1
|
Zhang Z, Wu O, Ying J, Jin Y, Wang H, Tian H, Chen Q, Chen L, Tao C, Lou C, Jones M, Wang X, Makvandi P, Shen S, Li B, Wu A. Regulation of diabetic disc degeneration: The role of AGEAT/miR-204-5p/Mapk4 axis in nucleus pulposus cells' mitochondrial function and apoptosis. Cell Signal 2025; 133:111857. [PMID: 40381974 DOI: 10.1016/j.cellsig.2025.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Chronic low back pain associated with intervertebral disc degeneration (IVDD) is significantly aggravated in patients with diabetes mellitus (DM); however, the underlying molecular mechanisms remain unclear. This study explored the role of the long non-coding RNA AGEAT (AGE-associated transcript) in the pathogenesis of DM-associated IVDD. Whole-transcriptome sequencing of rat nucleus pulposus cells (NPCs) treated with advanced glycation end products (AGEs) revealed a time-dependent upregulation of AGEAT. AGEAT overexpression induced NPC apoptosis, mitochondrial dysfunction, and extracellular matrix (ECM) degradation. Mechanistically, RNA fluorescence in situ hybridization localized AGEAT to the cytoplasm, where it acted as a competing endogenous RNA (ceRNA) by directly binding miR-204-5p, thereby relieving repression of its target Mapk4. Silencing AGEAT via siRNA significantly reduced apoptosis, restored mitochondrial function, and preserved ECM integrity. In vivo, intra-discal injection of AAV-sh-AGEAT in diabetic IVDD rats significantly improved disc integrity, as evidenced by a reduction in MRI Pfirrmann grade and histological preservation of NPC density and collagen II content. Collectively, these findings establish AGEAT as a key ceRNA that exacerbates diabetic IVDD via the miR-204-5p/Mapk4 axis, promoting NPC apoptosis, mitochondrial dysfunction, and ECM degradation. Targeting this pathway-through AGEAT silencing or miR-204-5p activation-represents a promising therapeutic strategy for mitigating diabetes-associated disc degeneration. This study reveals the critical role of the AGEAT/miR-204-5p/Mapk4 axis in the progression of DM-associated IVDD, suggesting a potential therapeutic strategy for its treatment.
Collapse
Affiliation(s)
- Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Orthopedics Medicine Center, Jinhua Municipal Central Hospital, Zhejiang, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiahao Ying
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hui Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haijun Tian
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen Tao
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord, Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Chao Lou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, United Kingdom
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine & KeyLaboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Chen Y, Yang ZR, Cheng Z, Shi P, Zhang A, Fan JW, Zhao Z, Jiang H, Zhu J, Zhang Y. Injectable hydrogel microspheres promoting inflammation modulation and nucleus pulposus-like differentiation for intervertebral disc regeneration. J Control Release 2025; 380:599-614. [PMID: 39938720 DOI: 10.1016/j.jconrel.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Local inflammation modulation and stem cell therapy have attracted much attention in the treatment of intervertebral disc degeneration (IDD). However, severe oxidative stress and limited nucleus pulposus (NP)-like differentiation of stem cells largely impair biomaterial implantation's therapeutic efficacy. Due to their excellent performance in injectability and flowability, and minor compression to NP tissue, hydrogel microspheres have become an attractive carrier for IDD treatment. Herein, an injectable hydrogel microsphere consisting of Wnt5a-mimetic peptide Foxy5- and the antioxidative peptide-grafted gelatin methacryloyl matrix (GFA), was developed as a stem cell delivery system for IDD therapy. Being fabricated and encapsulating bone marrow-derived mesenchymal stem cells (BMSCs) using the microfluidic technology, GFA hydrogel microspheres ameliorate IDD by promoting inflammation inhibition, NP-like differentiation and extracellular matrix regeneration. They efficiently eliminated reactive oxygen species, and downregulated the inflammation level through the inhibition of interleukin-17B/nuclear factor-κB signaling pathway. Moreover, the NP-like differentiation of BMSCs was effectively stimulated by Foxy5 via the calcium/calmodulin dependent protein kinase kinase 2/protein kinase A/sex determining region Y box protein 9 signaling pathway, thereby leading to a rebalance between the generation and degradation of NP matrix. In vivo rat IDD model demonstrated that BMSC-loaded GFA hydrogel microspheres mitigated local inflammation, preserved disc height, and promoted intervertebral disc regeneration. In conclusion, this study introduces an BMSC-loaded injectable hydrogel microspheres as a promising therapy for regulating the microenvironment and alleviating the progression of IDD.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Jing-Wen Fan
- Department of Radiology, Xijing Hospital, Air Force Medical University (AFMU) (The Forth Military Medical University, FMMU), Xi'an 710032, China
| | - Zhiguo Zhao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| |
Collapse
|
3
|
Lin Z, Xu G, Lu X, Wang H, Lu F, Xia X, Song J, Jiang J, Ma X, Zou F. Piezo1 exacerbates inflammation-induced cartilaginous endplate degeneration by activating mitochondrial fission via the Ca 2+/CaMKII/Drp1 axis. Aging Cell 2025; 24:e14440. [PMID: 39610146 PMCID: PMC11984661 DOI: 10.1111/acel.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Mitochondrial homeostasis plays a crucial role in degenerative joint diseases, including cartilaginous endplate (CEP) degeneration. To date, research into mitochondrial dynamics in IVDD is at an early stage. Since Piezo1 is a novel Ca2+-permeable channel, we asked whether Piezo1 could modulate mitochondrial fission through Ca2+ signalling during CEP degeneration. In vitro and in vivo models of inflammation-induced CEP degeneration were established with lipopolysaccharide (LPS). We found increased expression of Piezo1 in degenerated CEP tissues and LPS-treated CEP cells. The Piezo1 activator Yoda1 exacerbated CEP cell senescence and apoptosis by triggering Ca2+ influx. Yoda1 also induced mitochondrial fragmentation and dysfunction. In contrast, the Piezo1 inhibitor GsMTx4 exerted cytoprotective effects in LPS-treated CEP cells. Additionally, the CaMKII inhibitor KN-93 reversed Yoda1-induced mitochondrial fission and restored mitochondrial function. Mechanistically, the phosphorylation and mitochondrial translocation of Drp1 were regulated by the Ca2+/CaMKII signalling. The Drp1 inhibitor Mdivi-1 suppressed mitochondrial fission, then reduced mitochondrial dysfunction and CEP cell death. Moreover, knockdown of Piezo1 by siRNA hindered CaMKII and Drp1 activation, facilitating the redistribution of mitochondrial Drp1 to the cytosol in LPS-treated CEP cells. Piezo1 silencing improved mitochondrial morphology and function, thereby rescuing CEP cell senescence and apoptosis under inflammatory conditions. Finally, subendplate injection of GsMTx4 or AAV-shPiezo1 alleviated CEP degeneration in a rat model. Thus, Piezo1 may exacerbate inflammation-induced CEP degeneration by triggering mitochondrial fission and dysfunction via the Ca2+/CaMKII/Drp1 axis.
Collapse
Affiliation(s)
- Zhidi Lin
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jian Song
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Yang M, Zhou J, Yang Q, Yu B, Cai J, Hou T. A novel rat model of lumbar disc herniation induced by puncture: accurate positioning and controllable degree of herniation. J Orthop Surg Res 2025; 20:309. [PMID: 40128839 PMCID: PMC11934670 DOI: 10.1186/s13018-025-05710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) is the serious stage of intervertebral disc degeneration (IDD), and the location and degree of intervertebral disc herniation are closely related to clinical symptoms and signs. However, there is currently no low-cost, high-benefit animal model to support in vivo research on LDH. METHOD Expose the rat's lumbar 5/6 intervertebral disc through the space between the psoas major and erector spine muscles, and then use different lengths of puncture needles to control the degree of herniation and different puncture angles to push the nucleus pulposus tissue backwards to the different position. Observe the protrusion of intervertebral discs through MRI. Von Frey mechanical pain test and BBB score were used to evaluate the behavior of LDH rats. H&E and SF staining were used to observe the morphological changes after intervertebral disc herniation. Immunofluorescence was used to analyze the expression of Aggrecan (ACAN), IL-1β, TNF-α, and CD31 in intervertebral disc tissue. RESULTS LDH rat exhibit varying degrees of motor and sensory dysfunction. The nucleus pulposus tissue in the center of the intervertebral disc undergoes degenerative changes, with a decrease in the content of nucleus pulposus cells and proteoglycans, an increase in the expression of inflammatory factors in the protruding tissue, and neovascularization. CONCLUSION We have successfully constructed rat models of different types of intervertebral disc herniation, including disc degeneration, bulging, central herniation, and lateral herniation, using the method of puncture of intervertebral discs. This animal model is consistent with the characteristics of LDH in terms of behavior, imaging, and histopathology.
Collapse
Affiliation(s)
- Ming Yang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangling Zhou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiandong Yang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bo Yu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Juan Cai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tianyong Hou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Ding Y, Li F, Wang Y, Pan W, Fu X, Tan S. Nanomedicine Approaches for Intervertebral Disc Regeneration: From Bench to Bedside. Pharmaceutics 2025; 17:313. [PMID: 40142977 PMCID: PMC11944988 DOI: 10.3390/pharmaceutics17030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP) and neurological dysfunction, contributing significantly to disability-adjusted life years globally. The progression of IDD is driven by excessive oxidative stress, inflammation, apoptosis, and fibrosis, which disrupt the balance between anabolic and catabolic processes, leading to extracellular matrix (ECM) degradation and IDD. Current treatment options, such as conservative therapy and surgical intervention, are limited in halting the disease progression and often exacerbate degeneration in adjacent discs. This review highlights the challenges in treating IDD, particularly due to the limited drug delivery efficiency to the intervertebral disc (IVD). It explores the potential of nanobiomedicine and various nanomaterial-based delivery systems, including nanoparticles, microspheres, gene-nanocomplexes, fullerene, exosomes, and nanomaterial-composite hydrogels. These advanced delivery systems can enhance targeted drug delivery, improve local drug concentration, and sustain drug retention within the IVD, offering promising therapeutic strategies to address IDD. The review also examines the therapeutic effects of these nanomaterials on IDD, focusing on their impact on metabolism, inflammation, apoptosis, fibrosis, and stem cell migration and differentiation, aiming to provide innovative strategies for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Yifan Ding
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.D.); (F.L.)
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.D.); (F.L.)
| | - Yunyun Wang
- Department of Cardiology, the Fifth Hospital of Wuhan, Jianghan University, Wuhan 430030, China;
| | - Weizhen Pan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.D.); (F.L.)
