1
|
Nakamoto Y, Nakamura T, Nakai R, Azuma T, Omori K. Transplantation of autologous bone marrow-derived mononuclear cells into cerebrospinal fluid in a canine model of spinal cord injury. Regen Ther 2023; 24:574-581. [PMID: 38028937 PMCID: PMC10654139 DOI: 10.1016/j.reth.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is associated with severe dysfunction of nervous tissue, and repair via the transplantation of bone marrow-derived mononuclear cells (BM-MNCs) into cerebrospinal fluid yields promising results. It is essential to understand the underlying mechanisms; therefore, this study aimed to evaluate the regenerative potential of autologous BM-MNC transplantation in a canine model of acute SCI. Methods Six dogs were included in this study, and SCI was induced using an epidural balloon catheter between L2 and L3, particularly in the area of the anterior longitudinal ligament. BM-MNC transplantation was performed, and T2-weighted magnetic resonance imaging (MRI) was conducted at specific time points (i.e., immediately after inducing SCI and at 1, 2, and 4 weeks after inducing SCI); moreover, the expression of growth-associated protein 43 (GAP-43) was evaluated. Results MRI revealed that the signal intensity reduced over time in both BM-MNC-treated and control groups. However, the BM-MNC-treated group exhibited a significantly faster reduction than the control group during the early stages of SCI induction (BM-MNC-treated group: 4.82 ± 0.135 cm [day 0], 1.71 ± 0.134 cm [1 week], 1.37 ± 0.036 cm [2 weeks], 1.21 cm [4 weeks]; control group: 4.96 ± 0.211 cm [day 0], 2.49 ± 0.570 cm [1 week], 1.56 ± 0.045 cm [2 weeks], 1.32 cm [4 weeks]). During the early stages of treatment, GAP-43 was significantly expressed at the proximal end of the injured spinal cord in the BM-MSC-treated group, whereas it was scarcely expressed in the control group. Conclusions In SCI, transplanted BM-MNCs can activate the expression of GAP-43, which is involved in axonal elongation (an important process in spinal cord regeneration). Thus, cell therapy with BM-MNCs can provide favorable outcomes in terms of better regenerative capabilities compared with other therapies.
Collapse
Affiliation(s)
- Yuya Nakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Neuro Vets Animal Neurology Clinic, Kyoto, Japan
- Laboratory of Veterinary Surgery, Department of Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Veterinary Medical Center, Osaka Prefecture University, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Kyoto, Japan
| | - Takashi Azuma
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, Han G, Yin N, Jiang X, Zhao C, Cheng S, Wang Z, Chen Y, Chen Q, Song K, Zhang Z, Niu J, Wang L, Shi Q, Chen L, Yang H, Hou S, Zhang S, Dai J. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. SCIENCE CHINA-LIFE SCIENCES 2021; 65:909-926. [PMID: 34406569 DOI: 10.1007/s11427-021-1985-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) often results in an inhibitory environment at the injury site. In our previous studies, transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI. Based on these preclinical studies, collagen scaffolds loaded with the patients' own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients. Fifteen patients with acute complete SCI and 51 patients with chronic complete SCI were enrolled and followed up for 2 to 5 years. No serious adverse events related to functional scaffold transplantation were observed. Among the patients with acute SCI, five patients achieved expansion of their sensory positions and six patients recovered sensation in the bowel or bladder. Additionally, four patients regained voluntary walking ability accompanied by reconnection of neural signal transduction. Among patients with chronic SCI, 16 patients achieved expansion of their sensation level and 30 patients experienced enhanced reflexive defecation sensation or increased skin sweating below the injury site. Nearly half of the patients with chronic cervical SCI developed enhanced finger activity. These long-term follow-up results suggest that functional scaffold transplantation may represent a feasible treatment for patients with complete SCI.
