydroxylase 1 (TPH1) gene has been investigated in several association studies. We perform this study to summarize the current evidence of TPH1 rs10488682 polymorphisms and adolescent idiopathic scoliosis (AIS). METHODS Six databases were systematically searched: PubMed, Embase, Cochrane Library, Web of Science, Chinese Biomedical Literature, and Wanfang database. Eligible case-control studies related to TPH1 and AIS were selected. Reference lists of them were reviewed for more available studies. Two authors independently screened and evaluated the literature and extracted data. The odds ratios and 95% confidence intervals were derived in association tests. Subgroup analysis was conducted by ethnicity. Sensitivity analysis was performed to examine the stability of the overall results. RESULTS A total of 1006 cases and 1557 controls in 3 independent studies were included for meta-analysis. Statistical significance was discovered in heterozygote model (AT vs AA: OR = 1.741, 95%Cl = 1.100-2.753, P = .018 < .05, I2 = 0%), recessive model (AA vs AT + TT: OR = 0.640, 95%Cl = 0.414-0.990, P = .045 < .05, I2 = 0%) and over-dominant model (AT vs AA + TT: OR = 1.366, 95%Cl = 1.115-1.673, P = .003 < .05, I2 = 84.7%) in overall populations. Similar associations were also found in the Caucasian population. No significant associations were found in other genotypic comparisons and allelic comparisons. CONCLUSIONS Statistically significant correlations were discovered between the TPH1 rs10488682 polymorphisms and AIS. Heterozygous AT genotype seems to be risky with an over-dominant effect. Ethnicity appears to modify the disease association. REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Junyu Li
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road
| | - Zexi Yang
- School of Clinical Medicine, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Miao Yu
- Orthopedic Department, Peking University Third Hospital, 49 North Garden Road
| |
Collapse
|
6
|
Genetic Variants of ABO and SOX6 are Associated With Adolescent Idiopathic Scoliosis in Chinese Han Population. Spine (Phila Pa 1976) 2019; 44:E1063-E1067. [PMID: 30994600 DOI: 10.1097/brs.0000000000003062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE The aim of this study was to determine whether variants of ABO, SOX6, and CDH13 are associated with the susceptibility of AIS in Chinese Han population. SUMMARY OF BACKGROUND DATA A recent large-scale genome-wide association study reported three novel loci in CDH13, ABO, and SOX6 genes associated with adolescent idiopathic scoliosis (AIS) in Japanese population. However, the association of these three genes with AIS in other populations remains obscure. METHODS The SNPs rs4513093, rs687621, and rs1455114 were genotyped in 1208 female patients and 2498 healthy controls. Samples for the expression analysis in paraspinal muscles were collected from 49 AIS and 33 congenital scoliosis (CS) patients during surgical interventions. Chi-square analysis was used to assess the difference regarding genotype and allele frequency between cases and controls. Tissue expressions of ABO, CDH13, and SOX6 were compared between AIS and CS patients by the Student t test. RESULTS SNPs rs4513093 of CDH13 and rs687621 of ABO were found to be significantly associated with AIS with an odds ratio of 0.8691 and 1.203, respectively. There was no significant association of rs1455114 with AIS. Moreover, AIS patients were found to have significantly increased expression of ABO. As for expression of CDH13 and SOX6, no remarkable difference was found between the two groups. CONCLUSION The association of CDH13 and ABO variants with AIS was successfully replicated in the Chinese Han population. More studies are warranted to explore the functional role of ABO in the development of AIS. LEVEL OF EVIDENCE N/A.
Collapse
|
7
|
New Evidence Supporting the Role of FBN1 in the Development of Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 2019; 44:E225-E232. [PMID: 30044367 DOI: 10.1097/brs.0000000000002809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE To determine whether common variants of fibrillin-1 (FBN1) and fibrillin-2 (FBN2) are associated with adolescent idiopathic scoliosis (AIS), and to further investigate to further investigate the functional role of FBN1 in the onset and progression of AIS. SUMMARY OF BACKGROUND DATA Previous studies have identified several rare variants in FBN1 and FBN2 that were associated with AIS. There is, however, a lack of knowledge concerning the association between common variants of FBN1 and FBN2 and AIS. METHODS Common variants covering FBN1 and FBN2 were genotyped in 952 patients with AIS and 1499 controls. Paraspinal muscles were collected from 66 patients with AIS and 18 patients with lumbar disc herniation (LDH) during surgical interventions. The differences of genotype and allele distributions between patients and controls were calculated using Chi-square test. The Student t test was used to compare the expression of FBN1 and FBN2 between patients with AIS and LDH. One-way analysis of variance test was used to compare the gene expression among different genotypes of the significantly associated variant. The Pearson correlation analysis was used to determine the relationship between FBN1 expression and the curve severity. RESULTS The common variant rs12916536 of FBN1 was significantly associated with AIS. Patients were found to have significantly lower frequency of allele A than the controls (0.397 vs. 0.450, P = 1.10 × 10) with an odds ratio of 0.81. Moreover, patients with AIS were found to have significantly lower FBN1 expression than patients with LDH (0.00033 ± 0.00015 vs. 0.00054 ± 0.00031, P = 1.70 × 10). The expression level of FBN1 was remarkably correlated with the curve severity (r = -0.352, P = 0.02). There was no significant difference of FBN1 expression among different genotypes of rs12916536. CONCLUSION Common variant of FBN1 is significantly associated with the susceptibility of AIS. Moreover, the decreased expression of FBN1 is significantly correlated with the curve severity of AIS. The functional role of FBN in AIS is worthy of further investigation. LEVEL OF EVIDENCE 3.
Collapse
|
8
|
A Genetic Variant in GPR126 Causing a Decreased Inclusion of Exon 6 Is Associated with Cartilage Development in Adolescent Idiopathic Scoliosis Population. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4678969. [PMID: 30886859 PMCID: PMC6388357 DOI: 10.1155/2019/4678969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity disease in adolescents but its etiology and pathogenesis are still unclear. The current study aims to identify the relationship between single nucleotide polymorphisms (SNPs) of G protein-coupled receptor 126 (GPR126) gene and AIS predisposition. GPR126 contains 26 exons and alternative splicing of exon 6 and exon 25 produces 4 protein-coding transcripts. We genotyped SNPs of GPR126 gene around exon 6 and exon 25 in 131 Chinese AIS patients and 132 healthy controls and provided evidence that SNP rs41289839 G>A is strongly associated with AIS susceptibility. Linkage disequilibrium analysis suggests that rs41289839 and other AIS-related SNPs were in strong LD. Next, we demonstrated that rs41289839 G>A inhibits the inclusion of exon 6 during alternative splicing, resulting in a decreased expression level of exon 6-included transcript (GPR126-exon6in) relative to the exon 6 excluded transcript (GPR126-exon6ex) by minigene assay. Chondrogenic differentiation experiment showed that GPR126-exon6in has a high expression level relative to GPR126-exon6ex during chondrogenic differentiation of hMSCs. Our findings indicate that newly discovered SNP is related to cartilage development and may provide valuable insights into the etiology and pathogenesis of adolescent idiopathic scoliosis.