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
6
|
Zhang F, Cui D, Wang Z, Li Y, Wang K, Lu H, Yu H, Jiao W, Cui X. NOX4 Regulates NLRP3 by Inhibiting the Ubiquitination of LRRC8A to Promote Ferroptosis in Nucleus Pulposus Cells. Inflammation 2025:10.1007/s10753-025-02253-0. [PMID: 39909992 DOI: 10.1007/s10753-025-02253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Intervertebral disc degeneration (IDD) is a significant contributor to low back pain, imposing a considerable socioeconomic burden. Ferroptosis, a novel form of cell death driven by iron and characterized by the accumulation of reactive oxygen species (ROS), has been associated with the progression of IDD. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) has been widely recognized as a pivotal factor promoting ferroptosis across various diseases; however, its precise role in the pathogenesis of IDD remains incompletely understood. Our experimental findings demonstrated a marked upregulation of NOX4 in degenerated cells, accompanied by elevated ROS levels and a diminished mitochondrial membrane potential, indicating the participation of ferroptosis. Furthermore, the expression of the critical regulatory factor GPX4 was reduced, while ACSL4 levels were significantly increased, further corroborating the involvement of ferroptosis. Functional loss and gain experiments revealed that NOX4 overexpression augmented ferroptosis and ROS production while promoting the secretion of inflammatory cytokines. Subsequent studies indicated that the knockdown of NOX4 could reverse tert-butyl hydroperoxide (TBHP)-induced ferroptosis. Mass spectrometry analysis identified leucine-rich repeat-containing 8A (LRRC8A) as an interacting protein of NOX4, and further validation confirmed that they co-regulate Nod-like receptor pyrin domain-3 (NLRP3) activation through their interaction. Utilizing a rat model of intervertebral disc degeneration, we further corroborated the role of NOX4 in IDD. This study provides theoretical support for the potential application of NOX4-targeting drugs in the treatment of IDD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Di Cui
- Medical School of Fuyang, Normal University, No. 100, Qinghe West Road, Yingzhou District, Fuyang, 236000, Anhui, China
| | - Zhaodong Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, No.2600, Donghai Dadao, Bengbu, 233000, Anhui, China
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287,Changhuai Road, Bengbu, 233000, Anhui, China
| | - Yifei Li
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Kangkang Wang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haitao Lu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Wei Jiao
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| |
Collapse
|
7
|
Tu Y, Ren J, Fang W, Zhou C, Zhao B, Hua T, Chen Y, Chen Z, Feng Y, Jin H, Wang X. Daphnetin-mediated mitophagy alleviates intervertebral disc degeneration via the Nrf2/PINK1 pathway. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39838851 DOI: 10.3724/abbs.2025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), and effective therapies are still lacking. Reactive oxygen species (ROS) stress induces NLRP3 inflammasome activation, and this, along with extracellular matrix metabolism (ECM) degradation in nucleus pulposus cells (NPCs), plays a crucial role in the progression of IDD. Daphnetin (DAP) is a biologically active phytochemical extracted from plants of the Genus Daphne, which possesses various bioactivities, including antioxidant properties. In the present study, we demonstrate that DAP significantly attenuates tert-butyl hydroperoxide (TBHP)-induced ECM degradation, oxidative stress and NLRP3 inflammasome activation in NPCs. Furthermore, DAP could facilitate mitophagy to increase the removal of damaged mitochondria, consequently reducing mitochondrial ROS accumulation and alleviating NLRP3 inflammasome activation. Mechanistically, we unveil that DAP activates mitophagy by stimulating the Nrf2/PINK1 signaling pathway in TBHP-induced NPCs. In vivo experiments further corroborate the protective effect of DAP against IDD progression in a rat model induced by disc puncture. Accordingly, our findings reveal that DAP could be a promising therapeutic candidate for the treatment of IDD.
Collapse
Affiliation(s)
- Yiting Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaping Ren
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Weiyuan Fang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Chencheng Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Binli Zhao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyong Hua
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yiqi Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhenya Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Yongzeng Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Liang ZH, Song J, Shangguan WJ, Zhang QQ, Shao J, Zhang YH. Melatonin mitigates matrix stiffness-induced intervertebral disk degeneration by inhibiting reactive oxygen species and melatonin receptors mediated PI3K/AKT/NF-κB pathway. Am J Physiol Cell Physiol 2024; 327:C1236-C1248. [PMID: 39250820 DOI: 10.1152/ajpcell.00630.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Intervertebral disk degeneration (IVDD) may lead to an increase in extracellular matrix (ECM) stiffness, potentially contributing to the progression of the disease. Melatonin reportedly mitigates IVDD; however, its potential to attenuate elevated matrix stiffness-induced IVDD remains unexplored. Therefore, we aimed to investigate whether melatonin can alleviate the progression of IVDD triggered by increased matrix stiffness and elucidate its underlying mechanisms. Nucleus pulposus (NP) tissues were collected from patients, and ECM stiffness, reactive oxygen species (ROS) levels, apoptosis rates, and P65 expression in these tissues with varying Pfirrmann scores were determined. In vitro experiments were conducted to investigate the effects of melatonin on various pathophysiological mechanisms within the NP cells cultured on soft substrates with differing stiffness levels. Our findings revealed a positive correlation between ECM stiffness in human NP tissue and degree of IVDD. In addition, phosphorylation of P65 exhibited a strong association with matrix stiffness. Enhanced levels of ROS and cellular apoptosis were observed within degenerated intervertebral disks. In vitro experiments demonstrated that melatonin significantly inhibited catabolism and apoptosis induced by stiff matrices, along with elevated ROS levels. Furthermore, we observed that melatonin inhibited NP cell catabolism and apoptosis by reducing the melatonin receptors mediated activation of the PI3K/AKT and nuclear factor-kappa B (NF-κB) pathways. Also, we found that the reduction of ROS by melatonin can assist in inhibiting the activation of the NF-κB pathway. The outcomes of the in vivo experiments corroborated the results of the in vitro experiments, illustrating that melatonin treatment could alleviate the compression-induced upregulation of matrix stiffness in NP and IVDD. Collectively, melatonin can potentially alleviate high matrix stiffness-induced IVDD by reducing intracellular ROS levels and inhibiting the PI3K/AKT/NF-κB pathway.NEW & NOTEWORTHY Melatonin mitigates intervertebral disk degeneration (IVDD) induced by matrix stiffness through reactive oxygen species (ROS) reduction. Matrix stiffness is related to increased nucleus pulposus cell ROS, apoptosis, and degeneration. Melatonin inhibits PI3K/AKT/NF-κB pathways via melatonin receptors in a stiff matrix environment. In vivo, melatonin restores disk height and alleviates IVDD progression.
Collapse
Affiliation(s)
- Zhi-Hui Liang
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jia Song
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Ji Shangguan
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiu-Qi Zhang
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiang Shao
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yue-Hui Zhang
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Mao T, Fan J. Myricetin Restores Autophagy to Attenuate Lumbar Intervertebral Disk Degeneration Via Negative Regulation of the JAK2/STAT3 Pathway. Biochem Genet 2024:10.1007/s10528-024-10838-x. [PMID: 38842745 DOI: 10.1007/s10528-024-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Autophagy is a critical player in lumbar intervertebral disk degeneration (IDD), and autophagy activation has been suggested to prevent the apoptosis of nucleus pulposus cells (NPCs). Myricetin has anti-cancer, anti-inflammatory, and antioxidant potentials and can activate autophagy. Thus, this study focused on the roles and mechanisms of myricetin in IDD. A puncture-induced rat IDD model was established and intraperitoneally injected with 20-mg/kg/day myricetin. Histopathological changes of intervertebral disks (IVDs) were assessed by hematoxylin and eosin staining and Safranin O/Fast Green staining. The isolated NPCs from IVDs of healthy rats were stimulated with IL-1β to mimic IDD-like conditions. The roles of myricetin in cell apoptosis, extracellular matrix (ECM) degradation, autophagy repression, and the JAK2/STAT3 pathway activation were examined by cell counting kit-8, flow cytometry, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence staining. Myricetin treatment attenuated the apoptosis and ECM degradation, and enhanced autophagy in the IL-1β-treated NPCs, whereas the myricetin-mediated protection was limited by autophagy inhibition. Mechanistically, myricetin activated autophagy through blocking the JAK2/STAT3 signaling. In vivo experiments revealed that intraperitoneal injection of myricetin activated NPC autophagy to relieve puncture injury in rats. Myricetin prevents IDD by attenuating NPC apoptosis and ECM degradation through blocking the JAK2/STAT3 pathway to enhance autophagy.
Collapse
Affiliation(s)
- Tian Mao
- School of Acupuncture-Moxibustion and Orthopedic, Hubei University of Chinese Medicine, Wuhan, 430060, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
10
|
Xu T, Zhao H, Li J, Fang X, Wu H, Hu W. Apigetrin alleviates intervertebral disk degeneration by regulating nucleus pulposus cell autophagy. JOR Spine 2024; 7:e1325. [PMID: 38633661 PMCID: PMC11022626 DOI: 10.1002/jsp2.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a common spine disease, and inflammation is considered to be one of its main pathogenesis. Apigetrin (API) is a natural bioactive flavonoid isolated from various herbal medicines and shows attractive anti-inflammatory and antioxidative properties; whereas, there is no exploration of the therapeutic potential of API on IVDD. Here, we aim to explore the potential role of API on IVDD in vivo and in vitro. Methods In vitro, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence analysis were implemented to explore the bioactivity of API on interleukin-1 beta (IL-1β)-induced inflammatory changes in nucleus pulposus cells (NPCs). In vivo, histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disk sections on puncture-induced IVDD rat models. Results In vitro, API played a crucial role in anti-inflammation and autophagy enhancement in IL-1β-induced NPCs. API improved inflammation by inhibiting the nuclear factor-kappaB and mitogen-activated protein kinas pathways, whereas it promoted autophagy via the phosphatidylinositol 3-kinase/AKT/mammalian target of the rapamycin pathway. Furthermore, in vivo experiment illustrated that API mitigates the IVDD progression in puncture-induced IVDD model. Conclusions API inhibited degenerative phenotypes and promoted autophagy in vivo and in vitro IVDD models. Those suggested that API might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
11
|
Teng C, Wu J, Zhang Z, Wang J, Yang Y, Dong C, Wu L, Lin Z, Hu Y, Wang J, Zhang X, Lin Z. Fucoxanthin ameliorates endoplasmic reticulum stress and inhibits apoptosis and alleviates intervertebral disc degeneration in rats by upregulating Sirt1. Phytother Res 2024; 38:2114-2127. [PMID: 37918392 DOI: 10.1002/ptr.8057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Endoplasmic reticulum stress (ERS) and apoptosis of nucleus pulposus (NP) cells are considered to be the main pathological factors of intervertebral disc degeneration (IDD). Fucoxanthin (FX), a marine carotenoid extracted from microalgae, has antioxidant, anti-inflammatory, and anticancer properties. The aim of this study was to investigate the effect of FX on NP cells induced by oxidative stress and its molecular mechanism. Primary NP cells of the lumbar vertebrae of rats were extracted and tested in vitro. qRT-PCR, western blot, immunofluorescence, and TUNEL staining were used to detect apoptosis, ERS, extracellular matrix (ECM), and Sirt1-related pathways. In vivo experiments, the recovery of IDD rats was determined by X-ray, hematoxylin and eosin, Safranin-O/Fast Green, Alcian staining, and immunohistochemistry. Our study showed that oxidative stress induced ERS, apoptosis, and ECM degradation in NP cells. After the use of FX, the expression of Sirt1 was up-regulated, the activation of PERK-eIF2α-ATF4-CHOP was decreased, and apoptosis and ECM degradation were decreased. At the same time, FX improved the degree of disc degeneration in rats in vivo. Our study demonstrates the effect of FX on improving IDD in vivo and in vitro, suggesting that FX may be a potential drug for the treatment of IDD.
Collapse
Affiliation(s)
- Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuezheng Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Xie T, Gu X, Pan R, Huang W, Dong S. Evodiamine ameliorates intervertebral disc degeneration through the Nrf2 and MAPK pathways. Cytotechnology 2024; 76:153-166. [PMID: 38495298 PMCID: PMC10940566 DOI: 10.1007/s10616-023-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/28/2023] [Indexed: 03/19/2024] Open
Abstract
Degradation of extracellular matrix (ECM), reactive oxygen species (ROS) production, and inflammation are critical players in the pathogenesis of intervertebral disc degeneration (IDD). Evodiamine exerts functions in inhibiting inflammation and maintaining mitochondrial antioxidant functions. However, the biological functions of evodiamine and its related mechanisms in IDD progression remain unknown. The IDD-like conditions in vivo were stimulated via needle puncture. Hematoxylin and eosin staining, Safranin O/Fast Green staining and Alcian staining were performed to determine the degenerative status. The primary nucleus pulposus cells (NPCs) were isolated from Sprague-Dawley rats and then treated with tert-butyl peroxide (TBHP) to induce cellular senescence and oxidative stress. The cell viability was assessed by cell counting kit-8 assays. The mitochondria-derived ROS in NPCs was evaluated by MitoSOX staining. The mitochondrial membrane potential in NPCs was identified by JC-1 staining and flow cytometry. The expression of collagen II in NPCs was measured by immunofluorescence staining. The levels of mRNAs and proteins were measured by RT-qPCR and western blotting. The Nrf2 expression in rat nucleus pulposus tissues was measured by immunohistochemistry staining. Evodiamine alleviated TBHP-induced mitochondrial dysfunctions in NPCs. The enhancing effect of TBHP on the ECM degradation was reversed by evodiamine. The TBHP-stimulated inflammatory response was ameliorated by evodiamine. Evodiamine alleviated the IDD process in the puncture-induced rat model. Evodiamine promoted the activation of Nrf2 pathway and inactivated the MAPK pathway in NPCs. In conclusion, evodiamine ameliorates the progression of IDD by inhibiting mitochondrial dysfunctions, ECM degradation and inflammation via the Nrf2/HO-1 and MAPK pathways.