Collapse
Affiliation(s)
- Fengwu Tang
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Jiaguang Tang
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.,Department of Orthopaedics, Beijing Tongren Hospital, Beijing, 100730, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing ZhongKeZaiKang Biotechnology Co., Ltd, Beijing, 101407, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing ZhongKeZaiKang Biotechnology Co., Ltd, Beijing, 101407, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guang Han
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Na Yin
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China.,Department of Rehabilitation, the 983rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, 300141, China
| | - Xianfeng Jiang
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Changyu Zhao
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Shixiang Cheng
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Ziqiang Wang
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yumei Chen
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Qiaoling Chen
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Keran Song
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Zhiwei Zhang
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Junjie Niu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lingjun Wang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qin Shi
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Liang Chen
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shuxun Hou
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| | - Sai Zhang
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Yoon HH, Lee HJ, Min J, Kim JH, Park JH, Kim JH, Kim SW, Lee H, Jeon SR. Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model. J Korean Neurosurg Soc 2021; 64:705-715. [PMID: 34044494 PMCID: PMC8435649 DOI: 10.3340/jkns.2021.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyang Ju Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorlova A, Veniaminova E, Umriukhin A, Kalueff A, Svistunov A, Kramer BW, Lesch KP, Strekalova T. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther 2019; 26:504-517. [PMID: 31867846 PMCID: PMC7163689 DOI: 10.1111/cns.13280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Aims Mutations in DNA/RNA‐binding factor (fused‐in‐sarcoma) FUS and superoxide dismutase‐1 (SOD‐1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD‐1‐G93A (SOD‐1) and new FUS[1‐359]‐transgenic (FUS‐tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti‐inflammatory treatments were investigated using these mutants. Methods FUS‐tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti‐inflammatory drug a selective blocker of cyclooxygenase‐2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro‐Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti‐inflammatory properties. SOD‐1 mice received i.c.v.‐administration of Neuro‐Cells or vehicle. Results All FUS‐tg‐treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS‐tg‐vehicle‐treated mice. Neuro‐Cell‐treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib‐FUS‐tg‐treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium‐binding adapter molecule‐1 (Iba‐1), and glycogen‐synthase‐kinase‐3ß (GSK‐3ß). The Neuro‐Cells‐treated‐SOD‐1 mice showed better motor functions than vehicle‐treated‐SOD‐1 group. Conclusion The neuropathology in FUS‐tg mice is sensitive to standard ALS treatments and Neuro‐Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.
Collapse
Affiliation(s)
- Johannes P J M de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Igor Shafarevich
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Liundup
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Erik Ch Wolters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Allan Kalueff
- Faculty of Biology, Ural Federal University, Ekaterinburg, Russia.,School of Pharmacy, Southwest University, Chongqing, China
| | - Andrei Svistunov
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris W Kramer
- Department of Pediatrics, University Medical Center (MUCM), Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Kanekiyo K, Nakano N, Homma T, Yamada Y, Tamachi M, Suzuki Y, Fukushima M, Saito F, Ide C. Effects of Multiple Injection of Bone Marrow Mononuclear Cells on Spinal Cord Injury of Rats. J Neurotrauma 2017; 34:3003-3011. [DOI: 10.1089/neu.2016.4841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kenji Kanekiyo
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Norihiko Nakano
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Tamami Homma
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Yoshihiro Yamada
- Department of Physical Therapy, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Masahiro Tamachi
- Department of Physical Therapy, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Tazuke Medical Research Institute, Kitano Hospital, Osaka City, Osaka, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe City, Hyogo Prefecture, Japan
| | - Fukuki Saito
- Emergency and Clinical Care Center, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Chizuka Ide
- The Central Biomedical Laboratory, Aino University School of Health Science, Ibaraki City, Osaka, Japan
| |
Collapse
|
6
|
Hammadi AM, Al-Himyari FA. Intrathecal Injection of Peripherally Mobilized Blood Stem Cells to Treat Multiple Sclerosis. EXP CLIN TRANSPLANT 2017; 15:147-149. [PMID: 28260456 DOI: 10.6002/ect.mesot2016.p26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we analyzed 70 patients with worseningmultiple sclerosis despite pharmacologic treatment who were treated with several intrathecal injections of peripheral blood cells harvested by apheresis after granulocyte-colony stimulating factor treatment. Thirty-seven patients (52%) had a reduction of Expanded Disability Status Scale score; 10 patients had relapses, although these were milder than usual and more easily controlled by corticosteroids. Because mesenchymal cells increase in the peripheral blood after granulocyte-colony stimulating factor stimulation, a peripheral blood harvest seems easier and less costly than mesenchymal cell cultivation before injection. This seems to be a reasonable treatment for progressive multiple sclerosis.