Collapse
|
9
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Genetic Variant of PAX1 Gene Is Functionally Associated With Adolescent Idiopathic Scoliosis in the Chinese Population. Spine (Phila Pa 1976) 2018; 43:492-496. [PMID: 29095406 DOI: 10.1097/brs.0000000000002475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE To investigate the association between PAX1 gene and the susceptibility of adolescent idiopathic scoliosis (AIS) in the Chinese population and to further determine the functional variant regulating PAX1 expression in patients with AIS. SUMMARY OF BACKGROUND DATA In a previous study an enhancer locus of PAX1 was reported to be associated with the development of AIS in the Caucasian and the Japanese population. However, there is a paucity of knowledge concerning the functional role of PAX1 in the Chinese AIS population. METHODS The single-nucleotide polymorphisms rs6137473 and rs169311 were genotyped in 2914 patients and 3924 controls. The differences of genotype and allele distributions between patients and controls were calculated using chi-square test. Paraspinal muscles were collected from 84 patients with AIS. The one-way analysis of variance test was used to compare the mRNA expression of PAX1 among different genotypes. RESULTS Both rs6137473 and rs169311 were significantly associated with the susceptibility of AIS. Allele G of rs6137473 and allele A of rs169311 can significantly add to the risk of AIS with an odds ratio of 1.17 and 1.22, respectively. Moreover, there was significant difference regarding the expression of the PAX1 between the concave side and convex side of the patients. Patients with genotype AA of rs169311 had significantly decreased expression of PAX1 than those with genotype CC. As for rs6137473, no remarkable difference of PAX1 expression was found among the three genotypes. CONCLUSION The association between PAX1 and the susceptibility of AIS was successfully replicated in the Chinese population. Moreover, rs169311 could be a functional variant regulating the expression of PAX1 in the paraspinal muscles of AIS. Further functional analysis is warranted for a comprehensive knowledge on the contribution of this variant to the development of AIS. LEVEL OF EVIDENCE 3.
Collapse
|
11
|
Fadzan M, Bettany-Saltikov J. Etiological Theories of Adolescent Idiopathic Scoliosis: Past and Present. Open Orthop J 2017; 11:1466-1489. [PMID: 29399224 PMCID: PMC5759107 DOI: 10.2174/1874325001711011466] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
Adolescent idiopathic scoliosis is one of the most common spinal deformities, yet its cause is unknown. Various theories look to biomechanical, neuromuscular, genetic, and environmental origins, yet our understanding of scoliosis etiology is still limited. Determining the cause of a disease is crucial to developing the most effective treatment. Associations made with scoliosis do not necessarily point to causality, and it is difficult to determine whether said associations are primary (playing a role in development) or secondary (develop as a result of scoliosis). Scoliosis is a complex condition with highly variable expression, even among family members, and likely has many causes. These causes could be similar among homogenous groups of AIS patients, or they could be individual. Here, we review the most prevalent theories of scoliosis etiology and recent trends in research.
Collapse
Affiliation(s)
- Maja Fadzan
- Scoliosis 3DC, 3 Baldwin Green Common, Suite 204, Woburn, MA 01801, USA
| | | |
Collapse
|
12
|
Genetic Variant of GPR126 Gene is Functionally Associated With Adolescent Idiopathic Scoliosis in Chinese Population. Spine (Phila Pa 1976) 2017; 42:E1098-E1103. [PMID: 28198779 DOI: 10.1097/brs.0000000000002123] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study of GPR126 gene with adolescent idiopathic scoliosis (AIS) in the Chinese population. OBJECTIVE To investigate whether rs9403380, rs6570507, and rs7774095 of GPR126 gene are susceptible locus of AIS and to further determine the functional variants regulating gene expression in tissues of AIS. SUMMARY OF BACKGROUND DATA Previous studies have identified several new susceptibility locus for AIS in GPR126 gene. No studies have, however, investigated GPR126 expression in tissues of AIS, and the regulatory role of susceptible variants in the gene expression remains obscure. METHODS Rs9403380, rs6570507, and rs7774095 were genotyped in 1956 patients with AIS and 2094 controls. The differences of genotype and allele distributions between patients and controls were calculated using chi-square test. Paravertebral muscles were collected from 67 patients with AIS, 20 patients with congenital scoliosis, and 20 patients with lumbar disc herniation. Vertebral bones were obtained in eight patients with AIS and five patients with lumbar disc herniation. Patients with AIS were classified into three groups according to the genotypes of each single-nucleotide polymorphism, and one-way analysis of variance test was used to compare GPR126 expression among different groups and genotypes. RESULTS All the three single-nucleotide polymorphisms were found significantly associated with AIS. Allele C of rs9403380, allele G of rs6570507, and allele A of rs7774095 can significantly add to the risk of AIS with an odds ratio of 1.17, 1.16, and 1.15, respectively. Patients with AIS were found to have significantly higher GPR126 expression than controls. Moreover, there was significant difference between the expression of the GPR126 in the concave side and convex side of the patients with AIS. Patients with rs9403380 genotype CC have a significantly increased expression of GPR126 than those with TT. CONCLUSION Rs9403380 could be a functional variant regulating the expression of GPR126 in the paraspinal muscles of AIS, which may serve as a potential biomarker for the early diagnosis of AIS. LEVEL OF EVIDENCE N/A.
Collapse
|
13
|
Xu L, Xia C, Qin X, Sun W, Tang NLS, Qiu Y, Cheng JCY, Zhu Z. Genetic variant of BNC2 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Mol Genet Genomics 2017; 292:789-794. [DOI: 10.1007/s00438-017-1315-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|
14
|
Sinha N, 1 Department of Orthopaedic Surgery, Geisinger Medical Center, Danville, PA, USA;, A. Seeley M, S. Horwitz D, Maniar H, H. Seeley A, 2 Department of Pediatrics, Geisinger Medical Center, Danville, PA, USA. Pediatric Orthogenomics: The Latest Trends and Controversies. AIMS MEDICAL SCIENCE 2017. [DOI: 10.3934/medsci.2017.2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Nikolova ST, Yablanski VT, Vlaev EN, Savov AS, Kremensky IM. Investigation of Predictive Potential of TPH1 Common Polymorphism in Idiopathic Scoliosis. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2016. [DOI: 10.5799/jcei.328607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Cao Y, Min J, Zhang Q, Li H, Li H. Associations of LBX1 gene and adolescent idiopathic scoliosis susceptibility: a meta-analysis based on 34,626 subjects. BMC Musculoskelet Disord 2016; 17:309. [PMID: 27450593 PMCID: PMC4957912 DOI: 10.1186/s12891-016-1139-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background The results of studies investigating the association between the ladybird homeobox 1 (LBX1) gene polymorphisms and the risk of adolescent idiopathic scoliosis (AIS) are not all the same. As such, we performed a meta-analysis to estimate the association between LBX1 gene polymorphisms and AIS susceptibility. Methods Relevant studies published before 15 November 2015 were identified by searching PubMed, EMBASE, ISI web of knowledge, EBSCO, CNKI and CBM. The strength of relationship was assessed by using odds ratios (ORs) and 95 % confidence interval (CI). Results A total number of eight case-control studies including 10,088 cases and 24,538 controls were identified. The results showed that T allele of rs111090870 increased AIS susceptibility in Asians (T vs. C, OR = 1.22, 95 % CI: 1.16–1.29, P < 0.001), Caucasians (T vs. C, OR = 1.17, 95 % CI: 1.14–1.21, P < 0.001) and in female (T vs. C, OR = 1.21, 95 % CI: 1.17–1.25, P < 0.001). The G allele of rs678741 decreased AIS risk in female (G vs. A, OR = 0.83, 95 % CI: 0.81–0.85, P < 0.001), and the G allele of the rs625039 increased AIS susceptibility in Asians (G vs. A, OR = 1.14, 95 % CI: 1.11–1.17, P < 0.001). Conclusions Our meta-analysis provides evidence that rs111090870, rs678741 and rs625039 polymorphisms near LBX1 gene are associated with AIS susceptibility in some populations. However, our findings are based on only a limited number of studies. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaqin Cao
- Department of Orthopaedics, the First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, China
| | - Jikang Min
- Department of Orthopaedics, the First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, China.