Collapse
Affiliation(s)
- Tian Xie
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, No. 49 Lihuangpi Road, Jiang’an District, Wuhan, 430014 China
| | - Xi Gu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, No. 49 Lihuangpi Road, Jiang’an District, Wuhan, 430014 China
| | - Ruijie Pan
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061 China
| | - Wenzhuo Huang
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061 China
| | - Sheng Dong
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, 430061 China
| |
Collapse
|
13
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
14
|
Wu D, Huang W, Zhang J, He L, Chen S, Zhu S, Sang Y, Liu K, Hou G, Chen B, Xu Y, Liu B, Yao H. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int J Biol Macromol 2024; 262:129950. [PMID: 38320636 DOI: 10.1016/j.ijbiomac.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.
Collapse
Affiliation(s)
- Depeng Wu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Weijun Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Junbin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Lei He
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sihan Zhu
- University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yuan Sang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Kaihua Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Gang Hou
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Biying Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yichun Xu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bin Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| | - Hui Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
15
|
Song Y, Geng W, Zhu D, Liang H, Du Z, Tong B, Wang K, Li S, Gao Y, Feng X, Liao Z, Mei R, Yang C. SYNJ2BP ameliorates intervertebral disc degeneration by facilitating mitochondria-associated endoplasmic reticulum membrane formation and mitochondrial Zn 2+ homeostasis. Free Radic Biol Med 2024; 212:220-233. [PMID: 38158052 DOI: 10.1016/j.freeradbiomed.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Xu H, Zhang Y, Zhang Y, Yu C, Xia K, Cheng F, Shi K, Huang X, Li Y, Chen J, Shu J, Zhou X, Tao Y, Liang C, Li F, Chen Q. A novel rat model of annulus fibrosus injury for intervertebral disc degeneration. Spine J 2024; 24:373-386. [PMID: 37797841 DOI: 10.1016/j.spinee.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND CONTEXT In clinical practice, acute trauma and chronic degeneration of the annulus fibrosus (AF) can promote further degeneration of the intervertebral disc (IVD). Therefore, it is critical to understand the AF repair process and its consequences on IVD. However, the lack of cost-effective and reproducible in vivo animal models of AF injury has limited research development in this field. PURPOSES The purpose of this study was to establish and evaluate the utility of a novel animal model for full-thickness AF injury. Three foci were proposed: (1) whether this new modeling method can cause full-layer AF damage; (2) the repair processes and pathological changes in the damaged area after AF injury, and (3) the morphological and histological changes in the IVD are after AF injury. STUDY DESIGN/SETTING In vivo rat AF injury model with characterization of AF damage repair, IVD degeneration. METHODS A total of 72,300 g male rats were randomly assigned to one of the two groups: experimental or sham. Annulus fibrosus was separated layer by layer under the microscope with a #11 blade up to the AF- nucleus pulpous (NP) junction. The repair process of the horizontal AF and morphological changes in the sagittal IVD were evaluated with HE staining. Sirius red staining under polarized light. Immunofluorescence was conducted to analyze changes in the expression of COL1 and COL3 in the AF injury area and 8-OHdg, IL-6, MMP13, FSP1, and ACAN in the IVD. The disc height and structural changes after AF injury were measured using X-ray and contrast-enhanced micro-CT. Additionally, the resistance of the AF to stretching was analyzed using three-point bending. RESULTS Annulus fibrosus-nucleus pulpous border was identified to stably induce the full-thickness AF injury without causing immediate NP injury. The AF repair process after injury was slow and expressed inflammation factors continuously, with abundant amounts of type III collagen appearing in the inner part of the AF. The scar at the AF lesion had decreased resistance to small molecule penetration and weakened tensile strength. Full-thickness AF injury induced disc degeneration with loss of disc height, progressive unilateral vertebral collapse, and ossification of the subchondral bone. Inflammatory-induced degeneration and extracellular matrix catabolism gradually appeared in the NP and cartilage endplate (CEP). CONCLUSIONS We established a low-cost and reproducible small animal model of AF injury which accurately replicated the pathological state of the limited AF self-repair ability and demonstrated that injury to the AF alone could cause further degeneration of the IVD. CLINICAL RELEVANCE This in vivo rat model can be used to study the repair process of the AF defect and pathological changes in the gradual degeneration of IVD after AF damage. In addition, the model provides an experimental platform for in vivo experimental research of potential clinical therapeutics.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yuang Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yujie Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Chao Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Kaishun Xia
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Feng Cheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Kesi Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Xianpeng Huang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yi Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Jiangjie Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Jiawei Shu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Xiaopeng Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Yiqing Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China
| | - Chengzhen Liang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China.
| | - Fangcai Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China.
| | - Qixin Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, P. R. China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, P.R. China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, P.R. China; Clinical Research Center of Motor System Disease of Zhejiang Province, P.R. China.
| |
Collapse
|
17
|
Li J, Li H, Chen Y, Bei D, Huang B, Gan K, Sang P, Liu J, Shan Z, Chen J, Zhao F, Chen B. Induction of cervical disc degeneration and discogenic pain by low concentration Propionibacterium acnes infection: an in vivo animal study. Arthritis Res Ther 2024; 26:41. [PMID: 38297365 PMCID: PMC10829385 DOI: 10.1186/s13075-024-03269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Although cervical intervertebral disc (IVD) degeneration is closely associated with neck pain, its cause remains unclear. In this study, an animal model of cervical disc degeneration and discogenic neck pain induced by a low concentration of Propionibacterium acnes (P. acnes-L) is investigated to explore the possible mechanisms of cervical discogenic pain. METHODS Cervical IVD degeneration and discitis was induced in 8-week-old male rats in C3-C6 IVDs through the anterior intervertebral puncture with intradiscal injections of low and high concentrations of P. acnes (P. acnes-L, n = 20 and P. acnes-H, n = 15) or Staphylococcus aureus (S. aureus, n = 15), compared to control (injection with PBS, n = 20). The structural changes in the cervical IVD using micro-CT, histological evaluation, and gene expression assays after MRI scans at 2 and 6 weeks post-modeling. The P. acnes-L induced IVD degeneration model was assessed for cervical spine MRI, histological degeneration, pain-like behaviors (guarding behavior and forepaw von Frey), nerve fiber growth in the IVD endplate region, and DRG TNF-α and CGRP. RESULTS IVD injection with P. acnes-L induced IVD degeneration with decreased IVD height and MRI T2 values. IVD injection with P. acnes-H and S. aureus both lead to discitis-like changes on T2-weighted MRI, trabecular bone remodeling on micro-CT, and osseous fusion after damage in the cartilage endplate adjacent to the injected IVD. Eventually, rats in the P. acnes-L group exhibited significant nociceptive hypersensitivity, nerve fiber ingrowth was observed in the IVD endplate region, inflammatory activity in the DRG was significantly increased compared to the control group, and the expression of the pain neurotransmitter CGRP was significantly upregulated. CONCLUSION P. acnes-L was validated to induce cervical IVD degeneration and discogenic pain phenotype, while P. acnes-H induced was identified to resemble septic discitis comparable to those caused by S. aureus infection.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dikai Bei
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Peiming Sang
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital Affiliated to Ningbo University, 1111 Jiangnan Road, Ningbo, Zhejiang Province, 315040, China.
| |
Collapse
|
18
|
Zhao WJ, Liu X, Hu M, Zhang Y, Shi PZ, Wang JW, Lu XH, Cheng XF, Tao YP, Feng XM, Wang YX, Zhang L. Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells via the miR-34a-5p/SIRT1 axis. World J Stem Cells 2023; 15:842-865. [PMID: 37700818 PMCID: PMC10494568 DOI: 10.4252/wjsc.v15.i8.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a main contributor to low back pain. Oxidative stress, which is highly associated with the progression of IDD, increases senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs (IVDs). Quercetin (Que) has been demonstrated to reduce oxidative stress in diverse degenerative diseases. AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism. METHODS In vitro, NPMSCs were isolated from rat tails. Senescence-associated β-galactosidase (SA-β-Gal) staining, cell cycle, reactive oxygen species (ROS), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and western blot analyses were used to evaluated the protective effects of Que. Meanwhile the relationship between miR-34a-5p and Sirtuins 1 (SIRT1) was evaluated by dual-luciferase reporter assay. To explore whether Que modulates tert-butyl hydroperoxide (TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway, we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression. In vivo, a puncture-induced rat IDD model was constructed, and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo. RESULTS We found that TBHP can cause NPMSCs senescence changes, such as reduced cell proliferation ability, increased SA-β-Gal activity, cell cycle arrest, the accumulation of ROS, and increased expression of senescence-related proteins. While abovementioned senescence indicators were significantly alleviated by Que treatment. Que decreased the expression levels of senescence-related proteins (p16, p21, and p53) and senescence-associated secreted phenotype (SASP), including IL-1β, IL-6, and MMP-13, and it increased the expression of SIRT1. In addition, the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown. In vivo, X-ray, and histological analyses indicated that Que alleviated IDD in a puncture-induced rat model. CONCLUSION In summary, the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway, suggesting that Que may be a potential agent for the treatment of IDD.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- Graduate School, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xin Liu
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Man Hu
- Graduate School, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yu Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Peng-Zhi Shi
- Graduate School, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Jun-Wu Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Xu-Hua Lu
- Department of Orthopedics, Changzheng Hospital of The Second Military Medical University, Shanghai 200003, China
| | - Xiao-Fei Cheng
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedics Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yu-Ping Tao
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Yong-Xiang Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| |
Collapse
|
19
|
Tu J, Li W, Hansbro PM, Yan Q, Bai X, Donovan C, Kim RY, Galvao I, Das A, Yang C, Zou J, Diwan A. Smoking and tetramer tryptase accelerate intervertebral disc degeneration by inducing METTL14-mediated DIXDC1 m 6 modification. Mol Ther 2023; 31:2524-2542. [PMID: 37340635 PMCID: PMC10422004 DOI: 10.1016/j.ymthe.2023.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Although cigarette smoking (CS) and low back pain (LBP) are common worldwide, their correlations and the mechanisms of action remain unclear. We have shown that excessive activation of mast cells (MCs) and their proteases play key roles in CS-associated diseases, like asthma, chronic obstructive pulmonary disease (COPD), blood coagulation, and lung cancer. Previous studies have also shown that MCs and their proteases induce degenerative musculoskeletal disease. By using a custom-designed smoke-exposure mouse system, we demonstrated that CS results in intervertebral disc (IVD) degeneration and release of MC-restricted tetramer tryptases (TTs) in the IVDs. TTs were found to regulate the expression of methyltransferase 14 (METTL14) at the epigenetic level by inducing N6-methyladenosine (m6A) deposition in the 3' untranslated region (UTR) of the transcript that encodes dishevelled-axin (DIX) domain-containing 1 (DIXDC1). That reaction increases the mRNA stability and expression of Dixdc1. DIXDC1 functionally interacts with disrupted in schizophrenia 1 (DISC1) to accelerate the degeneration and senescence of nucleus pulposus (NP) cells by activating a canonical Wnt pathway. Our study demonstrates the association between CS, MC-derived TTs, and LBP. These findings raise the possibility that METTL14-medicated DIXDC1 m6A modification could serve as a potential therapeutic target to block the development of degeneration of the NP in LBP patients.