Collapse
|
7
|
Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother 2017; 91:693-706. [DOI: 10.1016/j.biopha.2017.04.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
|
8
|
Seo DK, Kim JH, Min J, Yoon HH, Shin ES, Kim SW, Jeon SR. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir (Wien) 2017; 159:947-957. [PMID: 28160063 DOI: 10.1007/s00701-017-3097-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND While pure mesenchymal stem cell (MSC) treatment for spinal cord injury (SCI) is known to be safe, its efficacy is insufficient. Therefore, gene-modified stem cells are being developed to enhance the effect of pure MSCs. We investigated the effect of stem cell therapy through the transfection of a Wnt3a-producing gene that stimulates axonal regeneration. METHOD MSCs obtained from the human umbilical cord blood (hMSCs) were multiplied, cultivated, and transfected with the pLenti-Wnt3a-GFP viral vector to produce Wnt3a-secreting hMSCs. A total of 50 rats were injured with an Infinite Horizon impactor at the level of the T7-8 vertebrae. Rats were divided into five groups according to the transplanted material: (1) phosphate-buffered saline injection group (sham group, n = 10); (Pertz et al. Proc Natl Acad Sci USA 105:1931-1936, 39) Wnt3a protein injection group (Wnt3a protein group, n = 10); (3) hMSC transplantation group (MSC group, n = 10); (4) hMSCs transfected with the pLenti vector transplantation group (pLenti-MSC group, n = 10); (5) hMSCs transfected with the pLenti+Wnt3a vector transplantation group (Wnt3a-MSC group, n = 10). Behavioral tests were performed daily for the first 3 days after injury and then weekly for 8 weeks. The injured spinal cords were extracted, and axonal regeneration markers including choline acetyltransferase (ChAT), growth-associated protein 43 (GAP43), and microtubule-associated protein 2 (MAP2) were investigated by immunofluorescence, RT-PCR, and western blotting. RESULTS Seven weeks after the transplantation (8 weeks after SCI), rats in the Wnt3a-MSC group achieved significantly higher average scores in the motor behavior tests than those in the other groups (p < 0.05). Immunofluorescent stains showed greater immunoreactivity of ChAT, GAP43, and MAP2 in the Wnt3a-MSC group than in the other groups. RT-PCR and western blots revealed greater expression of these proteins in the Wnt3a-MSC group than in the other groups (p < 0.05). CONCLUSIONS Wnt3a-secreting hMSC transplantation considerably improved neurological recovery and axonal regeneration in a rat SCI model.
Collapse
|
9
|
Arai K, Harada Y, Tomiyama H, Michishita M, Kanno N, Yogo T, Suzuki Y, Hara Y. Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury. Res Vet Sci 2016; 107:88-94. [PMID: 27473980 DOI: 10.1016/j.rvsc.2016.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Intramedullary bone marrow-derived mononuclear cell (BM-MNC) transplantation has demonstrated neuroprotective effects in the chronic stage of spinal cord injury (SCI). However, no previous study has evaluated its effects in the acute stage, even though cell death occurs mainly within 1week after injury in all neuronal cells. Moreover, the mechanism underlying these effects remains unclear. We aimed to investigate the survival of intramedullary transplanted allogeneic BM-MNCs and the production of growth factors after transplantation to clarify the therapeutic potential of intramedullary transplanted BM-MNCs and their protective effects in acute SCI. Sprague-Dawley rats were subjected to traumatic SCI and received intramedullary transplantation of EGFP(+)BM-MNCs (n=6), BM-MNCs (n=10), or solvent (n=10) immediately after injury. To evaluate the transplanted BM-MNCs and their therapeutic effects, immunohistochemical evaluations were performed at 3 and 7days post-injury (DPI). BM-MNCs were observed at the injected site at both 3 (683±83 cells/mm(2)) and 7 DPI (395±64 cells/mm(2)). The expression of hepatocyte growth factor was observed in approximately 20% transplanted BM-MNCs. Some BM-MNCs also expressed monocyte chemotactic protein-1 or vascular endothelial growth factor. The demyelinated area and number of cleaved caspase-3-positive cells were significantly smaller in the BM-MNC-transplanted group at 3 DPI. Hindlimb locomotor function was significantly improved in the BM-MNC-transplanted group at 7 DPI. These results suggest that intramedullary transplantation of BM-MNCs is an efficient method for introducing a large number of growth factor-producing cells that can induce neuroprotective effects in the acute stage of SCI.
Collapse
Affiliation(s)
- Kiyotaka Arai
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yasuji Harada
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Hiroyuki Tomiyama
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Nobuo Kanno
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Takuya Yogo
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka 530-8507, Japan
| | - Yasushi Hara
- Laboratory of Veterinary Surgery, Nippon Veterinary and Life Science University, 1-7-1, Kyounan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
10
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
11
|
|
12
|
Lau RL, Perruccio AV, Evans HMK, Mahomed SR, Mahomed NN, Gandhi R. Stem cell therapy for the treatment of early stage avascular necrosis of the femoral head: a systematic review. BMC Musculoskelet Disord 2014; 15:156. [PMID: 24886648 PMCID: PMC4038713 DOI: 10.1186/1471-2474-15-156] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022] Open
Abstract