| | - Qianghua Zhang
- Department of Orthopaedics, the First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, China
| | - Heng Li
- Department of Orthopaedics, the First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, China
| | - Haidong Li
- Department of Orthopaedics, the First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
17
|
Association Study between Promoter Polymorphism of TPH1 and Progression of Idiopathic Scoliosis. J Biomark 2016; 2016:5318239. [PMID: 27293961 PMCID: PMC4884859 DOI: 10.1155/2016/5318239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/10/2016] [Accepted: 05/03/2016] [Indexed: 12/02/2022] Open
Abstract
The concept of disease-modifier genes as an element of genetic heterogeneity has been widely accepted and reported. The aim of the current study is to investigate the association between the promoter polymorphism TPH1 (rs10488682) and progression of idiopathic scoliosis (IS) in Eastern European population sample. A total of 105 patients and 210 healthy gender-matched controls were enrolled in this study. The TPH1 promoter polymorphism was genotyped by amplification followed by restriction. The statistical analysis was performed by Fisher's Exact Test. The results indicated that the genotypes and alleles of TPH1 (rs10488682) are not correlated with curve severity, curve pattern, or bracing. Therefore, the examined polymorphic variant could not be considered as a genetic factor with modifying effect of IS. In conclusion, this case-control study revealed no statistically significant association between TPH1 (rs10488682) and progression of IS in Eastern European population sample. These preliminary results should be replicated in extended population studies including larger sample sizes. The identification of molecular markers for IS could be useful for a more accurate prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures.
Collapse
|
18
|
Xu L, Sun W, Qin X, Qiu Y, Zhu Z. The TGFB1 gene is associated with curve severity but not with the development of adolescent idiopathic scoliosis: a replication study in the Chinese population. BMC Musculoskelet Disord 2016; 17:15. [PMID: 26758901 PMCID: PMC4711171 DOI: 10.1186/s12891-016-0863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/05/2016] [Indexed: 11/24/2022] Open
Abstract
Background The transforming growth factor beta-1 (TGFB1) gene was recently reported to be a new susceptible gene of adolescent idiopathic scoliosis (AIS) in Russian population. This study aimed to replicate the relationship between the TGFB1 gene and the susceptibility of AIS in a Chinese population, and to further describe its association with the curve severity. Methods A total of 1251 female AIS patients and 994 age-matched healthy controls were included in this study. The rs1800469 of TGFB1 gene was genotyped for all participants using the PCR-based Invader assay. The differences of genotype and allele distributions between AIS patients and healthy controls were assessed using the Chi-square test. One-way ANOVA test was used to compare the mean Cobb angles among patients with different genotypes. Results There was no significant difference in terms of the genotype and the allele frequency between the patients and the controls. The mean Cobb angle was 34.7 ± 11.9° (range 25–61°). Case-only analysis showed that rs1800469 was significantly associated with the curve severity. Patients with genotype TT had remarkably higher curve magnitude (39.1 ± 12.8°) than those with genotype CT (34.8 ± 11.1°) or CC (32.1 ± 10.6°). Conclusions The TGFB1 gene may not be a predisposition gene of AIS in the Chinese population. However, it can play a role in the curve progression of AIS. Replication studies in other ethnic groups are warranted to understand the implication of TGFB1 gene in AIS.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Weixiang Sun
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Xiaodong Qin
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Zezhang Zhu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China.
| |
Collapse
|
19
|
Xu L, Huang S, Qin X, Mao S, Qiao J, Qian BP, Qiu Y, Zhu Z. Investigation of the 53 Markers in a DNA-Based Prognostic Test Revealing New Predisposition Genes for Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 2015; 40:1086-1091. [PMID: 25811265 DOI: 10.1097/brs.0000000000000900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study of 53 single nucleotide polymorphisms (SNPs) with adolescent idiopathic scoliosis (AIS). OBJECTIVE To explore new predisposition genes of AIS in Chinese Han population SUMMARY OF BACKGROUND DATA.: A panel of 53 SNPs were reported to be associated with curve severity of AIS. However, there is still a lack of knowledge concerning the association of these SNPs with the susceptibility of AIS in the Chinese Han population. METHODS A gene-based association study was conducted by genotyping the 53 SNPs of a prognostic test. DNA samples of 990 female patients with AIS and 1188 age-matched healthy controls were analyzed using the polymerase chain reaction-based Invader assay. The χ test was carried out to compare the differences of genotype and allele distributions between patients with AIS and healthy controls. RESULTS A total of 4 SNPs were found to present significant differences in allele or genotype frequencies between the 2 groups. Compared with normal controls, patients were found to have significantly higher allele G of rs12618119 and allele A of rs9945359. Besides, patients were found to have significantly lower allele T of rs4661748 and allele C of rs4782809 than the normal controls. BIN1, CDH13, SETBP1, and SPATA21 genes could be associated with the susceptibility of AIS. CONCLUSION Four new predisposition genes of AIS were identified on the basis of a large-scale case-control study. Putting all these findings together, it suggests that AIS is a multifactorial disease possibly involving different pathways such as development of central neural system and bone formation. Further studies exploring more predisposition gene are essential to illustrate the etiology of AIS and to guide the prevention or prognosis of the disease. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Leilei Xu
- *Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and †Department of Internal Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhu Z, Xu L, Qiu Y. Current progress in genetic research of adolescent idiopathic scoliosis. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:S19. [PMID: 26046064 DOI: 10.3978/j.issn.2305-5839.2015.02.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 11/14/2022]
Abstract
Previous genetic linkage analysis and candidate gene association analysis have unveiled dozens of variants associated with the development of adolescent idiopathic scoliosis (AIS), which however can seldom be replicated in different ethnics. Recently, two genome-wide association studies of AIS performed in Japan revealed that ladybird homeobox 1 (LBX1) gene and G protein-coupled receptor 126 (GPR126) gene could play a role in the etiopathogenesis of the disease. Since the association between these two genes and AIS were successfully validated in the Caucasian and the Chinese population, LBX1 gene and GPR126 gene were the most reliable genetic variants underling the development of AIS.