Collapse
Affiliation(s)
- Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wentian Li
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip M Hansbro
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Qi Yan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xupeng Bai
- Center for Innovation and Translational Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chantal Donovan
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Izabela Galvao
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cao Yang
- Department of Orthopedic Surgery, Wuhan Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ashish Diwan
- Spine Labs, St. George & Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Spine Service, Department of Orthopedic Surgery, St. George Hospital, Kogarah, NSW, Australia.
| |
Collapse
|
20
|
Chen T, Qian Q, Makvandi P, Zare EN, Chen Q, Chen L, Zhang Z, Zhou H, Zhou W, Wang H, Wang X, Chen Y, Zhou Y, Wu A. Engineered high-strength biohydrogel as a multifunctional platform to deliver nucleic acid for ameliorating intervertebral disc degeneration. Bioact Mater 2023; 25:107-121. [PMID: 37056255 PMCID: PMC10088054 DOI: 10.1016/j.bioactmat.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of low back pain. The strategy of using functional materials to deliver nucleic acids provides a powerful tool for ameliorating IVDD. However, the immunogenicity of nucleic acid vectors and the poor mechanical properties of functional materials greatly limit their effects. Herein, antagomir-204-3p (AM) shows low immunogenicity and effectively inhibits the apoptosis of nucleus pulposus cells. Moreover, a high-strength biohydrogel based on zinc-oxidized sodium alginate-gelatin (ZOG) is designed as a multifunctional nucleic acid delivery platform. ZOG loaded with AM (ZOGA) exhibits great hygroscopicity, antibacterial activity, biocompatibility, and biodegradability. Moreover, ZOGA can be cross-linked with nucleus pulposus tissue to form a high-strength collagen network that improves the mechanical properties of the intervertebral disc (IVD). In addition, ZOGA provides an advantageous microenvironment for genetic expression in which AM can play an efficient role in maintaining the metabolic balance of the extracellular matrix. The results of the radiological and histological analyses demonstrate that ZOGA restores the height of the IVD, retains moisture in the IVD, and maintains the tissue structure. The ZOGA platform shows the sustained release of nucleic acids and has the potential for application to ameliorate IVDD, opening a path for future studies related to IVD.
Collapse
|
21
|
Hu B, Lin S, Lin S, Rui G. Ginkgetin Alleviates Intervertebral Disc Degeneration by Inhibiting Apoptosis, Inflammation, and Disturbance of Extracellular Matrix Synthesis and Catabolism via Inactivation of NLRP3 Inflammasome. Immunol Invest 2023:1-15. [PMID: 37154418 DOI: 10.1080/08820139.2023.2205884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Apoptosis, inflammation, and the extracellular matrix (ECM) synthesis and catabolism are compromised with intervertebral disc degeneration (IDD). Ginkgetin (GK) has been demonstrated to alleviate several diseases; however, its effect on IDD remains unknown. METHODS The nucleus pulposus cells (NPCs) were stimulated with interleukin (IL)-1β to construct the IDD models in vitro. Rats were used for the construction of the IDD models in vivo via the fibrous ring puncture method. The effect and mechanism of GK on IDD were determined by cell counting kit-8 (CCK-8), flow cytometry, western blot, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme‑linked immunosorbent assay (ELISA), hematoxylin and eosin (HE) and safranine O staining, and immunohistochemistry (IHC) assays, respectively. RESULTS GK increased the cell viability and upregulated the expressions of anti-apoptosis and ECM synthesis markers in NPCs treated with IL-1β. GK also decreased apoptosis rate, and downregulated the expressions of proteins related to pro-apoptosis, ECM catabolism, and inflammation in vitro. Mechanically, GK reduced the expression of nucleotide binding oligomeric domain like receptor protein 3 (NLRP3) inflammasome-related proteins. Overexpression of NLRP3 reversed the effect of GK on the proliferation, apoptosis, inflammation, and ECM degradation in IL-1β-induced NPCs. Moreover, GK attenuated the pathological manifestations, inflammation, ECM degradation, and NLRP3 inflammasome expression in IDD rats. CONCLUSION GK suppressed apoptosis, inflammation, and ECM degradation to alleviate IDD via the inactivation of NLRP3 inflammasome.
Collapse
Affiliation(s)
| | | | - Shengrong Lin
- Department of Orthopaedics, The Third Clinical Medical College, Fujian Medical University, Xiamen, China
| | - Gang Rui
- Department of Orthopaedics, The Third Clinical Medical College, Fujian Medical University, Xiamen, China
| |
Collapse
|
22
|
Zhu J, Sun R, Yan C, Sun K, Gao L, Zheng B, Shi J. Hesperidin mitigates oxidative stress-induced ferroptosis in nucleus pulposus cells via Nrf2/NF-κB axis to protect intervertebral disc from degeneration. Cell Cycle 2023; 22:1196-1214. [PMID: 37055945 PMCID: PMC10193898 DOI: 10.1080/15384101.2023.2200291] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Intervertebral disc degeneration (IVDD), a widely known contributor to low back pain (LBP), has been proved to be a global health challenging conundrum. Hesperidin (hesperetin-7-O-rutinoside, HRD) is a flavanone glycoside that belongs to the subgroup of citrus flavonoids with therapeutic effect on various diseases due to its anti-inflammatory, antioxidant properties. However, the effect of HRD on IVDD remains elusive. The human nucleus pulposus tissues were harvested for isolating human nucleus pulposus (HNP) cells to verify the expression of Nrf2. The biological effect of HRD on HNP cells were assessed in vitro, and the in vivo therapeutic effects of HRD were assessed in mice. Firstly, we found that the expression of Nrf2 was decreased with the progression of degeneration in degenerated human nucleus pulposus tissue. Subsequently, we confirmed that HRD could mitigate oxidative stress-induced ferroptosis in nucleus pulposus cells via enhancing the expression of Nrf2 axis and suppressing the NF-κB pathway to protect intervertebral disc from degeneration in vitro. Finally, the therapeutic effects of HRD were confirmed in vivo. The current study proved for the first time that HRD may protect HNP cells from degeneration by suppressing ferroptosis in an oxidative stress-dependent via enhancing the expression of Nrf2 and suppressing the NF-κB pathway. The evidence will provide a possible basis for future targeted treatment for IVDD.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ruping Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Yan
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopaedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Lu Gao
- Department of Department of Physiology, Naval Medical University, Shanghai, China
| | - Bing Zheng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Ho C, Wang C, Wu T, Kuan C, Liu Y, Wang T. Peptide-functionalized double network hydrogel with compressible shape memory effect for intervertebral disc regeneration. Bioeng Transl Med 2023; 8:e10447. [PMID: 36925718 PMCID: PMC10013763 DOI: 10.1002/btm2.10447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
As a prominent approach to treat intervertebral disc (IVD) degeneration, disc transplantation still falls short to fully reconstruct and restore the function of native IVD. Here, we introduce an IVD scaffold consists of a cellulose-alginate double network hydrogel-based annulus fibrosus (AF) and a cellulose hydrogel-based nucleus pulposus (NP). This scaffold mimics native IVD structure and controls the delivery of Growth Differentiation Factor-5 (GDF-5), which induces differentiation of endogenous mesenchymal stem cells (MSCs). In addition, this IVD scaffold has modifications on MSC homing peptide and RGD peptide which facilitate the recruitment of MSCs to injured area and enhances their cell adhesion property. The benefits of this double network hydrogel are high compressibility, shape memory effect, and mechanical strength comparable to native IVD. In vivo animal study demonstrates successful reconstruction of injured IVD including both AF and NP. These findings suggest that this double network hydrogel can serve as a promising approach to IVD regeneration with other potential biomedical applications.
Collapse
Affiliation(s)
- Chia‐Yu Ho
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Chen‐Chie Wang
- Department of Orthopedic SurgeryTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Department of Orthopedics, School of MedicineTzu Chi UniversityHualienTaiwan
| | - Tsung‐Chiao Wu
- Department of Orthopedic SurgeryTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Chen‐Hsiang Kuan
- Division of Plastic Surgery, Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
- Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipeiTaiwan
- Research Center for Developmental Biology and Regenerative MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Tzu‐Wei Wang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
24
|
Zhang T, Wang Y, Li R, Xin J, Zheng Z, Zhang X, Xiao C, Zhang S. ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration. Acta Biomater 2023; 158:475-492. [PMID: 36640954 DOI: 10.1016/j.actbio.2023.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a degenerative disease characterized by lower-back pain, causing disability globally. Antioxidant therapy is currently considered one of the most promising strategies for IVDD treatment, given the crucial role of reactive oxygen species (ROS) in IVDD pathogenesis. Herein, a ROS-responsive magnesium-containing microsphere (Mg@PLPE MS) was constructed for the antioxidative treatment of IVDD. The Mg@PLPE MS has a core-shell structure comprising poly(lactic-co-glycolic acid) (PLGA) and ROS-responsive polymer poly(PBT-co-EGDM) as the shell and a magnesium microparticle as the core. The poly(PBT-co-EGDM) can be destroyed by H2O2 through the H2O2-triggered hydrophobic-to-hydrophilic transition, subsequently promoting an Mg-water reaction to produce H2. Thus, Mg@PLPE MS provides a valuable platform for H2O2 elimination and controlled H2 release. The generated H2 scavenge for ROS by reacting with noxious •OH. Notably, the Mg@PLPE MS exerted significant antioxidative and anti-inflammatory effects in a disc degeneration rat model and alleviated extracellular matrix degradation and disc cells apoptosis, thereby underlining its efficacy in IVDD treatment. The Mg@PLPE MS also exhibited robust biocompatibility and negligible toxicity, presenting the promise for the antioxidative treatment of IVDD in vivo. STATEMENT OF SIGNIFICANCE: Antioxidant therapy is currently considered one of the most promising strategies for intervertebral disc degeneration (IVDD) treatment, given the crucial role of reactive oxygen species (ROS) in IVDD pathogenesis. Here, ROS-responsive magnesium-containing microspheres (Mg@PLPE MSs) were constructed to alleviate IVDD through controlled release of hydrogen gas. The Mg@PLPE MSs can effectively scavenge overproduced ROS by simultaneously reacting with H2O2 and •OH, thus creating a suitable microenvironment for inhibition of ECM degradation. As a result, Mg@PLPE MSs treated IVDD rats exhibit minimal nucleus pulposus decrease, less extracellular matrix degradation, minimal radial fissure of fibrous rings, and higher disc height index. Therefore, the as-prepared Mg@PLPE MSs may shed a new light on clinical treatment of IVDD.
Collapse
Affiliation(s)
- Tianhui Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ruhui Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
25
|
Tian Y, Chu X, Huang Q, Guo X, Xue Y, Deng W. Astragaloside IV attenuates IL-1β-induced intervertebral disc degeneration through inhibition of the NF-κB pathway. J Orthop Surg Res 2022; 17:545. [PMID: 36527065 PMCID: PMC9758796 DOI: 10.1186/s13018-022-03438-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is the main cause of low back pain. Patients with low back pain may experience significant socio-economic burdens and decreased productivity. Previous studies have shown that inflammation is one of the main causes of IDD. Astragaloside IV (AS IV), a traditional Chinese medicine, has been reported to have therapeutic effects on many inflammation-related diseases; however, the effectiveness of AS IV as the treatment for IDD has not been studied. METHODS Nucleus pulposus (NP) cells from patients with IDD were used for the experiments. Cell counting kit 8 (CCK8) was used to evaluate the effect of AS IV on the viability of NP cells (NPCs). To mimic IDD in vitro, NPCs were divided into the following groups: control group, interleukin 1β (IL-1β) group, and AS IV + IL-1β group. To analyse the effect of AS IV on IL-1β-induced IDD, Western blotting, RT-qPCR, flow cytometry, and immunofluorescence assays were performed. To evaluate the effect of AS IV in vivo, a rat model of puncture-induced IDD was established. RESULTS AS IV effectively alleviated IL-1β-induced inflammation, apoptosis, and extracellular matrix degeneration in NPCs. We also observed that AS IV decreased the IL-1β-induced phosphorylation of inhibitor of kappa B-alpha (p-IκBα) in the cytosol, and reduced nuclear translocation of NF-κB p65, indicating that AS IV inhibited the NF-κB pathway. Using the puncture-induced rat IDD model, our results showed that AS IV had a protective effect against the progression of IDD, suggesting that AS IV could alleviate IDD in vivo. CONCLUSIONS Our results demonstrated that AS IV effectively alleviated IDD in vivo and in vitro, indicating that it could be used as a therapeutic to treat IDD.