Background Avascular necrosis (AVN) of the femoral head (FH) is believed to be caused by a multitude of etiologic factors and is associated with significant morbidity in younger populations. Eventually, the disease progresses and results in FH collapse. Thus, a focus on early disease management aimed at joint preservation by preventing or delaying progression is key. The use of stem cells (SC) for the treatment of AVN of the FH has been proposed. We undertook a systematic review of the medical literature examining the use of SC for the treatment of early stage (precollapse) AVN of the FH, in both pre-clinical and clinical studies. Methods Data collected included: Pre-clinical studies – model of AVN, variety and dosage of SC, histologic and imaging analyses. Clinical studies – study design, classification and etiology of AVN, SC dosage and treatment protocol, incidence of disease progression, patient reported outcomes, volume of necrotic lesion and hip survivorship. Results In pre-clinical studies, the use of SC uniformly demonstrated improvements in osteogenesis and angiogenesis, yet source of implanted SC was variable. In clinical studies, groups treated with SC showed significant improvements in patient reported outcomes; however hip survivorship was not affected. Discrepancies regarding dose of SC, AVN etiology and disease severity were present. Conclusions Routine use of this treatment method will first require further research into dose and quality optimization as well as confirmed improvements in hip survivorship.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajiv Gandhi
- Division of Orthopaedic Surgery, Toronto Western Hospital, 399 Bathurst Street EW 1-427, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
13
|
Zhu T, Tang Q, Gao H, Shen Y, Chen L, Zhu J. Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci Bull 2014; 30:671-82. [PMID: 24817389 DOI: 10.1007/s12264-013-1438-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/28/2013] [Indexed: 01/01/2023] Open
Abstract
During the past decade, significant advances have been made in refinements for regenerative therapies following human spinal cord injury (SCI). Positive results have been achieved with different types of cells in various clinical studies of SCI. In this review, we summarize recently-completed clinical trials using cell-mediated regenerative therapies for human SCI, together with ongoing trials using neural stem cells. Specifically, clinical studies published in Chinese journals are included. These studies show that current transplantation therapies are relatively safe, and have provided varying degrees of neurological recovery. However, many obstacles exist, hindering the introduction of a specific clinical therapy, including complications and their causes, selection of the target population, and optimization of transplantation material. Despite these and other challenges, with the collaboration of research groups and strong support from various organizations, cell-mediated regenerative therapies will open new perspectives for SCI treatment.
Collapse
Affiliation(s)
- Tongming Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | |
Collapse
|
14
|
Dedeepiya VD, William JB, Parthiban JKBC, Chidambaram R, Balamurugan M, Kuroda S, Iwasaki M, Preethy S, Abraham SJK. The known-unknowns in spinal cord injury, with emphasis on cell-based therapies - a review with suggestive arenas for research. Expert Opin Biol Ther 2014; 14:617-34. [PMID: 24660978 DOI: 10.1517/14712598.2014.889676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In spite of extensive research, the progress toward a cure in spinal cord injury (SCI) is still elusive, which holds good for the cell- and stem cell-based therapies. We have critically analyzed seven known gray areas in SCI, indicating the specific arenas for research to improvise the outcome of cell-based therapies in SCI. AREAS COVERED The seven, specific known gray areas in SCI analyzed are: i) the gap between animal models and human victims; ii) uncertainty about the time, route and dosage of cells applied; iii) source of the most efficacious cells for therapy; iv) inability to address the vascular compromise during SCI; v) lack of non-invasive methodologies to track the transplanted cells; vi) need for scaffolds to retain the cells at the site of injury; and vii) physical and chemical stimuli that might be required for synapses formation yielding functional neurons. EXPERT OPINION Further research on scaffolds for retaining the transplanted cells at the lesion, chemical and physical stimuli that may help neurons become functional, a meta-analysis of timing of the cell therapy, mode of application and larger clinical studies are essential to improve the outcome.
Collapse
Affiliation(s)
- Vidyasagar Devaprasad Dedeepiya
- Nichi-In Centre for Regenerative Medicine (NCRM), The Mary-Yoshio Translational Hexagon (MYTH) , PB 1262, Chennai - 600034, Tamil Nadu , India +91 44 24732186 ; ,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hammadi AA, Marino A, Farhan S. Clinical response of 277 patients with spinal cord injury to stem cell therapy in iraq. Int J Stem Cells 2013; 5:76-8. [PMID: 24298358 DOI: 10.15283/ijsc.2012.5.1.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. METHODS AND RESULTS 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. CONCLUSIONS Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury.
Collapse
|
16
|
Hammadi AMA, Marino A, Farhan S. Clinical outcome of 50 progressive multiple sclerosis patients treated with cellular therapy in iraq. Int J Stem Cells 2013; 4:113-5. [PMID: 24298343 DOI: 10.15283/ijsc.2011.4.2.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Multiple Sclerosis is a disease characterized by multifocal areas of demyelination in the brain and spinal cord, with associated inflammatory cell infiltrates, reactive gliosis, and axonal degeneration. It typically presents in young adults with episodic neurologic dysfunction, our aim is to find new simple method to treat multiple sclerosis by hematopoietic stem cells derived from peripheral blood. METHODS AND RESULTS 50 patients suffering from multiple sclerosis worsening despite pharmacological treatment were treated by means of several intrathecal injections of peripheral blood cells harvested by aphaeresis after G-CSF(granulocyte colony stimulating factor) treatment. 24 patients (48% ) had a reduction of EDSS score. 8 patients had a relapse, but it was milder than usual and more easily controlled by cortisone. CONCLUSIONS Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cells cultivation prior to the injection. It seems a reasonable treatment for progressive multiple sclerosis.