Collapse
Affiliation(s)
- Zezhang Zhu
- Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Leilei Xu
- Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yong Qiu
- Spine Surgery, Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
21
|
Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, Gu HF, Hong JF, Cao L, Chen Y, Xia B, Bi Q, Wang YP. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics 2014; 105:101-7. [PMID: 25479386 DOI: 10.1016/j.ygeno.2014.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/19/2014] [Accepted: 11/16/2014] [Indexed: 11/27/2022]
Abstract
Idiopathic scoliosis is the most common pediatric spinal deformity affecting 1% to 3% of the population, and adolescent idiopathic scoliosis (AIS) accounts for approximately 80% of these cases; however, the etiology and pathogenesis of AIS are still uncertain. The current study aims to identify the relationship between G protein-coupled receptor 126 (GPR126) gene and AIS predisposition, to identify the relationship between the genotypes of the GPR126 SNPs and the clinical phenotypes of AIS. We conducted a case-control study and genotyped twenty SNPs of GPR126 gene including ten exonic SNPs and ten intronic polymorphisms in 352 Chinese sporadic AIS patients and 149 healthy controls. We provided evidence for strong association of three intronic SNPs of the GPR126 gene with AIS susceptibility: rs6570507 A > G (p =0 .0035, OR = 1.729), rs7774095 A > C (p = 0.0078, OR = 1.687), and rs7755109 A > G (p = 0.0078, OR = 1.687). However, we did not identify any significant association between ten exonic SNPs of GPR126 and AIS. Linkage disequilibrium analysis indicated that rs7774095 A > C and rs7755109 A > G could be parsed into one block. The association between the intronic haplotype and AIS was further confirmed in an independent population with 110 AIS individuals and 130 healthy controls (p = 0.046, OR = 1.680). Furthermore, molecular mechanisms underlying intronic SNP regulation of GPR126 gene were studied. Although intronic SNPs associated with AIS didn't influence GPR126 mRNA alternative splicing, there was a strong association of rs7755109 A > G with decreased GPR126 mRNA level and protein levels. Our findings indicate that genetic variants of GPR126 gene are associated with AIS susceptibility in Chinese populations. The genetic association of GPR126 gene and AIS might provide valuable insights into the pathogenesis of adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Ji-Feng Xu
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China.
| | - Guang-hai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiao-Hong Pan
- Department of Cardiolopy, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Shui-Jun Zhang
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Chen Zhao
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Bin-Song Qiu
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Hai-Feng Gu
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Jian-Fei Hong
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Li Cao
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Yu Chen
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Bing Xia
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Qin Bi
- Department of Orthopedics and Joint Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Ya-Ping Wang
- Department of Cardiolopy, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China.
| |
Collapse
|
22
|
Association Between rs11190870 Polymorphism Near LBX1 and Susceptibility to Adolescent Idiopathic Scoliosis in East Asian Population: A Genetic Meta-Analysis. Spine (Phila Pa 1976) 2014; 39:862-869. [PMID: 24583738 DOI: 10.1097/brs.0000000000000303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Meta-analysis to collect all the relevant studies to date to further investigate whether or not the rs11190870 polymorphism is associated with susceptibility to adolescent idiopathic scoliosis (AIS) in East Asian population. OBJECTIVE To investigate whether or not the rs11190870 polymorphism is associated with susceptibility to AIS in East Asian population. SUMMARY OF BACKGROUND DATA To date, the single nucleotide polymorphism rs11190870 was identified as the most significant common variant in Japanese females. Three association studies conducted in Chinese Han population from Hong Kong, Yangtze River region, and Southern region of mainland China replicated the association between AIS and rs1190870. However, there is limited published data about the association of rs11190870 with AIS in East Asian population. METHODS A systematic search of all relevant studies published through August 2013 was conducted using the MEDLINE, EMBASE, OVID, and ScienceDirect. Single nucleotide polymorphism of rs11190870 was evaluated. The included studies were assessed in the analysis of the following allele model: T allele versus C allele for the allele-level comparison; (b) TC + TT versus CC for dominant model of T allele; (c) TT versus TC + CC for recessive model of T allele, and (d) TT versus CC for extreme genotype. RESULTS Four studies with 8415 total participants (2889 patients with AIS and 5526 controls), who were all East Asian population, were eligible for inclusion. We searched for genotypes T allele versus C allele, TT versus TC + CC, TC + TT versus CC, and TT versus CC in a fixed/random-effects model. The effect summary odds ratios and 95 % confidence intervals were obtained, which shows significant association between rs11190870 and AIS in East Asian populations (all genetic models P < 0.001). Subgroup analyses were conducted according to sex. The results showed a significant association between rs11190870 and AIS in female (all genetic models, P < 0.001) but not in male (all genetic models, P > 0.05). CONCLUSION The present meta-analysis demonstrated that the T allele of single nucleotide polymorphism rs11190870 may be a major susceptibility locus in the East Asian population with AIS, especially in female. LEVEL OF EVIDENCE 1.
Collapse
|
23
|
Ultrastructure of Intervertebral Disc and Vertebra-Disc Junctions Zones as a Link in Etiopathogenesis of Idiopathic Scoliosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/850594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Context. There is no general accepted theory on the etiology of idiopathic scoliosis (IS). An important role of the vertebrae endplate physes (VEPh) and intervertebral discs (IVD) in spinal curve progression is acknowledged, but ultrastructural mechanisms are not well understood. Purpose. To analyze the current literature on ultrastructural characteristics of VEPh and IVD in the context of IS etiology. Study Design/Setting. A literature review. Results. There is strong evidence for multifactorial etiology of IS. Early wedging of vertebra bodies is likely due to laterally directed appositional bone growth at the concave side, caused by a combination of increased cell proliferation at the vertebrae endplate and altered mechanical properties of the outer annulus fibrosus of the adjacent IVD. Genetic defects in bending proteins necessary for IVD lamellar organization underlie altered mechanical properties. Asymmetrical ligaments, muscular stretch, and spine instability may also play roles in curve formation. Conclusions. Development of a reliable, cost effective method for identifying patients at high risk for curve progression is needed and could lead to a paradigm shift in treatment options. Unnecessary anxiety, bracing, and radiation could potentially be minimized and high risk patient could receive surgery earlier, rendering better outcomes with fewer fused segments needed to mitigate curve progression.
Collapse
|
24
|
The association study of calmodulin 1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:168106. [PMID: 24551838 PMCID: PMC3914287 DOI: 10.1155/2014/168106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
Abstract
Objective. Idiopathic scoliosis is the most common pediatric spinal deformity affecting 1% to 3% of the population, and adolescent idiopathic scoliosis (AIS) accounts for approximately 80% of these cases; however, the etiology and pathogenesis of AIS are still uncertain. The current study aims to identify the relationship between calmodulin 1 (CALM1) gene and AIS predisposition, to identify the relationship between the genotypes of the SNPs and the clinical phenotypes of AIS. Methods. 146 AIS patients and 146 healthy controls were enrolled into this case-control study. 12 single nucleotide polymorphisms (SNPs) candidates in CALM1 gene were selected to determine the relationship between CALM1 gene and AIS predisposition. Case-only study was performed to determine the effects of these variants on the severity of the condition. Results. Three SNPs from 12 candidates were found to be associated with AIS predisposition. The ORs were observed as 0.549 (95% CI 0.3519–0.8579, P = 0.0079), 0.549 (95% CI 0.3519–0.8579, P = 0.0079), and 1.6139 (95% CI 1.0576–2.4634, P = 0.0257) for rs2300496, rs2300500, and rs3231718, respectively. There was no statistical difference between main curve, severity, and genotype distributions of all of 12 SNPs. Conclusion. Genetic variants of CALM1 gene are associated with AIS susceptibility.