Collapse
Affiliation(s)
- Yueyang Tian
- grid.412645.00000 0004 1757 9434Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China ,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xu Chu
- grid.43169.390000 0001 0599 1243Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qia Huang
- grid.412645.00000 0004 1757 9434Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China ,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Xing Guo
- grid.412645.00000 0004 1757 9434Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China ,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yuan Xue
- grid.412645.00000 0004 1757 9434Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China ,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Weimin Deng
- grid.265021.20000 0000 9792 1228Department of Immunology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Wang W, Xiao B, Yu L, Wang H, Qi J, Xi Y, Deng G, Gu X, Xu G. Effect of species, concentration and volume of local anesthetics on intervertebral disk degeneration in rats with discoblock. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2960-2971. [PMID: 36152221 DOI: 10.1007/s00586-022-07398-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Discoblock is effective in relieving discogenic low back pain, but it can also cause intervertebral disk degeneration (IDD). The effect of species, concentration and volume of local anesthetics on IDD with discoblock have not been reported. The purpose was to study the effect of species, concentration and volume of local anesthetics on IDD in rats undergoing discoblock. METHODS The effects of local anesthetics on nucleus pulposus cell (NPC) viability in vitro were studied. NPCs were exposed to lidocaine, bupivacaine and ropivacaine at different concentrations. NPC viability was measured. The least cytotoxic local anesthetic was used in vivo. The concentration and volume of local anesthetics on IDD in rat with discoblocks were tested in vivo. Detection indicators included X-ray, MRI, water content of the disk and histological changes. RESULTS The toxicity of local anesthetics to NPCs was dose and time dependent, and the cytotoxicity of different local anesthetics was different. Among the three local anesthetics, ropivacaine was the least toxic to NPCs. The effect of ropivacaine concentration on IDD was not significant, as detected by X-ray, MRI, disk water content and histology (P < 0.05). The volume of ropivacaine has a significant effect on IDD, as supported by X-ray, MRI, disk water content and histology (P < 0.05). Acupuncture itself significantly increased IDD, as detected by MRI, disk water content and histology (P < 0.05). CONCLUSION Ropivacaine should be selected for its low cytotoxicity. A lower volume and slow injection speed should be used to reduce IDD during discoblock.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, NO.415 Fengyang Road, Shanghai, People's Republic of China.
| | - Bing Xiao
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, NO.415 Fengyang Road, Shanghai, People's Republic of China
| | - Lei Yu
- Department of Orthopaedics, The 73Rd Group Army Hospital of PLA, NO.94-96 Wenyuan Road, Xiamen, People's Republic of China
| | - Haotian Wang
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, NO.415 Fengyang Road, Shanghai, People's Republic of China
| | - Junqiang Qi
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, NO.415 Fengyang Road, Shanghai, People's Republic of China
| | - Yanhai Xi
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, NO.415 Fengyang Road, Shanghai, People's Republic of China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xin Songjiang Road, NO, Shanghai, People's Republic of China
| | - Xin Gu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, No. 1111, Xianxia Road, Shanghai, People's Republic of China
| | - Guohua Xu
- Department of Orthopaedics, Second Affiliated Hospital of Naval Medical University, NO.415 Fengyang Road, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Salzer E, Mouser VHM, Tryfonidou MA, Ito K. A bovine nucleus pulposus explant culture model. J Orthop Res 2022; 40:2089-2102. [PMID: 34812520 PMCID: PMC9542046 DOI: 10.1002/jor.25226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Low back pain is a global health problem that is frequently caused by intervertebral disc degeneration (IVDD). Sulfated glycosaminoglycans (sGAGs) give the healthy nucleus pulposus (NP) a high fixed charge density (FCD), which creates an osmotic pressure that enables the disc to withstand high compressive forces. However, during IVDD sGAG reduction in the NP compromises biomechanical function. The aim of this study was to develop an ex vivo NP explant model with reduced sGAG content and subsequently investigate biomechanical restoration via injection of proteoglycan-containing notochordal cell-derived matrix (NCM). Bovine coccygeal NP explants were cultured in a bioreactor chamber and sGAG loss was induced by chondroitinase ABC (chABC) and cultured for up to 14 days. Afterwards, diurnal loading was studied, and explant restoration was investigated via injection of NCM. Explants were analyzed via histology, biochemistry, and biomechanical testing via stress relaxation tests and height measurements. ChABC injection induced dose-dependent sGAG reduction on Day 3, however, no dosing effects were detected after 7 and 14 days. Diurnal loading reduced sGAG loss after injection of chABC. NCM did not show an instant biomechanical (equilibrium pressure) or biochemical (FCD) restoration, as the injected fixed charges leached into the medium, however, NCM stimulated proliferation and increased Alcian blue staining intensity and matrix organization. NCM has biological repair potential and biomaterial/NCM combinations, which could better entrap NCM within the NP tissue, should be investigated in future studies. Concluding, chABC induced progressive, time-, dose- and loading-dependent sGAG reduction that led to a loss of biomechanical function. Keywords biomechanics | intervertebral disc | matrix degradation | low back pain | proteoglycans.
Collapse
Affiliation(s)
- Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| | - Vivian H. M. Mouser
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| |
Collapse
|
28
|
Dai X, Chen Y, Yu Z, Liao C, Liu Z, Chen J, Wu Q. Advanced oxidation protein products induce annulus fibrosus cell senescence through a NOX4-dependent, MAPK-mediated pathway and accelerate intervertebral disc degeneration. PeerJ 2022; 10:e13826. [PMID: 35935259 PMCID: PMC9354796 DOI: 10.7717/peerj.13826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is closely associated with senescence. Annulus fibrosus (AF) cell senescence is a crucial driver of AF tissue tearing and fissures, thereby exacerbating IVDD. Increased advanced oxidative protein products (AOPPs) were found in human degenerative discs and aged rat discs and may be involved in IVDD. This study aimed to explore the mechanism of AOPPs-induced senescence in AF cells. Methods The pathological effects of AOPPs in vivo were investigated using a rat lumbar disc persistent degeneration model and a rat caudal disc puncture model. Rat primary AF cells were selected as in vitro models, and AOPPs were used as direct stimulation to observe their pathological effects. Setanaxb (NOX1/4 inhibitor), apocynin (NADPH oxidase inhibitor) and adenovirus (ADV) packed NADPH oxidase 4 (NOX4) specific shRNAs were used for pathway inhibition, respectively. Finally, adeno-associated viruses (AAVs) packed with NOX4-specific blocking sequences were used to inhibit the in vivo pathway. Results AOPPs accumulated in the rat lumbar and caudal degenerative discs. Intra-discal loading of AOPPs up-regulated the expression of NOX4, p53, p21, p16, IL-1β, and TNF-α, ultimately accelerating IVDD. Exposure of AOPPs to AF primary cells up-regulated NOX4 expression, induced phosphorylation of mitogen-activated protein kinases (MAPK), triggered senescence and increased IL-1β and TNF-α. Apocynin, setanaxib, and ADV pre-cultured AF cells abrogated AOPPs-induced senescence. AAV-mediated inhibition of NOX4 expression in vivo reduced the expression of p53, p21, p16, IL-1β and TNF-α in vivo and delayed IVDD. Conclusions AOPPs induced AF cell senescence through a NOX4-dependent and MAPK-mediated pathway.
Collapse
Affiliation(s)
- Xiangheng Dai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zihan Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Exercise-induced FNDC5/irisin protects nucleus pulposus cells against senescence and apoptosis by activating autophagy. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1038-1048. [PMID: 35882943 PMCID: PMC9355987 DOI: 10.1038/s12276-022-00811-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), and excessive senescence and apoptosis of nucleus pulposus (NP) cells are major pathological changes in IVDD. Physical exercise could effectively delay the process of intervertebral disc degeneration; however, its mechanism is still largely unknown. Irisin is an exercise-induced myokine released upon cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), and its levels increase after physical exercise. Here, we show that after physical exercise, FNDC5/irisin levels increase in the circulation and NP, senescence and apoptosis are reduced, autophagy is activated in NP tissue, and the progression of IVDD is delayed. Conversely, after knocking out FNDC5, the benefits of physical exercise are compromised. Moreover, the overexpression of FNDC5 in NP tissue effectively alleviated the degeneration of the intervertebral disc (IVD) in rats. By showing that FNDC5/irisin is an important mediator of the beneficial effects of physical exercise in the IVDD model, the study proposes FNDC5/irisin as a novel agent capable of activating autophagy and protecting NP from senescence and apoptosis.
Collapse
|
30
|
Ren C, Jin J, Li C, Xiang J, Wu Y, Zhou Y, Sun L, Zhang X, Tian N. Metformin inactivates the cGAS-STING pathway through autophagy and suppresses senescence in nucleus pulposus cells. J Cell Sci 2022; 135:276176. [PMID: 35722742 DOI: 10.1242/jcs.259738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a complex process involving many factors, among which excessive senescence of nucleus pulposus cells (NPCs) is considered to be the main factor. Our previous study found that metformin may inhibit senescence in nucleus pulposus cells; however, its working mechanism is still largely unknown. In the current study, we found that metformin may inactivate cGAS-STING pathway during oxidative stress. Knock-down of STING may further suppress senescence, indicating metformin may exert its effect through cGAS-STING pathway. Damaged DNA is a major inducer of the activation of cGAS-STING pathway. Mechanistically, our study showed that DNA damage was reduced during metformin treatment; however, suppression of autophagy by 3-methyladenine (3MA) may compromise the effect of metformin on DNA damage. The in vivo study also showed that 3MA may recede the therapeutic effect of metformin on IVDD. Taken together, our results reveal that metformin may suppress senescence via inactivating the cGAS-STING pathway through autophagy, implying the new application of metformin in cGAS-STING pathway related diseases.
Collapse
Affiliation(s)
- Chenghao Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jianwei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
31
|
Li J, Chen Y, Wu H, Shan Z, Bei D, Gan K, Liu J, Zhang X, Chen B, Chen J, Zhao FD. Different responses of cervical intervertebral disc caused by low and high virulence bacterial infection: a comparative study in rats. Bioengineered 2022; 13:12446-12461. [PMID: 35587595 PMCID: PMC9275948 DOI: 10.1080/21655979.2022.2075305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were to investigate the outcomes of low- and high-virulence bacterial cervical intervertebral discs (IVDs) infection and its association with cervical IVDs degeneration in rats. A total of 75 clean grade male rats were used to establish the corresponding animal models of low and high virulent bacterial cervical disc infection via an anterior cervical approach, with injection of Propionibacterium acnes (P. acnes) and Staphylococcus epidermidis (S. epidermidis) with a 29 G needle to cervical IVDs. Specimens were collected for evaluation of Blood routine (Blood-RT), histological staining, and gene expression assays after a magnetic resonance imaging (MRI) scan. There were no statistical differences in all groups in white blood cells (WBC) at 2 and 6 weeks postoperatively (P = 0.136). The highest percentage of neutrophils was found in the S. epidermidis group at 2 weeks postoperatively (P = 0.043). MRI and histology showed that at 6 weeks postoperatively, the puncture group and P. acnes group had similar disc degeneration. In the S. epidermidis group, the disc and subchondral bone structure had been destroyed and bony fusion had occurred after the discitis. The upregulation of pro-inflammatory factor expression had the strongest effect of S. epidermidis on the early stage, while the upregulation in the puncture and P. acnes groups was more persistent. P. acnes infection of the cervical IVDs can lead to degenerative changes, whereas S. epidermidis infection leads to the manifestation of septic discitis. The correlation between P. acnes infection and cervical IVDs degeneration found in clinical studies was confirmed.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Wu
- Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong, SAR, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dikai Bei
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Feng-Dong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Ma H, Xie C, Chen Z, He G, Dai Z, Cai H, Zhang H, Lu H, Wu H, Hu X, Zhou K, Zheng G, Xu H, Xu C. MFG-E8 alleviates intervertebral disc degeneration by suppressing pyroptosis and extracellular matrix degradation in nucleus pulposus cells via Nrf2/TXNIP/NLRP3 axis. Cell Death Discov 2022; 8:209. [PMID: 35440086 PMCID: PMC9018842 DOI: 10.1038/s41420-022-01002-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a chronic age-related degenerative disease accompanied by complex pathophysiological mechanisms. Increasing evidence indicates that NLRP3 inflammasome mediated pyroptosis of nucleus pulposus (NP) cells displays an important role in the pathological progression of IVDD. Milk fat globule-EGF factor-8 (MFG-E8) is an endogenously secreted glycoprotein with beneficial effects of anti-inflammatory, antioxidant, and modulation of NLRP3 inflammasome. However, the effect of MFG-E8 on IVDD remains unclear. In this study, our purpose is to clarify the expression changes of MFG-E8 in the IVDD process and explore the role and mechanism of MFG-E8. We found that MFG-E8's expression was reduced in degraded nucleus pulposus tissues of humans and rats as well as hydrogen peroxide (H2O2)-treated NP cells. Exogenous supplementation of MFG-E8 could rescue H2O2-induced oxidative stress, mitochondrial dysfunction, and NLRP3 inflammasome activation and protect NP cells from pyroptosis and extracellular matrix (ECM) degradation. Mechanistically, Nrf2/TXNIP/NLRP3 axis plays a crucial role in MFG-E8-mediated suppression of the above-pathological events. In vivo, we established a rat intervertebral disc acupuncture model and found that MFG-E8 administration effectively alleviated IVDD development by imageological and histomorphological evaluation. Overall, our findings revealed the internal mechanisms underlying MFG-E8 regulation in NP cells and its intrinsic value for IVDD therapy.