Collapse
|
17
|
Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noël A, Brook G, Schoenen J, Franzen R. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 2013; 8:e69515. [PMID: 24013448 PMCID: PMC3754952 DOI: 10.1371/journal.pone.0069515] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM) protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.
Collapse
Affiliation(s)
- Dorothée Cantinieaux
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Renaud Quertainmont
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Silvia Blacher
- GIGA-Cancer, Laboratory of Biology of Tumour and Development, University of Liege, Liege, Belgium
| | - Loïc Rossi
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Thomas Wanet
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Agnès Noël
- GIGA-Cancer, Laboratory of Biology of Tumour and Development, University of Liege, Liege, Belgium
| | - Gary Brook
- Department of Neuropathology, University of Aachen, Aachen, Germany
| | - Jean Schoenen
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Rachelle Franzen
- GIGA-Neuroscience, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| |
Collapse
|
18
|
Licheng Z, Lihai Z, Meng X, Qi Y, Peifu T. Autologous uncultured bone marrow-derived mononuclear cells and modified cannulated screw in repair of femoral neck fracture. J Orthop Res 2013; 31:1302-7. [PMID: 23553771 DOI: 10.1002/jor.22346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/21/2013] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to assess whether autologous uncultured bone marrow-derived mononuclear cells (BMMNCs) combined with modified cannulated screw would accelerate the healing of canine femoral neck fracture. BMMNCs were encapsulated within fibrin glue (FG) and implanted into the fractured femoral neck via modified cannulated screw in experiment group, and the control group was treated by modified cannulated screw. Gross observation, radiological examination, histological analysis, and blood vessel microdensity counting were used to compare bone healing of each group at 1, 2, and 3 months. FG was confirmed as an ideal cell-delivery vehicle for BMMNCs proliferation and differentiation in vitro testing. In vivo animal testing, faster new bone formation and fracture healing were confirmed by gross observation, radiological examination, histological analysis in experimental group than in control group at all times points. The blood vessel microdensity counting increased gradually both in the experimental group and control group, but was more obviously in experimental group at 3 months (p < 0.01). These data suggest that autologous BMMNCs combined with modified cannulated screw treatment is an effective therapy for femoral neck fracture and thus, may be an option for clinical applications.
Collapse
Affiliation(s)
- Zhang Licheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Leckie SK, Sowa GA, Bechara BP, Hartman RA, Coelho JP, Witt WT, Dong QD, Bowman BW, Bell KM, Vo NV, Kramer BC, Kang JD. Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J 2013; 13:263-72. [PMID: 23384411 PMCID: PMC4868072 DOI: 10.1016/j.spinee.2012.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/22/2012] [Accepted: 12/09/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Patients often present to spine clinic with evidence of intervertebral disc degeneration (IDD). If conservative management fails, a safe and effective injection directly into the disc might be preferable to the risks and morbidity of surgery. PURPOSE To determine whether injecting human umbilical tissue-derived cells (hUTC) into the nucleus pulposus (NP) might improve the course of IDD. DESIGN Prospective, randomized, blinded placebo-controlled in vivo study. PATIENT SAMPLE Skeletally mature New Zealand white rabbits. OUTCOME MEASURES Degree of IDD based on magnetic resonance imaging (MRI), biomechanics, and histology. METHODS Thirty skeletally mature New Zealand white rabbits were used in a previously validated rabbit annulotomy model for IDD. Discs L2-L3, L3-L4, and L4-L5 were surgically exposed and punctured to induce degeneration and then 3 weeks later the same discs were injected with hUTC with or without a hydrogel carrier. Serial MRIs obtained at 0, 3, 6, and 12 weeks were analyzed for evidence of degeneration qualitatively and quantitatively via NP area and MRI Index. The rabbits were sacrificed at 12 weeks and discs L4-L5 were analyzed histologically. The L3-L4 discs were fixed to a robotic arm and subjected to uniaxial compression, and viscoelastic displacement curves were generated. RESULTS Qualitatively, the MRIs demonstrated no evidence of degeneration in the control group over the course of 12 weeks. The punctured group yielded MRIs with the evidence of disc height loss and darkening, suggestive of degeneration. The three treatment groups (cells alone, carrier alone, or cells+carrier) generated MRIs with less qualitative evidence of degeneration than the punctured group. MRI Index and area for the cell and the cell+carrier groups were significantly distinct from the punctured group at 12 weeks. The carrier group generated MRI data that fell between control and punctured values but failed to reach a statistically significant difference from the punctured values. There were no statistically significant MRI differences among the three treatment groups. The treated groups also demonstrated viscoelastic properties that were distinct from the control and punctured values, with the cell curve more similar to the punctured curve and the carrier curve and carrier+cells curve more similar to the control curve (although no creep differences achieved statistical significance). There was some histological evidence of improved cellularity and disc architecture in the treated discs compared with the punctured discs. CONCLUSIONS Treatment of degenerating rabbit intervertebral discs with hUTC in a hydrogel carrier solution might help restore the MRI, histological, and biomechanical properties toward those of nondegenerated controls. Treatment with cells in saline or a hydrogel carrier devoid of cells also might help restore some imaging, architectural, and physical properties to the degenerating disc. These data support the potential use of therapeutic cells in the treatment of disc degeneration.