Collapse
|
25
|
Yee A, Song YQ, Chan D, Cheung KMC. Understanding the Basis of Genetic Studies: Adolescent Idiopathic Scoliosis as an Example. Spine Deform 2014; 2:1-9. [PMID: 27927437 DOI: 10.1016/j.jspd.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/24/2013] [Accepted: 09/01/2013] [Indexed: 12/31/2022]
Abstract
STUDY DESIGN A review of the general concepts of genetics studies with specific reference to adolescent idiopathic scoliosis (AIS). OBJECTIVES To equip the average spine surgeon with the vocabulary and understanding needed to understand the genetics of scoliosis and the approaches used to identify risk genes. SUMMARY OF BACKGROUND DATA Adolescent idiopathic scoliosis is a multifactorial disease. Increasing evidence from families and monozygotic twins suggests the involvement of genetic factors. An estimation of heritability also indicates a strong influence of genetics on the disease. Increasing focus has been placed on identifying genes and genetic variants associated with AIS. REVIEW This is a review of genes and genetic variations, the phenotype definition of AIS in genetics studies, concepts and approaches to identifying associated genes, and the evaluation of results. Different types of genetic variations are present in the genome. These variations may modulate the expression or function of protein products, which in turn alter individuals' susceptibility to disease. Identifying the variants related to AIS requires an objective and clearly defined phenotype, among which the Cobb angle is commonly used. The phenotype helps classify subjects into cases and controls. By selecting candidate genes of growth factors and hormonal receptors, which are speculated to be involved in the mechanism of disease, the variants within these genes were compared between cases and controls to identify any differences. Another approach was to use large families and inspect the co-segregation of variants and phenotypes. Recently, arrays covering the variants of the whole genome were developed and assist in high-throughput screening for associated genes. CONCLUSIONS Genetic factors have an important role in AIS. Deciphering the genes and genetic variants associated with AIS can improve our understanding of the mechanisms of the disease, as well as assist in designing treatment methods and preventive measures.
Collapse
Affiliation(s)
- Anita Yee
- Department of Biochemistry, University of Hong Kong, 3/F Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - You-Qiang Song
- Department of Biochemistry, University of Hong Kong, 3/F Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Danny Chan
- Department of Biochemistry, University of Hong Kong, 3/F Laboratory Block, LKS Faculty of Medicine, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, 5/F Professorial Block, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
26
|
Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, Qiu X, Takahashi A, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Kubo M, Tsunoda T, Watanabe K, Chiba K, Toyama Y, Qiu Y, Matsumoto M, Ikegawa S. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One 2013; 8:e72802. [PMID: 24023777 PMCID: PMC3762929 DOI: 10.1371/journal.pone.0072802] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity, affecting around 2% of adolescents worldwide. Genetic factors play an important role in its etiology. Using a genome-wide association study (GWAS), we recently identified novel AIS susceptibility loci on chromosomes 10q24.31 and 6q24.1. To identify more AIS susceptibility loci relating to its severity and progression, we performed GWAS by limiting the case subjects to those with severe AIS. Through a two-stage association study using a total of ∼12,000 Japanese subjects, we identified a common variant, rs12946942 that showed a significant association with severe AIS in the recessive model (P = 4.00×10−8, odds ratio [OR] = 2.05). Its association was replicated in a Chinese population (combined P = 6.43×10−12, OR = 2.21). rs12946942 is on chromosome 17q24.3 near the genes SOX9 and KCNJ2, which when mutated cause scoliosis phenotypes. Our findings will offer new insight into the etiology and progression of AIS.
Collapse
Affiliation(s)
- Atsushi Miyake
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Ikuyo Kou
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science, Tokyo, Japan
| | - Yohei Takahashi
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Todd A. Johnson
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Yoji Ogura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science, Tokyo, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Jin Dai
- Department of Orthopaedics, The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xusheng Qiu
- Department of Spine Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Science, Tokyo, Japan
| | - Hua Jiang
- Department of Spine Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Huang Yan
- Department of Spine Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Katsuki Kono
- Scoliosis Center, Saiseikai Central Hospital, Tokyo, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Koki Uno
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Manabu Ito
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shohei Minami
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Haruhisa Yanagida
- Department of Orthopaedic Surgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Naoya Hosono
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Taichi Tsuji
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Teppei Suzuki
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Ikuho Yonezawa
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yong Qiu
- Department of Spine Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
- * E-mail: (SI); (MM)
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science, Tokyo, Japan
- * E-mail: (SI); (MM)
| |
Collapse
|
27
|
A replication study for association of 53 single nucleotide polymorphisms in a scoliosis prognostic test with progression of adolescent idiopathic scoliosis in Japanese. Spine (Phila Pa 1976) 2013; 38:1375-9. [PMID: 23591653 DOI: 10.1097/brs.0b013e3182947d21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study of single nucleotide polymorphisms (SNPs) previously reported to be associated with curve progression of adolescent idiopathic scoliosis (AIS). OBJECTIVE To determine whether the association of 53 SNPs with curve progression reported in white patients with AIS are replicated in Japanese patients with AIS. SUMMARY OF BACKGROUND DATA Predicting curve progression is important in clinical practice of AIS. The progression of AIS is reported to be associated with a number of genes. Associations with 53 SNPs have been reported, and the SNPs are used for a progression test in white patients with AIS; however, there has been no replication study for their association. METHODS We recruited 2117 patients with AIS with 10° or more (Cobb angle) of scoliosis curves. They were divided into progression and nonprogression groups according to their Cobb angle. We defined the progression of the curve as Cobb angle more than 50° for skeletally mature subjects and more than 40° for immature patients, subjects. We defined the nonprogression of the curve as Cobb angle 50° or less only for skeletally mature subjects. Of the 2117 patients, 1714 patients with AIS were allocated to either the progression or nonprogression group. We evaluated the association of 53 SNPs with curve progression by comparing risk allele frequencies between the 2 groups. RESULTS We evaluated the progression (N = 600) and nonprogression (N = 1114) subjects. Their risk allele frequencies were not different significantly. We found no replication of the association on AIS curve progression in any of the SNPs. CONCLUSION The associations of the 53 SNPs with progression of AIS curve are not definite. Large-scale association studies based on appropriate criteria for progression would be necessary to identify SNPs associated with the curve progression. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
A replication study for association of 5 single nucleotide polymorphisms with curve progression of adolescent idiopathic scoliosis in Japanese patients. Spine (Phila Pa 1976) 2013; 38:571-5. [PMID: 23038618 DOI: 10.1097/brs.0b013e3182761535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study of single nucleotide polymorphisms (SNPs) previously reported to be associated with curve progression of adolescent idiopathic scoliosis (AIS). OBJECTIVE To determine whether the association of 5 SNPs with curve progression reported in Chinese with AIS are replicated in Japanese patients with AIS. SUMMARY OF BACKGROUND DATA AIS is a common spinal deformity and has a strong genetic predisposition. Predicting curve progression is important in clinical practice. The progression of AIS is reported to be associated with a number of genes. Associations with neurotrophin 3, G protein-coupled estrogen receptor, and tissue inhibitor of metalloproteinase 2 have been reported in Han Chinese with AIS; however, there has been no replication study for them. METHODS We recruited 2117 patients with AIS with a Cobb angle of 10° or greater of scoliosis curves. They were grouped into progression and nonprogression groups according to their scoliosis curves. Patients whose scoliotic curves were 40° or greater were included in the progression group, and those whose scoliotic curves were less than 30° and had reached skeletal maturation in the nonprogression group. We evaluated the association of 5 SNPs (rs11063714 in neurotrophin 3, rs3808351, rs10269151, and rs4266553 in G protein-coupled estrogen receptor, and rs8179090 in tissue inhibitor of metalloproteinase 2 with curve progression by comparing risk allele frequencies between the 2 groups and the mean Cobb angle for each genotype. RESULTS We evaluated the progression (N = 880) and nonprogression (N = 492) subjects, and their risk allele frequencies were not significantly different. The mean Cobb angle for each genotype also did not have statistical difference. We found no replication of the association on AIS curve progression in any of the SNPs. CONCLUSION The associations of the 5 SNPs with progression of AIS curve are not definite. Large-scale association studies based on appropriate criteria for progression would be necessary to identify SNPs associated with the curve progression.