Collapse
Affiliation(s)
- Haiwei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhengtai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Gaolu He
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zihan Dai
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hanchen Cai
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongwei Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
33
|
Zhou ZM, Bao JP, Peng X, Gao JW, VLF C, Zhang C, Sun R, Kun-Wang, Wu XT. Small extracellular vesicles from hypoxic mesenchymal stem cells alleviate intervertebral disc degeneration by delivering miR-17-5p. Acta Biomater 2022; 140:641-658. [PMID: 34879291 DOI: 10.1016/j.actbio.2021.11.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
Abstract
Minimally invasive repair strategies are a very promising approach for the treatment of intervertebral disc degeneration (IDD). In recent years, small extracellular vesicles (sEVs) secreted from mesenchymal stem cells (MSCs) have been shown great potential in alleviating IDD. However, in vitro experiments, MSCs are usually exposed to a normoxic micro-environment, which differs greatly from the hypoxic micro-environment in vivo. The primary purpose of our research was to determine whether sEVs isolated from MSCs under hypoxic status (H-sEVs) exhibit a more beneficial effect on protecting IDD compared with sEVs derived from MSCs under normoxic status (N-sEVs). A tail IDD rat model and a series of experiments in vitro were conducted to compare the beneficial effects of PBS, N-sEVs, and H-sEVs treatment. Then, to validate the role of sEVs miRNAs in IDD, a miRNA microarray sequencing analysis and a series of rescue experiments were conducted. Luciferase activity, RNA-ChIP and western blot were performed to explore the potential mechanisms. The results indicate that sEVs alleviate IDD by ameliorating the homeostatic imbalance between anabolism and catabolism in vivo and in vitro. Microarray sequencing result shows that miR-17-5p is maximally enriched in H-sEVs. Toll-like receptor 4 (TLR4) was determined to be a target downstream gene of miR-17-5p. Finally, it was found that H-sEVs miR-17-5p may modulate proliferation and synthesis of human nucleus pulposus cells (HNPCs) matrix via TLR4 pathway. In conclusion, H-sEVs miR-17-5p alleviate IDD via promoting HNPCs matrix proliferation and synthesis, providing new therapeutic targets for IDD. STATEMENT OF SIGNIFICANCE: Intervertebral disc degeneration (IDD) is the primary cause of low back pain (LBP), which is a huge burden to society. Our research demonstrates for the first time that hypoxic pretreatment of small extracellular vesicles (H-sEVs) effectively alleviated the progress of IDD. In short, in the present research, we found that H-sEVs miR-17-5p could modulate proliferation and synthesis of nucleus pulposus cells (NPCs) matrix via TLR4/PI3K/AKT pathway. Therefore, hypoxic pre-treatment is a prospective and efficient method to optimize the therapeutic effect of MSCs-derived sEVs. miRNA and MSCs-derived sEVs combination may be a promising therapeutic approach for IDD.
Collapse
|
34
|
Du X, Chen S, Cui H, Huang Y, Wang J, Liu H, Li Z, Liang C, Zheng Z, Wang H. Circular RNA hsa_circ_0083756 promotes intervertebral disc degeneration by sponging miR-558 and regulating TREM1 expression. Cell Prolif 2022; 55:e13205. [PMID: 35187741 PMCID: PMC9055908 DOI: 10.1111/cpr.13205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Intervertebral disc degeneration (IVDD) is a leading cause of low back pain. Circular RNAs (circRNAs) have been demonstrated to exert vital functions in IVDD. However, the role and mechanism of hsa_circ_0083756 in the development of IVDD remain unclear. Materials and methods RT‐qPCR was performed to detect expressions of hsa_circ_0083756, miR‐558 and TREM1 in nucleus pulposus (NP) tissues and cells. CCK8 assay, flow cytometry, TUNEL assay, RT‐qPCR and WB were used to clarify the roles of hsa_circ_0083756 in NP cells proliferation and extracellular matrix (ECM) formation. Bioinformatics analyses, dual‐luciferase reporter gene experiment, RNA immunoprecipitation (RIP) assay and FISH assay were performed to predict and verify the targeting relationship between hsa_circ_0083756 and miR‐558, as well as that between miR‐558 and TREM1. Ultimately, the effect of hsa_circ_0083756 on IVDD was tested through anterior disc‐puncture IVDD animal model in rats. Results hsa_circ_0083756 was upregulated in degenerative NP tissues and cells. In vitro loss‐of‐function and gain‐of‐function studies suggested that hsa_circ_0083756 knockdown promoted, whereas hsa_circ_0083756 overexpression inhibited NP cells proliferation and ECM formation. Mechanistically, hsa_circ_0083756 acted as a sponge of miR‐558 and subsequently promoted the expression of TREM1. Furthermore, in vivo study indicated that silencing of hsa_circ_0083756 could alleviate IVDD in rats. Conclusions hsa_circ_0083756 promoted IVDD via targeting the miR‐558/TREM1 axis, and hsa_circ_0083756 may serve as a potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Xianfa Du
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shunlun Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haitao Cui
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuming Huang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxiang Liang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaomin Zheng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Hua Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp Mol Med 2022; 54:129-142. [PMID: 35145201 PMCID: PMC8894389 DOI: 10.1038/s12276-022-00729-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Low back pain (LBP) is a major musculoskeletal disorder and the socioeconomic problem with a high prevalence that mainly involves intervertebral disc (IVD) degeneration, characterized by progressive nucleus pulposus (NP) cell death and the development of an inflammatory microenvironment in NP tissue. Excessively accumulated cytosolic DNA acts as a damage-associated molecular pattern (DAMP) that is monitored by the cGAS-STING axis to trigger the immune response in many degenerative diseases. NLRP3 inflammasome-dependent pyroptosis is a type of inflammatory programmed death that promotes a chronic inflammatory response and tissue degeneration. However, the relationship between the cGAS-STING axis and NLRP3 inflammasome-induced pyroptosis in the pathogenesis of IVD degeneration remains unclear. Here, we used magnetic resonance imaging (MRI) and histopathology to demonstrate that cGAS, STING, and NLRP3 are associated with the degree of IVD degeneration. Oxidative stress induced cGAS-STING axis activation and NLRP3 inflammasome-mediated pyroptosis in a STING-dependent manner in human NP cells. Interestingly, the canonical morphological and functional characteristics of mitochondrial permeability transition pore (mPTP) opening with the cytosolic escape of mitochondrial DNA (mtDNA) were observed in human NP cells under oxidative stress. Furthermore, the administration of a specific pharmacological inhibitor of mPTP and self-mtDNA cytosolic leakage effectively reduced NLRP3 inflammasome-mediated pyroptotic NP cell death and microenvironmental inflammation in vitro and degenerative progression in a rat disc needle puncture model. Collectively, these data highlight the critical roles of the cGAS-STING-NLRP3 axis and pyroptosis in the progression of IVD degeneration and provide promising therapeutic approaches for discogenic LBP.
Collapse
|
36
|
Inhibition of IRE1 Suppresses the Catabolic Effect of IL-1β on Nucleus Pulposus Cell and Prevents Intervertebral Disc Degeneration in vivo. Biochem Pharmacol 2022; 197:114932. [DOI: 10.1016/j.bcp.2022.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
|
37
|
Cui H, Du X, Liu C, Chen S, Cui H, Liu H, Wang J, Zheng Z. Visfatin promotes intervertebral disc degeneration by inducing IL-6 expression through the ERK/JNK/p38 signalling pathways. Adipocyte 2021; 10:201-215. [PMID: 33853482 PMCID: PMC8057091 DOI: 10.1080/21623945.2021.1910155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visfatin reportedly induces the expression of proinflammatory cytokines. Severe grades of intervertebral disc disease (IVDD) exhibit higher expression of visfatin than mild ones. However, the direct relationship between visfatin and IVDD remains to be elucidated. This study aimed to clarify whether stimulation of visfatin in IVDD is mediated by IL-6. To investigate the role of visfatin in IVDD, a rat model of anterior disc puncture was established by injecting visfatin or PBS using a 27-gauge needle. Results revealed an obvious aggravation of the histological morphology of IVDD in the visfatin group. On treating human NP cellswith visfatin, the levels of collagenII and aggrecan decreased and those of matrix metallopeptidase 3 and IL-6 gradually increased. A rapid increase in ERK, JNK, and p38 phosphorylation was also noted after visfatin treatment. Compared to those treated with visfatin alone, NP cells pretreated with ERK1/2, JNK, and p38 inhibitors or siRNA targeting p38, ERK, and JNK exhibited a significant suppression of IL-6. Our data represent the first evidence that visfatin promotes IL-6 expression in NP cells via the JNK/ERK/p38-MAPK signalling pathways. Further, our findings suggest epidural fat and visfatin as potential therapeutic targets for controlling IVDD-associated inflammation.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xianfa Du
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Shunlun Chen
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haowen Cui
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jianru Wang
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhaomin Zheng
- Department of Spine Surgery, The 1st Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Pain Research Center, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
38
|
Lin J, Du J, Wu X, Xu C, Liu J, Jiang L, Cheng X, Ge G, Chen L, Pang Q, Geng D, Mao H. SIRT3 mitigates intervertebral disc degeneration by delaying oxidative stress-induced senescence of nucleus pulposus cells. J Cell Physiol 2021; 236:6441-6456. [PMID: 33565085 DOI: 10.1002/jcp.30319] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/25/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Senescence of nucleus pulposus (NP) cells (NPC) is a major cause of intervertebral disc degeneration (IVDD), so delay NPC senescence may be beneficial for mitigating IVDD. We studied the effect and mechanism of silent information regulator 2 homolog 3 (SIRT3) on NPC senescence in vivo and in vitro. First, we observed SIRT3 expression in normal and degenerated NPC with immunohistochemical and immunofluorescence staining. Second, using SIRT3 lentivirus transfection, reactive oxygen species probe, senescence-associated β-galactosidase staining, polymerase chain reaction, and western blot to observe the oxidative stress, senescence, and degeneration degree among groups. Subsequently, pretreatment with adenosine monophosphate-activated protein kinase (AMPK) agonists and inhibitors, observing oxidative stress, senescence, and degeneration degree among groups. Finally, the IVDD model was constructed and divided into Ctrl, Vehicle, LV-shSIRT3, and LV-SIRT3 groups. X-ray and magnetic resonance imaging scans were performed on rat's tails after 1 week; hematoxylin and eosin and safranin-O staining were used to evaluate the degree of IVDD; immunofluorescence staining was used to observe SIRT3 expression; immunohistochemical staining was used to observe oxidative stress, senescence, and degeneration degree of NP. We found that SIRT3 expression is reduced in degenerated NP tissues but increased in H2 O2 -induced NPC. Moreover, SIRT3 upregulation decreased oxidative stress, delayed senescence, and degeneration of NPC. In addition, activation of the AMPK/PGC-1α pathway can partially mitigate the NPC oxidative stress, senescence, and degeneration caused by SIRT3 knockdown. The study in vivo revealed that local SIRT3 overexpression can significantly reduce oxidative stress and ECM degradation of NPC, delay NPC senescence, thereby mitigating IVDD. In summary, SIRT3 mediated by the AMPK/PGC-1α pathway mitigates IVDD by delaying oxidative stress-induced NPC senescence.