Collapse
Affiliation(s)
- Steven K Leckie
- Department of Orthopedics, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Freitas HT, da Silva VG, Giraldi-Guimarães A. Comparative study between bone marrow mononuclear fraction and mesenchymal stem cells treatment in sensorimotor recovery after focal cortical ablation in rats. Behav Brain Funct 2012; 8:58. [PMID: 23237581 PMCID: PMC3537583 DOI: 10.1186/1744-9081-8-58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022] Open
Abstract
Background Different models of cortical lesion lead to different effects on plasticity of connections and loss of function. In opposition to ischemia, cortical lesion made by ablation does not induce significant adaptive plasticity of corticocortical and corticostriatal projections and leads to functional alterations other than those observed after ischemia. We have demonstrated sensorimotor recovery after treatment with bone marrow-derived mesenchymal stem cells (MSCs) or bone marrow mononuclear cells (BMMCs) in a model of focal cortical ischemia. Here, we extended this analysis evaluating the effect of these cells on sensorimotor recovery after focal cortical ablation, reproducing the same size and location of previous ischemic lesion. Findings Focal cerebral aspiration of the six cortical layers in left frontoparietal cortex was performed in male Wistar rats. One day later, MSCs or BMMCs were administrated (i.v.) in the ablated animals. Vehicle was administrated in the control group. Sensorimotor tests were performed before and after injury followed by i.v. injection. The monitoring of functional recovery was performed weekly during three post-ablation months. The results showed significant sensorimotor recovery with both treatments, whereas control groups had no recovery. Moreover, both cell types induced the same level of recovery. Conclusions Bone marrow cells showed therapeutic efficacy in a model of brain injury known to promote low structural plasticity. Thus, the results support the idea of BMMCs as better candidates to treat acute CNS injuries than MSCs, since they have the same therapeutic potential, but its obtainment for autologous transplantation has been shown to be faster and easier.
Collapse
Affiliation(s)
- Helder Teixeira de Freitas
- Laboratório de Biologia Celular e Tecidual - Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000 - Parque Califórnia, Campos dos Goytacazes, RJ, Brazil
| | | | | |
Collapse
|
21
|
|
22
|
Raheja A, Suri V, Suri A, Sarkar C, Srivastava A, Mohanty S, Jain KG, Sharma MC, Mallick HN, Yadav PK, Kalaivani M, Pandey RM. Dose-dependent facilitation of peripheral nerve regeneration by bone marrow-derived mononuclear cells: a randomized controlled study: laboratory investigation. J Neurosurg 2012; 117:1170-81. [PMID: 23039144 DOI: 10.3171/2012.8.jns111446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT Bone marrow-derived stem cells enhance the rate of regeneration of neuronal cells leading to clinical improvement in nerve injury, spinal cord injury, and brain infarction. Recent experiments in the local application of bone marrow-derived mononuclear cells (BM-MNCs) in models of sciatic nerve transection in rats have suggested their beneficial role in nerve regeneration, although the effects of variable doses of stem cells on peripheral nerve regeneration have never been specifically evaluated in the literature. In this paper, the authors evaluated the dose-dependent role of BM-MNCs in peripheral nerve regeneration in a model of sciatic nerve transection in rats. METHODS The right sciatic nerve of 60 adult female Wistar rats (randomized into 2 test groups and 1 control group, 20 rats in each group) underwent transection under an operating microscope. The cut ends of the nerve were approximated using 2 epineural microsutures. The gap was filled with low-dose (5 million BM-MNCs/100 μl phosphate-buffered saline [PBS]) rat BM-MNCs in one group, high-dose (10 million BM-MNCs/100 μl PBS) rat BM-MNCs in another group, and only PBS in the control group, and the approximated nerve ends were sealed using fibrin glue. Histological assessment was performed after 30 days by using semiquantitative and morphometric analyses and was done to assess axonal regeneration, percentage of myelinated fibers, axonal diameter, fiber diameter, and myelin thickness at distal-most sites (10 mm from site of repair), intermediate distal sites (5 mm distal to the repair site), and site of repair. RESULTS The recovery of nerve cell architecture after nerve anastomosis was far better in the high-dose BM-MNC group than in the low-dose BM-MNC and control groups, and it was most evident (p < 0.02 in the majority of the parameters [3 of 4]) at the distal-most site. Overall, the improvement in myelin thickness was most significant with incremental dosage of BM-MNCs, and was evident at the repair, intermediate distal, and distal-most sites (p = 0.001). CONCLUSIONS This study emphasizes the role of BM-MNCs, which can be isolated easily from bone marrow aspirates, in peripheral nerve injury and highlights their dose-dependent facilitation of nerve regeneration.