Collapse
|
29
|
Gao W, Peng Y, Liang G, Liang A, Ye W, Zhang L, Sharma S, Su P, Huang D. Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS One 2013; 8:e53234. [PMID: 23308168 PMCID: PMC3537668 DOI: 10.1371/journal.pone.0053234] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 11/29/2012] [Indexed: 12/22/2022] Open
Abstract
Background Adolescent idiopathic scoliosis (AIS) is one of the most common spinal deformities found in adolescent populations. Recently, a genome-wide association study (GWAS) in a Japanese population indicated that three single nucleotide polymorphisms (SNPs), rs11190870, rs625039 and rs11598564, all located near the LBX1 gene, may be associated with AIS susceptibility [1]. This study suggests a novel AIS predisposition candidate gene and supports the hypothesis that somatosensory functional disorders could contribute to the pathogenesis of AIS. These findings warrant replication in other populations. Methodology/Principal Findings First, we conducted a case-control study consisting of 953 Chinese Han individuals from southern China (513 patients and 440 healthy controls), and the three SNPs were all found to be associated with AIS predisposition. The ORs were observed as 1.49 (95% CI 1.23–1.80, P = 5.09E-5), 1.70 (95% CI 1.42–2.04, P = 1.17E-8) and 1.52 (95% CI 1.27–1.83, P = 5.54E-6) for rs625039, rs11190870 and rs11598564, respectively. Second, a case-only study including a subgroup of AIS patients (N = 234) was performed to determine the effects of these variants on the severity of the condition. However, we did not find any association between these variants and the severity of curvature. Conclusion This study shows that the genetic variants near the LBX1 gene are associated with AIS susceptibility in Chinese Han population. It successfully replicates the results of the GWAS, which was performed in a Japanese population.
Collapse
Affiliation(s)
- Wenjie Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guoyan Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Ye
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangming Zhang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Swarkar Sharma
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
- School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, India
| | - Peiqiang Su
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
- * E-mail: (DH); (PS)
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (DH); (PS)
| |
Collapse
|
30
|
Zhou S, Qiu XS, Zhu ZZ, Wu WF, Liu Z, Qiu Y. A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord 2012; 13:181. [PMID: 22999050 PMCID: PMC3517504 DOI: 10.1186/1471-2474-13-181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022] Open
Abstract
Background Although the pathogenesis of adolescent idiopathic scoliosis (AIS) remains controversial, genetic factors are thought to play key roles in the development of AIS. In a recent genome-wide association study, a polymorphism in the interleukin-17 receptor C (IL-17RC) gene was reported to be associated with the susceptibility to AIS, implicating IL-17RC as a novel predisposing gene for AIS. However, as this association has not been replicated in other populations, its global applicability remains unclear. Methods A total of 529 Chinese girls with AIS and 512 healthy age-matched controls were recruited in this case–control study from June 2007 to December 2009. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis was performed to detect the genotype of the single-nucleotide polymorphism (SNP) rs708567 in the IL-17RC gene. Case–control and case-only studies were performed to determine the association between the IL-17RC gene polymorphism and the susceptibility to and curve severity of AIS. Results The GG genotype and G allele frequencies were significantly higher in the AIS patients than in the controls (χ2 test: P = 0.023 and 0.028, respectively). The risk for the GG genotype is 1.550-fold (95% CI: 1.062 - 2.261) higher than the AG genotype, and the risk for the G allele is 1.507-fold (95% CI: 1.046 - 2.172) higher than the A allele. Additionally, a subgroup of skeletally mature AIS patients (n = 241) who carried the GG genotype showed a significantly higher mean maximum Cobb angle than those carrying the AG genotype (36.01 ± 13.12° vs. 28.92 ± 7.43°, P = 0.007). Conclusions This study confirms the significant association between the IL-17RC gene polymorphism and the susceptibility to and curve severity of AIS in a Chinese Han population, suggesting that the IL-17RC gene is an AIS-predisposing gene in Chinese Han population.
Collapse
Affiliation(s)
- Song Zhou
- Spine Surgery Department, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | |
Collapse
|
31
|
Gorman KF, Julien C, Moreau A. The genetic epidemiology of idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 21:1905-19. [PMID: 22695700 PMCID: PMC3463687 DOI: 10.1007/s00586-012-2389-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 12/23/2022]
Abstract
Purpose Idiopathic scoliosis is a complex developmental syndrome defined by an abnormal structural curvature of the spine. High treatment costs, chronic pain/discomfort, and the need for monitoring at-risk individuals contribute to the global healthcare burden of this musculoskeletal disease. Although many studies have endeavored to identify underlying genes, little progress has been made in understanding the etiopathogenesis. The objective of this comprehensive review was to summarize genetic associations/linkages with idiopathic scoliosis, as well as explore the strengths and weaknesses of each study, such that it may serve as a guide for the design and interpretation of future genetic studies in scoliosis. Methods We searched PubMed and Human Genome Epidemiology (HuGE) Navigator using the search terms “gene and scoliosis”. Linkage or association studies published in English and available full-text were further analyzed as regards results, experimental design, and statistical approach. Results We identified and analyzed 50 studies matching our criteria. These consisted of 34 candidate gene studies (6 linkage, 28 association) and 16 genome-wide studies [14 pedigree-based linkage, 2 genome-wide association studies (GWAS)]. Findings involved genes related to connective tissue structure, bone formation/metabolism, melatonin signaling pathways, puberty and growth, and axon guidance pathways. Variability in results between studies suggested ethnic and/or genetic heterogeneity. Conclusions The major difficulty in idiopathic scoliosis research is phenotypic and genetic heterogeneity. Genetic research was overrepresented by underpowered studies. The use of biological endophenotypes, as well as restricted clinical definitions, may help to partition variation and increase the power of studies to detect or confirm an effect.