Collapse
Affiliation(s)
- Jiayi Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics Center, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jiacheng Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiexing Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Congxin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiangtao Liu
- Department of Orthopedics Center, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Luyong Jiang
- Department of Orthopedics Center, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xiaoqiang Cheng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingjiang Pang
- Department of Orthopedics Center, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Liu W, Wang Y. Protective role of the alpha-1-antitrypsin in intervertebral disc degeneration. J Orthop Surg Res 2021; 16:516. [PMID: 34416893 PMCID: PMC8377970 DOI: 10.1186/s13018-021-02668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration is a complex disease with high prevalence. It suggests that cell death, senescence, and extracellular matrix degradation are involved in the pathogenesis. Alpha-1 antitrypsin (AAT), a serine protease inhibitor, was previously correlated with inflammation-related diseases. However, its function on intervertebral disc degeneration remains unclear. METHODS A latex-enhanced immunoturbidimetric assay measured the serum level of AAT. Real-time polymerase chain reaction (RT-qPCR) and western blot were used to testify the expression of RNA and proteins related to cell apoptosis and the Wnt/β-catenin pathway. The animal model for intervertebral disc degeneration was built by disc puncture. The degeneration grades were analyzed by safranin o staining. RESULTS We showed that alpha-1 antitrypsin could ameliorate intervertebral disc degeneration in vitro and in vivo. We also found that the serum alpha-1 antitrypsin level in Intervertebral disc degeneration patients is negative related to the severity of intervertebral disc degeneration. Moreover, alpha-1 antitrypsin was also showed to suppress tumor necrosis factor-alpha (TNF-α) induced WNT/β-catenin signaling pathway activation in human nucleus pulposus cells. CONCLUSIONS Our study provides evidence for AAT to serve as a potential therapeutic reagent for the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weikun Liu
- Department of Orthopedics, People's Hospital of Dongxihu District, Wuhan, Hubei, People's Republic of China
| | - Yanfu Wang
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
40
|
Wiersema T, Tellegen AR, Beukers M, van Stralen M, Wouters E, van de Vooren M, Woike N, Mihov G, Thies JC, Creemers LB, Tryfonidou MA, Meij BP. Prospective Evaluation of Local Sustained Release of Celecoxib in Dogs with Low Back Pain. Pharmaceutics 2021; 13:1178. [PMID: 34452138 PMCID: PMC8398998 DOI: 10.3390/pharmaceutics13081178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Back pain affects millions globally and in 40% of the cases is attributed to intervertebral disc degeneration. Oral analgesics are associated with adverse systemic side-effects and insufficient pain relief. Local drug delivery mitigates systemic effects and accomplishes higher local dosing. Clinical efficacy of intradiscally injected celecoxib (CXB)-loaded polyesteramide microspheres (PEAMs) was studied in a randomized prospective double-blinded placebo controlled veterinary study. Client-owned dog patients suffering from back pain were treated with CXB-loaded (n = 20) or unloaded PEAMs ("placebo") (n = 10) and evaluated by clinical examination, gait analysis, owners' questionnaires, and MRI at 6 and 12 weeks follow-up. At 6 and 12 weeks, CXB-treated dogs experienced significantly less pain interference with their daily life activities compared to placebo. The risk ratio for treatment success was 1.90 (95% C.I. 1.24-2.91, p = 0.023) at week 6 and 1.95 (95% C.I. 1.10-3.45, p = 0.036) at week 12. The beneficial effects of CXB-PEAMs were more pronounced for the subpopulation of male dogs and those with no Modic changes in MRI at inclusion in the study; disc protrusion did not affect the outcome. It remains to be determined whether intradiscal injection of CXB-PEAMs, in addition to analgesic properties, has the ability to halt the degenerative process in the long term or restore the disc.
Collapse
Affiliation(s)
- Tijn Wiersema
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Anna R. Tellegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Martijn Beukers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Marijn van Stralen
- Image Sciences Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Erik Wouters
- Anicura Dierenziekenhuis Dordrecht, Jan Valsterweg 26, 3315 LG Dordrecht, The Netherlands;
| | - Mandy van de Vooren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Nina Woike
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands; (N.W.); (G.M.); (J.C.T.)
| | - George Mihov
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands; (N.W.); (G.M.); (J.C.T.)
| | - Jens C. Thies
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands; (N.W.); (G.M.); (J.C.T.)
| | - Laura B. Creemers
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| |
Collapse
|
41
|
Promoting Nrf2/Sirt3-Dependent Mitophagy Suppresses Apoptosis in Nucleus Pulposus Cells and Protects against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6694964. [PMID: 34211633 PMCID: PMC8211502 DOI: 10.1155/2021/6694964] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
One of the causes of intervertebral disc degeneration (IVDD) is nucleus pulposus cell (NPC) death, possibly apoptosis. In this study, we explored the role of the Nrf2/Sirt3 pathway and tert-butylhydroquinone (t-BHQ) in IVDD and elucidated the potential working mechanism. Reactive oxygen species (ROS) assay kits and malondialdehyde (MDA) assay kits were used to assess oxidative stress. Western blot and TUNEL staining were used to examine apoptosis. After siRNA against Nrf2 or lentivirus against Sirt3 was transfected into NPCs, the mechanism of the effect of the Nrf2/Sirt3 pathway on NPCs was assessed. The interaction between t-BHQ and its potential interacting protein NRF2 was further investigated through protein docking analysis. ChIP examined the binding affinity between Nrf2 and Sirt3 promoter. In vivo experiments, X-ray, hematoxylin-eosin (HE) staining, Safranin O staining, and immunohistochemistry were used to evaluate IVDD grades. The results demonstrated that activation of the Nrf2/Sirt3 pathway inhibited tert-butyl hydroperoxide- (TBHP-) induced apoptosis and mitochondrial dysfunction in vitro. In addition to apoptosis, upregulation of the Nrf2/Sirt3 pathway induced by t-BHQ restored TBHP-induced autophagic flux disturbances. However, its protective effect was reversed by chloroquine and Si-ATG5. Furthermore, t-BHQ ameliorated IVDD development in a rat model. In conclusion, our findings indicate that the Nrf2/Sirt3 pathway and its agonist represent a potential candidate for treating IVDD.
Collapse
|
42
|
Gullbrand SE, Ashinsky BG, Lai A, Gansau J, Crowley J, Cunha C, Engiles JB, Fusellier M, Muehleman C, Pelletier M, Presciutti S, Schol J, Takeoka Y, Yurube T, Zhang Y, Masuda K, Iatridis JC. Development of a standardized histopathology scoring system for intervertebral disc degeneration and regeneration in rabbit models-An initiative of the ORSspine section. JOR Spine 2021; 4:e1147. [PMID: 34337334 PMCID: PMC8313151 DOI: 10.1002/jsp2.1147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The rabbit lumbar spine is a commonly utilized model for studying intervertebral disc degeneration and for the pre-clinical evaluation of regenerative therapies. Histopathology is the foundation for which alterations to disc morphology and cellularity with degeneration, or following repair or treatment are assessed. Despite this, no standardized histology grading scale has yet been established for the spine field for any of the frequently utilized animal models. AIMS The purpose of this study was to establish a new standardized scoring system to assess disc degeneration and regeneration in the rabbit model. MATERIALS AND METHODS The scoring system was formulated following a review of the literature and a survey of spine researchers. Validation of the scoring system was carried out using images provided by 4 independent laboratories, which were graded by 12 independent graders of varying experience levels. Reliability testing was performed via the computation of intra-class correlation coefficients (ICC) for each category and the total score. The scoring system was then further refined based on the results of the ICC analysis and discussions amongst the authors. RESULTS The final general scoring system involves scoring 7 features (nucleus pulposus shape, area, cellularity and matrix condensation, annulus fibrosus/nucleus pulposus border appearance, annulus fibrosus morphology, and endplate sclerosis/thickening) on a 0 (healthy) to 2 (severe degeneration) scale. ICCs demonstrated overall moderate to good agreement across graders. An addendum to the main scoring system is also included for use in studies evaluating regenerative therapeutics, which involves scoring cell cloning and morphology within the nucleus pulposus and inner annulus fibrosus. DISCUSSION Overall, this new scoring system provides an avenue to improve standardization, allow a more accurate comparison between labs and more robust evaluation of pathophysiology and regenerative treatments across the field. CONCLUSION This study developed a histopathology scoring system for degeneration and regeneration in the rabbit model based on reported practice in the literature, a survey of spine researchers, and validation testing.
Collapse
Affiliation(s)
- Sarah E. Gullbrand
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Beth G. Ashinsky
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Alon Lai
- Leni and Peter W. May Department of OrthopaedicsIchan School of MedicineNew YorkNew YorkUSA
| | - Jennifer Gansau
- Leni and Peter W. May Department of OrthopaedicsIchan School of MedicineNew YorkNew YorkUSA
| | - James Crowley
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUNSWSydneyAustralia
| | - Carla Cunha
- i3S ‐ Instituto de Investigação e Inovação em Saúde, INEB ‐ Instituto de Engenharia BiomédicaPortoPortugal
| | - Julie B. Engiles
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Clinical Studies, New Bolton CenterSchool of Veterinary Medicine, University of Pennsylvania, PhiladelphiaPennsylvaniaUSA
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Université de Nantes, ONIRISNantesFrance
| | | | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUNSWSydneyAustralia
| | | | - Jordy Schol
- Tokai University School of MedicineIseharaJapan
| | | | | | - Yejia Zhang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIchan School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
43
|
Lai A, Gansau J, Gullbrand SE, Crowley J, Cunha C, Dudli S, Engiles JB, Fusellier M, Goncalves RM, Nakashima D, Okewunmi J, Pelletier M, Presciutti SM, Schol J, Takeoka Y, Yang S, Yurube T, Zhang Y, Iatridis JC. Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the ORS spine section. JOR Spine 2021; 4:e1150. [PMID: 34337335 PMCID: PMC8313153 DOI: 10.1002/jsp2.1150] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rats are a widely accepted preclinical model for evaluating intervertebral disc (IVD) degeneration and regeneration. IVD morphology is commonly assessed using histology, which forms the foundation for quantifying the state of IVD degeneration. IVD degeneration severity is evaluated using different grading systems that focus on distinct degenerative features. A standard grading system would facilitate more accurate comparison across laboratories and more robust comparisons of different models and interventions. AIMS This study aimed to develop a histology grading system to quantify IVD degeneration for different rat models. MATERIALS & METHODS This study involved a literature review, a survey of experts in the field, and a validation study using 25 slides that were scored by 15 graders from different international institutes to determine inter- and intra-rater reliability. RESULTS A new IVD degeneration grading system was established and it consists of eight significant degenerative features, including nucleus pulposus (NP) shape, NP area, NP cell number, NP cell morphology, annulus fibrosus (AF) lamellar organization, AF tears/fissures/disruptions, NP-AF border appearance, as well as endplate disruptions/microfractures and osteophyte/ossification. The validation study indicated this system was easily adopted, and able to discern different severities of degenerative changes from different rat IVD degeneration models with high reproducibility for both experienced and inexperienced graders. In addition, a widely-accepted protocol for histological preparation of rat IVD samples based on the survey findings include paraffin embedding, sagittal orientation, section thickness < 10 μm, and staining using H&E and/or SO/FG to facilitate comparison across laboratories. CONCLUSION The proposed histological preparation protocol and grading system provide a platform for more precise comparisons and more robust evaluation of rat IVD degeneration models and interventions across laboratories.