Collapse
Affiliation(s)
- Amol Raheja
- Department of Neurosurgery and Gamma Knife, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, Jeon SR. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 2012; 70:1238-47; discussion 1247. [PMID: 22127044 DOI: 10.1227/neu.0b013e31824387f9] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although the transplantation of mesenchymal stem cells (MSCs) after spinal cord injury (SCI) has shown promising results in animals, less is known about the effects of autologous MSCs in human SCI. OBJECTIVE To describe the long-term results of 10 patients who underwent intramedullary direct MSCs transplantation into injured spinal cords. METHODS Autologous MSCs were harvested from the iliac bone of each patient and expanded by culturing for 4 weeks. MSCs (8 × 10) were directly injected into the spinal cord, and 4 × 10 cells were injected into the intradural space of 10 patients with American Spinal Injury Association class A or B injury caused by traumatic cervical SCI. After 4 and 8 weeks, an additional 5 × 10 MSCs were injected into each patient through lumbar tapping. Outcome assessments included changes in the motor power grade of the extremities, magnetic resonance imaging, and electrophysiological recordings. RESULTS Although 6 of the 10 patients showed motor power improvement of the upper extremities at 6-month follow-up, 3 showed gradual improvement in activities of daily living, and changes on magnetic resonance imaging such as decreases in cavity size and the appearance of fiber-like low signal intensity streaks. They also showed electrophysiological improvement. All 10 patients did not experience any permanent complication associated with MSC transplantation. CONCLUSION Three of the 10 patients with SCI who were directly injected with autologous MSCs showed improvement in the motor power of the upper extremities and in activities of daily living, as well as significant magnetic resonance imaging and electrophysiological changes during long-term follow-up.
Collapse
Affiliation(s)
- Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Index of CD34+ Cells and Mononuclear Cells in the Bone Marrow of Spinal Cord Injury Patients of Different Age Groups: A Comparative Analysis. BONE MARROW RESEARCH 2012; 2012:787414. [PMID: 22830032 PMCID: PMC3398573 DOI: 10.1155/2012/787414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 01/03/2023]
Abstract
Introduction. Recent evidence of safety and efficacy of Bone Marrow Mononuclear Cells (BMMNC) in spinal cord injury makes the Bone Marrow (BM) CD34+ percentage and the BMMNC count gain significance. The indices of BM that change with body mass index and aging in general population have been reported but seldom in Spinal Cord Injury (SCI) victims, whose parameters of relevance differ from general population. Herein, we report the indices of BMMNC in SCI victims. Materials and Methods. BMMNCs of 332 SCI patients were isolated under GMP protocols. Cell count by Trypan blue method and CD34+ cells by flow cytometry were documented and analysed across ages and gender. Results. The average BMMNC per ml in the age groups 0–20, 21–40, 41–60, and 61–80 years were 4.71, 4.03, 3.67, and 3.02 million and the CD34+ were 1.05%, 1.04%, 0.94%, and 0.93% respectively. The decline in CD34+ was sharp between 20–40 and 40–60 age groups. Females of reproductive age group had lesser CD34+. Conclusion. The BMMNC and CD34+ percentages decline with aging in SCI victims. Their lower values in females during reproductive age should be analysed for relevance to hormonal influence. This study offers reference values of BMMNC and CD34+ of SCI victims for successful clinical application.
Collapse
|
25
|
Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7:e39500. [PMID: 22745769 PMCID: PMC3380009 DOI: 10.1371/journal.pone.0039500] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/21/2012] [Indexed: 12/13/2022] Open
Abstract
Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue.
Collapse
Affiliation(s)
- Renaud Quertainmont
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Dorothée Cantinieaux
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Olivier Botman
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Selim Sid
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Jean Schoenen
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Rachelle Franzen
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|
26
|
Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WEB, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP. Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 2011; 29:169-78. [PMID: 21732476 PMCID: PMC3083520 DOI: 10.1002/stem.570] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversial topic of HSC and MSC transdifferentiation into central nervous system cells but focus on the neurotrophic, tissue sparing, and reparative action of MSC grafts in the context of the spinal cord injury (SCI) milieu. We then discuss some of the specific issues related to the translation of HSC and MSC therapies for patients with SCI and present a comprehensive critique of the current bone marrow cell clinical trials for the treatment of SCI to date.