Collapse
Affiliation(s)
- Kristen Fay Gorman
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte Justine University Hospital Research Center, Montreal, QC, Canada
| | | | | |
Collapse
|
32
|
A promoter polymorphism of neurotrophin 3 gene is associated with curve severity and bracing effectiveness in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2012; 37:127-33. [PMID: 22158057 DOI: 10.1097/brs.0b013e31823e5890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study to comprehensively investigate variations of neurotrophin 3 (NTF3) gene polymorphisms in a Chinese Han population. OBJECTIVE To explore whether the NTF3 gene polymorphisms are associated with the susceptibility, curve severity, or bracing effectiveness of adolescent idiopathic scoliosis (AIS). SUMMARY OF BACKGROUND DATA Scoliosis has developed in mice with NTF3 deficiency in previous studies. Increased expression of NTF3 mRNA was detected in the paravertebral muscle in AIS. Moreover, linkage study has defined a novel AIS locus on chromosome 12p while NTF3 gene is located exactly in this interval. All evidence indicates a potential role of NTF3 in the pathogenesis of AIS. As for brace treatment of AIS, continuous sensory stimulation caused by an orthosis could help awareness of body misalignment and trigger curve correction through postural reflex. While NTF3 gene is tightly associated with proprioceptive feedback mechanism to adjust postural control, we hypothesized NTF3 as a potential candidate gene associated with the bracing effectiveness. METHODS A total of 362 AIS patients and 377 age-matched healthy controls were recruited. Two single-nucleotide polymorphisms (SNPs) were selected on the basis of the Chinese data from the HapMap project, and genotyping was carried out by polymerase chain reaction-restriction fragment length polymorphism for each SNP, respectively. Case-control study and case-only study were performed to define the contribution of NTF3 gene polymorphisms to predisposition and disease severity of AIS. Another subgroup of 120 skeletally immature AIS patients who received continuous brace treatment for minimal 2 years was genotyped, and bracing effectiveness was assessed to determine its association with NTF3 gene polymorphisms. RESULTS The genotype and allele frequency distribution were similar between AIS and normal control for these 2 SNPs (χ² test: P > 0.05). For SNP rs11063714 in the promoter region of NTF3 gene, AIS patients with AA genotype showed significantly lower mean maximum Cobb angle than the patients with AG or GG genotypes (analysis of variance: P = 0.008). In addition, skeletally immature bracing AIS patients with AA genotype possessed significantly higher successful ratio of brace treatment compared with GG genotype (χ² test: P = 0.043). For SNP rs1805149, no significant association with predisposition or curve severity was detected. CONCLUSION The NTF3 gene polymorphisms are not associated with the occurrence of AIS, but the promoter polymorphism (rs11063714) is associated with the curve severity, implicating an alleviating role of NTF3 in the curve progression of AIS. In addition, the promoter polymorphism is also associated with brace responsiveness. These findings indicated that NTF3 gene might be a disease-modifying gene of AIS.
Collapse
|
33
|
Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep 2011; 39:5561-7. [DOI: 10.1007/s11033-011-1360-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
34
|
Melatonin pathway genes and breast cancer risk among Chinese women. Breast Cancer Res Treat 2011; 132:693-9. [PMID: 22138747 DOI: 10.1007/s10549-011-1884-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/12/2011] [Indexed: 12/29/2022]
Abstract
Previous studies suggest that melatonin may act on cancer growth through a variety of mechanisms, most notably by direct anti-proliferative effects on breast cancer cells and via interactions with the estrogen pathway. Three genes are largely responsible for mediating the downstream effects of melatonin: melatonin receptors 1a and 1b (MTNR1a and MTNR1b), and arylalkylamine N-acetyltransferase (AANAT). It is hypothesized that genetic variation in these genes may lead to altered protein production or function. To address this question, we conducted a comprehensive evaluation of the association between common single nucleotide polymorphisms (SNPs) in the MTNR1a, MTNR1b, and AANAT genes and breast cancer risk among 2,073 cases and 2,083 controls, using a two-stage analysis of genome-wide association data among women of the Shanghai Breast Cancer Study. Results demonstrate two SNPs were consistently associated with breast cancer risk across both study stages. Compared with MTNR1b rs10765576 major allele carriers (GG or GA), a decreased risk of breast cancer was associated with the AA genotype (OR = 0.78, 95% CI = 0.62-0.97, P = 0.0281). Although no overall association was seen in the combined analysis, the effect of MTNR1a rs7665392 was found to vary by menopausal status (P-value for interaction = 0.001). Premenopausal women with the GG genotype were at increased risk for breast cancer compared with major allele carriers (TT or TG) (OR = 1.57, 95% CI = 1.07-2.31, P = 0.020), while postmenopausal women were at decreased risk (OR = 0.58, 95% 0.36-0.95, P = 0.030). No significant breast cancer associations were found for variants in the AANAT gene. These results suggest that common genetic variation in the MTNR1a and 1b genes may contribute to breast cancer susceptibility, and that associations may vary by menopausal status. Given that multiple variants in high linkage disequilibrium with MTNR1b rs76653292 have been associated with altered function or expression of insulin and glucose family members, further research may focus on clarifying this relationship.
Collapse
|
35
|
Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet 2011; 43:1237-40. [DOI: 10.1038/ng.974] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/19/2011] [Indexed: 11/09/2022]
|
36
|
Xu L, Qiu X, Sun X, Mao S, Liu Z, Qiao J, Qiu Y. Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1757-1764. [PMID: 21691901 PMCID: PMC3175878 DOI: 10.1007/s00586-011-1874-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 06/02/2011] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate whether the predisposition genes previously reported to be associated with the occurrence or curve severity of adolescent idiopathic scoliosis (AIS) play a role in the effectiveness of brace treatment. METHOD A total of 312 AIS patients treated with bracing were enrolled in this study. The Cobb angle of the main curve was recorded at the beginning of brace treatment as well as at each follow-up. The patients were divided into two groups according to the outcome of brace treatment (success/failure). The failure of brace treatment was defined as a curve progression of more than 5° compared to the initial Cobb angle or surgical intervention because of curve progression. Single nucleotide polymorphism (SNP) sites in the genes for estrogen receptor α (ERα), estrogen receptor β (ERβ), tryptophan hydroxylase 1 (TPH-1), melatonin receptor 1B (MTNR1B) and matrillin-1 (MATN1), which were previously identified to be predisposition genes for AIS, were selected for genotyping by the PCR-RFLP method. Differences of genotype and allele distribution between the two groups were compared by the χ(2) test. A logistic regression analysis was used to figure out the independent predictors of the outcome of brace treatment. RESULTS There were 90 cases (28.8%) in the failure group and 222 cases (71.2%) in the success group. Patients in the failure group were associated with the genotype GA (50.9 vs. 17.9% p < 0.001) and the G allele (27.1 vs. 12.0%, p < 0.001) at SNP rs9340799 of the ERα gene. Similarly, they were also associated with the genotype AT (33.3 vs. 13.0%, p = 0.002) and the A allele (16.7 vs. 9.6%, p = 0.033) at SNP rs10488682 of the TPH-1 gene. For MTNR1B, the difference of genotype distribution between the two groups was found to be statistically significant, while the difference of allele distribution between the two groups was found to be marginally statistically significant; for the MATN1 and ERβ genes, we found no significant differences of the genotype or allele distribution between the two groups. In the logistic regression analysis, ERα and TPH-1 were demonstrated to be independent factors predictive of bracing effectiveness. CONCLUSIONS ERα and TPH-1 might be potential genetic markers that could predict the outcome of brace treatment. Patients with the G allele at the rs9340799 site of the ERα gene and the A allele at the rs10488682 site of the TPH-1 gene are prone to be resistant to brace treatment.
Collapse
Affiliation(s)
- Leilei Xu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Xusheng Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Xu Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Saihu Mao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Zhen Liu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Jun Qiao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| | - Yong Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008 China
| |
Collapse
|
37
|
Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res 2011; 29:1055-8. [PMID: 21308753 DOI: 10.1002/jor.21347] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/09/2010] [Indexed: 02/04/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a spinal deformity most commonly arising in apparently healthy girls around puberty. AIS has a strong genetic predisposition. Several genetic associations between AIS and single nucleotide polymorphisms (SNPs) have been reported; common SNPs in the genes for matrilin 1 (MATN1), melatonin receptor 1B (MTNR1B), tryptophan hydroxylase 1 (TPH1), and insulin-like growth factor 1 (IGF1) are reported to be associated with AIS in Chinese. However, these associations have not been replicated so far. To confirm the associations, we compared these SNPs with AIS predisposition and curve severity in a population of Japanese females consisting of 798 AIS patients and 1,239 controls. All the subjects were genotyped using the PCR-based Invader assay. We found no association of any of the SNPs with AIS predisposition or curve severity. Considering the statistical power and sample size of the present study, we concluded that these SNPs are not associated with either AIS predisposition or curve severity in Japanese.