Collapse
Affiliation(s)
- Alon Lai
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jennifer Gansau
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James Crowley
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia
| | - Carla Cunha
- i3S‐Instituto de Investigação e InovaçãoemSaúdeUniversidade do PortoPortoPortugal
| | - Stefan Dudli
- University Clinic of Rheumatology, Center of Experimental RheumatologyBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Julie B. Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Marion Fusellier
- Regenerative Medicine and Skeleton, Inserm, UMR 1229, RMeSUniversité de Nantes, ONIRISNantes CedexFrance
| | - Raquel M. Goncalves
- i3S‐Instituto de Investigação e InovaçãoemSaúdeUniversidade do PortoPortoPortugal
- Instituto de CiênciasBiomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Daisuke Nakashima
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Jeffrey Okewunmi
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia
| | | | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Yoshiki Takeoka
- Department of Orthopaedic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Sidong Yang
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yejia Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
44
|
Liao Z, Li S, Lu S, Liu H, Li G, Ma L, Luo R, Ke W, Wang B, Xiang Q, Song Y, Feng X, Zhang Y, Wu X, Hua W, Yang C. Metformin facilitates mesenchymal stem cell-derived extracellular nanovesicles release and optimizes therapeutic efficacy in intervertebral disc degeneration. Biomaterials 2021; 274:120850. [PMID: 33984637 DOI: 10.1016/j.biomaterials.2021.120850] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are extracellular nanovesicles that deliver diverse cargoes to the cell and participate in cell communication. Mesenchymal stem cell (MSCs)-derived EVs are considered a therapeutic approach in musculoskeletal degenerative diseases, including intervertebral disc degeneration. However, limited production yield and unstable quality have impeded the clinical application of EVs. In the present study, it is indicated that metformin promotes EVs release and alters the protein profile of EVs. Metformin enhances EVs production via an autophagy-related pathway, concomitantly with the phosphorylation of synaptosome-associated protein 29. More than quantity, quality of MSCs-derived EVs is influenced by metformin treatment. Proteomics analysis reveals that metformin increases the protein content of EVs involved in cell growth. It is shown that EVs derived from metformin-treated MSCs ameliorate intervertebral disc cells senescence in vitro and in vivo. Collectively, these findings demonstrate the great promise of metformin in EVs-based intervertebral disc regeneration.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Yu C, Li D, Wang C, Xia K, Wang J, Zhou X, Ying L, Shu J, Huang X, Xu H, Han B, Chen Q, Li F, Tang J, Liang C, Slater N. Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell. Bioact Mater 2021; 6:3568-3579. [PMID: 33842742 PMCID: PMC8022109 DOI: 10.1016/j.bioactmat.2021.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cell transplantation has been proved the promising therapeutic effects on intervertebral disc degeneration (IVDD). However, the increased levels of reactive oxygen species (ROS) in the degenerated region will impede the efficiency of human adipose-derived stem cells (human ADSCs) transplantation therapy. It inhibits human ADSCs proliferation, and increases human ADSCs apoptosis. Herein, we firstly devised a novel amphiphilic copolymer PEG-PAPO, which could self-assemble into a nanosized micelle and load lipophilic kartogenin (KGN), as a single complex (PAKM). It was an injectable esterase-responsive micelle, and showed controlled release ability of KGN and apocynin (APO). Oxidative stimulation promoted the esterase activity in human ADSCs, which accelerate degradation of esterase-responsive micelle. Compared its monomer, the PAKM micelle possessed better bioactivities, which were attributed to their synergistic effect. It enhanced the viability, autophagic activation (P62, LC3 II), ECM-related transcription factor (SOX9), and ECM (Collagen II, Aggrecan) maintenance in human ADSCs. Furthermore, it is demonstrated that the injection of PAKM with human ADSCs yielded higher disc height and water content in rats. Therefore, PAKM micelles perform promoting cell survival and differentiation effects, and may be a potential therapeutic agent for IVDD.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Dongdong Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Liwei Ying
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jiawei Shu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Haibin Xu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Bin Han
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Nigel Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Xie C, Ma H, Shi Y, Li J, Wu H, Wang B, Shao Z, Huang C, Chen J, Sun L, Zhou Y, Tian N, Wu Y, Gao W, Wu A, Wang X, Zhang X. Cardamonin protects nucleus pulposus cells against IL-1β-induced inflammation and catabolism via Nrf2/NF-κB axis. Food Funct 2021; 12:2703-2714. [PMID: 33666626 DOI: 10.1039/d0fo03353g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IVDD) is one of the major causes of low back pain, but effective therapies are still lacking because of its complicated pathology. It has been demonstrated that increased levels of interleukin-1β (IL-1β) may promote the development of IVDD. Cardamonin (CAR) is a chalcone extracted from Alpinia katsumadai and other plants. It exhibits an anti-inflammatory effect in multiple diseases. In the present study, we investigated the protective effects of CAR on rat nucleus pulposus (NP) cells under IL-1β stimulation in vitro and in a puncture-induced rat IVDD model in vivo. We explored the CAR treatment's inhibition of the expression of inflammatory factors such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in rat NP cells. Moreover, the up-regulation of matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) and the degradation of aggrecan and collagen II induced by IL-1β were reversed by CAR. Mechanistically, we demonstrated that CAR inhibited nuclear factor kappa B (NF-κB) signaling by activating the nuclear factor erythroid-derived 2-like 2 (Nrf2) in IL-1β-induced rat NP cells. Furthermore, the protective effect of CAR was shown in the IVDD model through persistent intragastric administration. Taken together, our results revealed that CAR could activate the Nrf2/HO-1 signaling axis and be a novel agent for IVDD therapy.
Collapse
Affiliation(s)
- Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang B, Ke W, Wang K, Li G, Ma L, Lu S, Xiang Q, Liao Z, Luo R, Song Y, Hua W, Wu X, Zhang Y, Zeng X, Yang C. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8884922. [PMID: 33628392 PMCID: PMC7889339 DOI: 10.1155/2021/8884922] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Mechanical stimulation plays a crucial part in the development of intervertebral disc degeneration (IDD). Extracellular matrix (ECM) stiffness, which is a crucial mechanical microenvironment of the nucleus pulposus (NP) tissue, contributes to the pathogenesis of IDD. The mechanosensitive ion channel Piezo1 mediates mechanical transduction. This study purposed to investigate the function of Piezo1 in human NP cells under ECM stiffness. The expression of Piezo1 and the ECM elasticity modulus increased in degenerative NP tissues. Stiff ECM activated the Piezo1 channel and increased intracellular Ca2+ levels. Moreover, the activation of Piezo1 increased intracellular reactive oxygen species (ROS) levels and the expression of GRP78 and CHOP, which contribute to oxidative stress and endoplasmic reticulum (ER) stress. Furthermore, stiff ECM aggravated oxidative stress-induced senescence and apoptosis in human NP cells. Piezo1 inhibition alleviated oxidative stress-induced senescence and apoptosis, caused by the increase in ECM stiffness. Finally, Piezo1 silencing ameliorated IDD in an in vivo rat model and decreased the elasticity modulus of rat NP tissues. In conclusion, we identified the mechanosensitive ion channel Piezo1 in human NP cells as a mechanical transduction mediator for stiff ECM stimulation. Our results provide novel insights into the mechanism of mechanical transduction in NP cells, with potential for treating IDD.
Collapse
Affiliation(s)
- Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianlin Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
48
|
Lu S, Song Y, Luo R, Li S, Li G, Wang K, Liao Z, Wang B, Ke W, Xiang Q, Chen C, Wu X, Zhang Y, Ling L, Yang C. Ferroportin-Dependent Iron Homeostasis Protects against Oxidative Stress-Induced Nucleus Pulposus Cell Ferroptosis and Ameliorates Intervertebral Disc Degeneration In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670497. [PMID: 33628376 PMCID: PMC7889334 DOI: 10.1155/2021/6670497] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/06/2023]
Abstract
Ferroptosis is a specialized form of regulated cell death that is charactered by iron-dependent lethal lipid peroxidation, a process associated with multiple diseases. However, its role in the pathogenesis of intervertebral disc degeneration (IVDD) is rarely investigated. This study is aimed at investigating the role of ferroptosis in oxidative stress- (OS-) induced nucleus pulposus cell (NPC) decline and the pathogenesis of IVDD and determine the underlying regulatory mechanisms. We used tert-butyl hydroperoxide (TBHP) to simulate OS conditions around human NPCs. Flow cytometry and transmission electron microscopy were used to identify ferroptosis, while iron assay kit, Perl's staining, and western blotting were performed to assay the intracellular iron levels. A ferroportin- (FPN-) lentivirus and FPN-siRNA were constructed and used to explore the relationship between FPN, intracellular iron homeostasis, and ferroptosis. Furthermore, hinokitiol, a bioactive compound known to specifically resist OS and restore FPN function, was evaluated for its therapeutic role in IVDD both in vitro and in vivo. The results indicated that intercellular iron overload plays an essential role in TBHP-induced ferroptosis of human NPCs. Mechanistically, FPN dysregulation is responsible for intercellular iron overload under OS. The increase in nuclear translocation of metal-regulatory transcription factor 1 (MTF1) restored the function of FPN, abolished the intercellular iron overload, and protected cells against ferroptosis. Additionally, hinokitiol enhanced the nuclear translocation of MTF1 by suppressing the JNK pathway and ameliorated the progression of IVDD in vivo. Taken together, our results demonstrate that ferroptosis and FPN dysfunction are involved in the NPC depletion and the pathogenesis of IVDD under OS. To the best of our knowledge, this is the first study to demonstrate the protective role of FPN in ferroptosis of NPCs, suggesting its potential used as a novel therapeutic target against IVDD.
Collapse
Affiliation(s)
- Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Ling
- Department of Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
49
|
Liu Y, Du J, Peng P, Cheng R, Lin J, Xu C, Yang H, Cui W, Mao H, Li Y, Geng D. Regulation of the inflammatory cycle by a controllable release hydrogel for eliminating postoperative inflammation after discectomy. Bioact Mater 2021; 6:146-157. [PMID: 32817921 PMCID: PMC7426539 DOI: 10.1016/j.bioactmat.2020.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Surgery is the final choice for most patients with intervertebral disc degeneration (IDD). Operation-caused trauma will cause inflammation in the intervertebral disc. Serious inflammation will cause tissue defects and induce tissue degeneration, IDD recurrence and the occurrence of other diseases. Therefore, we proposed a scheme to treat recurrence after discectomy by inhibiting inflammation with an aspirin (ASP)-loaded hydrogel to restore the mechanical stability of the spine and relieve local inflammation. ASP-liposomes (ASP-Lips) were incorporated into a photocrosslinkable gelatin-methacryloyl (GelMA) via mixing. This material can effectively alleviate inflammation by inhibiting the release of high mobility group box 1 (HMGB1) from the nucleus to the cytoplasm. We further assessed the expression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), and degeneration-related factors, such as type II collagen (COL-2), Aggrecan, matrix metallopeptidases-3 (MMP-3), MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 in rat nucleus pulpous cells. The level of IDD was analyzed through H&E, safranin-O staining and immunohistochemistry in rabbit samples. In vitro, we found that ASP-Lip@GelMA treatment significantly decreased inflammatory cytokines, MMP-3 and -13, and ADAMTS-4 and -5 and up-regulated COL-2 and Aggrecan via the inhibited release of HMGB-1 from the nucleus. In vivo, ASP-Lip@GelMA can effectively inhibit inflammation of local tissue after disc surgery and fill local tissue defects. This composite hydrogel system is a promising way to treat the recurrence of IDD after surgery without persistent complications.
Collapse
Affiliation(s)
- Yu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Jiacheng Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Peng Peng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Ruoyu Cheng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Jiayi Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Congxin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Haiqing Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yuling Li
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Nanchong, Sichuan, 637000, PR China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| |
Collapse
|
50
|
Xu H, Sun M, Wang C, Xia K, Xiao S, Wang Y, Ying L, Yu C, Yang Q, He Y, Liu A, Chen L. Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 2020; 13:015010. [PMID: 33361566 DOI: 10.1088/1758-5090/abc4d3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleus pulposus (NP) degeneration is the major cause of degenerative disc disease (DDD). This condition cannot be treated or attenuated by traditional open or minimally invasive surgical options. However, a combination of stem cells, growth factors (GFs) and biomaterials present a viable option for regeneration. Injectable biomaterials act as carriers for controlled release of GFs and deliver stem cells to target tissues through a minimally invasive approach. In this study, injectable gelatin methacryloyl microspheres (GMs) with controllable, uniform particle sizes were rapidly biosynthesized through a low-cost electrospraying method. The GMs were used as delivery vehicles for cells and GFs, and they exhibited good mechanical properties and biocompatibility and enhanced the in vitro differentiation of laden cells into NP-like phenotypes. Furthermore, this integrated system attenuated the in vivo degeneration of rat intervertebral discs, maintained NP tissue integrity and accelerated the synthesis of extracellular matrix. Therefore, this novel therapeutic system is a promising option for the treatment of DDD.
Collapse
Affiliation(s)
- Haibin Xu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China. Department of Orthopedic Research, Institute of Zhejiang University, Hangzhou 310009, Zhejiang, People's Republic of China. These two authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|