Collapse
Affiliation(s)
- Karina T Wright
- Spinal Studies and Midlands Centre for Spinal Injuries, RJAH Orthopaedic Hospital, Oswestry, Shropshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ. Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 2011; 6:367-406. [PMID: 21548741 DOI: 10.2217/rme.11.22] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is potential for a variety of stem cell populations to mediate repair in the diseased or injured CNS; in some cases, this theoretical possibility has already transitioned to clinical safety testing. However, careful consideration of preclinical animal models is essential to provide an appropriate assessment of stem cell safety and efficacy, as well as the basic biological mechanisms of stem cell action. This article examines the lessons learned from early tissue, organ and hematopoietic grafting, the early assumptions of the stem cell and CNS fields with regard to immunoprivilege, and the history of success in stem cell transplantation into the CNS. Finally, we discuss strategies in the selection of animal models to maximize the predictive validity of preclinical safety and efficacy studies.
Collapse
Affiliation(s)
- Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Sarasúa JG, López SP, Viejo MÁ, Basterrechea MP, Rodríguez AF, Gutiérrez AF, Gala JG, Menéndez YM, Augusto DE, Arias AP, Hernández JO. Treatment of pressure ulcers with autologous bone marrow nuclear cells in patients with spinal cord injury. J Spinal Cord Med 2011; 34:301-7. [PMID: 21756569 PMCID: PMC3127373 DOI: 10.1179/2045772311y.0000000010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CONTEXT Pressure ulcers are especially difficult to treat in patients with spinal cord injury (SCI) and recurrence rates are high. Prompted by encouraging results obtained using bone marrow stem cells to treat several diseases including chronic wounds, this study examines the use of autologous stem cells from bone marrow to promote the healing of pressure ulcers in patients with SCI. OBJECTIVE To obtain preliminary data on the use of bone marrow mononuclear cells (BM-MNCs) to treat pressure ulcers in terms of clinical outcome, procedure safety, and treatment time. PARTICIPANTS Twenty-two patients with SCI (19 men, 3 women; mean age 56.41 years) with single type IV pressure ulcers of more than 4 months duration. INTERVENTIONS By minimally invasive surgery, the ulcers were debrided and treated with BM-MNCs obtained by Ficoll density gradient separation of autologous bone marrow aspirates drawn from the iliac crest. RESULTS In 19 patients (86.36%), the pressure ulcers treated with BM-MNCs had fully healed after a mean time of 21 days. The number of MNCs isolated was patient dependent, although similar clinical outcomes were observed in each case. Compared to conventional surgical treatment, mean intra-hospital stay was reduced from 85.16 to 43.06 days. Following treatment, 5 minutes of daily wound care was required per patient compared to 20 minutes for conventional surgery. During a mean follow-up of 19 months, none of the resolved ulcers recurred. CONCLUSIONS Our data indicate that cell therapy using autologous BM-MNCs could be an option to treat type IV pressure ulcers in patients with SCI, avoiding major surgical intervention.
Collapse
Affiliation(s)
- J González Sarasúa
- Servicio de Cirugía Plástica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - S Pérez López
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M Álvarez Viejo
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M Pérez Basterrechea
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - A Ferrero Gutiérrez
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J García Gala
- Servicio de Transfusión, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Y Menéndez Menéndez
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - D Escudero Augusto
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - A Pérez Arias
- Servicio de Cirugía Plástica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Otero Hernández
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
29
|
Kretlow JD, Spicer PP, Jansen JA, Vacanti CA, Kasper FK, Mikos AG. Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A 2010; 16:3555-68. [PMID: 20715884 DOI: 10.1089/ten.tea.2010.0471] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For bone tissue engineering, the benefits of incorporating mesenchymal stem cells (MSCs) into porous scaffolds are well established. There is, however, little consensus on the effects of or need for MSC handling ex vivo. Culture and expansion of MSCs adds length and cost, and likely increases risk associated with treatment. We evaluated the effect of using uncultured bone marrow mononuclear cells (bmMNCs) encapsulated within fibrin glue hydrogels and seeded into porous scaffolds to regenerate bone over 12 weeks in an 8-mm-diameter, critical-sized rat cranial defect. A full factorial experimental design was used to evaluate bone formation within model poly(L-lactic acid) and corraline hydroxyapatite scaffolds with or without platelet-rich plasma (PRP) and bmMNCs. Mechanical push-out testing, microcomputed tomographical analyses, and histology were performed. PRP showed no benefit for bone formation. Cell-laden poly(L-lactic acid) scaffolds without PRP required significantly greater force to displace from surrounding tissues than control (cell-free) scaffolds, but no differences were observed during push-out testing of coral scaffolds. For bone volume formation as analyzed by microcomputed tomography, significant positive overall effects were observed with bmMNC incorporation. These data suggest that bmMNCs may provide therapeutic advantages in bone tissue engineering applications without the need for culture, expansion, and purification.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|