Collapse
Affiliation(s)
- Yohei Takahashi
- Laboratory of Bone and Joint Diseases, Center for Genomic Medicine, RIKEN, 4-6-1 Sirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clinical uses of melatonin in pediatrics. Int J Pediatr 2011; 2011:892624. [PMID: 21760817 PMCID: PMC3133850 DOI: 10.1155/2011/892624] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 11/29/2022] Open
Abstract
This study analyzes the results of clinical trials of treatments with melatonin conducted in children, mostly focused on sleep disorders of different origin. Melatonin is beneficial not only in the treatment of dyssomnias, especially delayed sleep phase syndrome, but also on sleep disorders present in children with attention-deficit hyperactivity, autism spectrum disorders, and, in general, in all sleep disturbances associated with mental, neurologic, or other medical disorders. Sedative properties of melatonin have been used in diagnostic situations requiring sedation or as a premedicant in children undergoing anesthetic procedures. Epilepsy and febrile seizures are also susceptible to treatment with melatonin, alone or associated with conventional antiepileptic drugs. Melatonin has been also used to prevent the progression in some cases of adolescent idiopathic scoliosis. In newborns, and particularly those delivered preterm, melatonin has been used to reduce oxidative stress associated with sepsis, asphyxia, respiratory distress, or surgical stress. Finally, the administration of melatonin, melatonin analogues, or melatonin precursors to the infants through the breast-feeding, or by milk formula adapted for day and night, improves their nocturnal sleep. Side effects of melatonin treatments in children have not been reported. Although the above-described results are promising, specific studies to resolve the problem of dosage, formulations, and length of treatment are necessary.
Collapse
|
39
|
Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S. Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res 2011; 29:834-7. [PMID: 21520258 DOI: 10.1002/jor.21322] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common disorder with a strong genetic predisposition. Associations between AIS and common single nucleotide polymorphisms (SNPs) in estrogen receptor genes have been reported. rs9340799 in the gene for estrogen receptor α (ESR1) is reported to be associated with curve severity in Japanese and with AIS predisposition and curve severity in Chinese. In addition, rs1256120 in the gene for estrogen receptor β (ESR2) is reported to be associated with AIS predisposition and curve severity in Chinese. However, the sample sizes of these previous studies were small, and the associations of these SNPs have not been replicated. To examine the association between AIS and estrogen receptor genes, we investigated the association of rs9340799 and rs1256120 with AIS predisposition and curve severity using a large Japanese population, consisting of 798 AIS patients and 637 sex-matched controls. We found no association of either SNP with AIS predisposition or curve severity in the Japanese population. Considering the statistical power of the present study and the limitations of the previous reports, we conclude that the associations of rs9340799 and rs1256120 with AIS predisposition and curve severity are negative.
Collapse
|
40
|
Girardo M, Bettini N, Dema E, Cervellati S. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20 Suppl 1:S68-74. [PMID: 21416282 PMCID: PMC3087042 DOI: 10.1007/s00586-011-1750-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Indexed: 12/15/2022]
Abstract
The cause of adolescent idiopathic scoliosis (AIS) in humans remains obscure and probably multifactorial. At present, there is no proven method or test available to identify children or adolescent at risk of developing AIS or identify which of the affected individuals are at risk of progression. Reported associations are linked in pathogenesis rather than etiologic factors. Melatonin may play a role in the pathogenesis of scoliosis (neuroendocrine hypothesis), but at present, the data available cannot clearly show the role of melatonin in producing scoliosis in humans. The data regarding human melatonin levels are mixed at best, and the melatonin deficiency as a causative factor in the etiology of scoliosis cannot be supported. It will be an important issue of future research to investigate the role of melatonin in human biology, the clinical efficacy, and safety of melatonin under different pathological situations. Research is needed to better define the role of all factors in AIS development.
Collapse
Affiliation(s)
- M Girardo
- Department of Spine Surgery, CTO/CRF/Maria Adelaide, Turin, Italy.
| | | | | | | |
Collapse
|
41
|
Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ. Melatonin and circadian biology in human cardiovascular disease. J Pineal Res 2010; 49:14-22. [PMID: 20536686 DOI: 10.1111/j.1600-079x.2010.00773.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diurnal rhythms influence cardiovascular physiology, i.e. heart rate and blood pressure, and they appear to also modulate the incidence of serious adverse cardiac events. Diurnal variations occur also at the molecular level including changes in gene expression in the heart and blood vessels. Moreover, the risk/benefit ratio of some therapeutic strategies and the concentration of circulating cardiovascular system biomarkers may also vary across the 24-hr light/dark cycle. Synchrony between external and internal diurnal rhythms and harmony among molecular rhythms within the cell are essential for normal organ biology. Diurnal variations in the responsiveness of the cardiovascular system to environmental stimuli are mediated by a complex interplay between extracellular (i.e. neurohumoral factors) and intracellular (i.e. specific genes that are differentially light/dark regulated) mechanisms. Neurohormones, which are particularly relevant to the cardiovascular system, such as melatonin, exhibit a diurnal variation and may play a role in the synchronization of molecular circadian clocks in the peripheral tissue and the suprachiasmatic nucleus. Moreover, mounting evidence reveals that the blood melatonin rhythm has a crucial role in several cardiovascular functions, including daily variations in blood pressure. Melatonin has antioxidant, anti-inflammatory, chronobiotic and, possibly, epigenetic regulatory functions. This article reviews current knowledge related to the biological role of melatonin and its circadian rhythm in cardiovascular disease.
Collapse
|
42
|
Sánchez-Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ. Scientific basis for the potential use of melatonin in bone diseases: osteoporosis and adolescent idiopathic scoliosis. J Osteoporos 2010; 2010:830231. [PMID: 20981336 PMCID: PMC2957228 DOI: 10.4061/2010/830231] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022] Open
Abstract
The objective of this paper was to analyze the data supporting the possible role of melatonin on bone metabolism and its repercussion in the etiology and treatment of bone pathologies such as the osteoporosis and the adolescent idiopathic scoliosis (AIS). Melatonin may prevent bone degradation and promote bone formation through mechanisms involving both melatonin receptor-mediated and receptor-independent actions. The three principal mechanisms of melatonin effects on bone function could be: (a) the promotion of the osteoblast differentiation and activity; (b) an increase in the osteoprotegerin expression by osteoblasts, thereby preventing the differentiation of osteoclasts; (c) scavenging of free radicals generated by osteoclast activity and responsible for bone resorption. A variety of in vitro and in vivo experimental studies, although with some controversial results, point toward a possible role of melatonin deficits in the etiology of osteoporosis and AIS and open a new field related to the possible therapeutic use of melatonin in these bone diseases.
Collapse
Affiliation(s)
- E. J. Sánchez-Barceló
- Department of Physiology & Pharmacology, School of Medicine, University of Cantabria, 39011 Santander, Spain,*E. J. Sánchez-Barceló:
| | - M. D. Mediavilla
- Department of Physiology & Pharmacology, School of Medicine, University of Cantabria, 39011 Santander, Spain
| | - D. X. Tan
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - R. J. Reiter
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|