1
|
Exogenous Klotho ameliorates extracellular matrix degradation and angiogenesis in intervertebral disc degeneration via inhibition of the Rac1/PAK1/MMP-2 signaling axis. Mech Ageing Dev 2022; 207:111715. [PMID: 35952859 DOI: 10.1016/j.mad.2022.111715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is highly ubiquitous in the aged population and is an essential factor for low back pain and spinal disability. Because of the association between IDD and senescence, we investigated the ability of the anti-aging drug Klotho to inhibit age-dependent advancement of nucleus pulposus cell (NPC) degeneration. The results indicated that 400 pM exogenous Klotho significantly ameliorated extracellular matrix degradation and angiogenesis. Moreover, we demonstrated that the suppression of angiogenesis and extracellular matrix catabolism was related to inhibition of the Ras-related C3 botulinum toxin substrate 1 (Rac1)/PAK1 axis and matrix metalloproteinase 2 protein expression by exogenous Klotho cotreatment with a Rac1 inhibitor, gene overexpression in NPCs, and stimulation of human umbilical vein endothelial cells with conditioned medium from NPCs. The treatment also preserved the NPC phenotype, viability, and matrix content. In conclusion, these results suggest that the new anti-aging drug Klotho is a potential treatment strategy to mitigate IDD, and thus, provides an innovative understanding of the molecular mechanism of IDD. DATA AVAILABILITY: All data supporting the findings of this study are available from the corresponding authors upon reasonable request.
Collapse
|
2
|
Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1. Int J Mol Sci 2022; 23:ijms23126629. [PMID: 35743067 PMCID: PMC9224357 DOI: 10.3390/ijms23126629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023] Open
Abstract
Netrin-1, a chemoattractant expressed by floor plate cells, and one of its receptors (deleted in colorectal cancer) has been associated with pronociceptive actions in a number of pain conditions. Here, we addressed the question of whether spinal TRPC4/C5 or TRPA1 are among the downstream receptors contributing to pronociceptive actions induced by netrin-1. The experiments were performed on rats using a chronic intrathecal catheter for administration of netrin-1 and antagonists of TRPC4/C5 or TRPA1. Pain sensitivity was assessed behaviorally by using mechanical and heat stimuli. Effect on the discharge rate of rostral ventromedial medullary (RVM) pain control neurons was studied in lightly anesthetized animals. Netrin-1, in a dose-related fashion, induced mechanical hypersensitivity that lasted up to three weeks. Netrin-1 had no effect on heat nociception. Mechanical hypersensitivity induced by netrin-1 was attenuated by TRPA1 antagonist Chembridge-5861528 and by the control analgesic compound pregabalin both during the early (first two days) and late (third week) phase of hypersensitivity. TRPC4/C5 antagonist ML-204 had a weak antihypersensitivity effect that was only in the early phase, whereas TRPC4/C5 antagonist HC-070 had no effect on hypersensitivity induced by netrin-1. The discharge rate in pronociceptive ON-like RVM neurons was increased by netrin-1 during the late but not acute phase, whereas netrin-1 had no effect on the discharge rate of antinociceptive RVM OFF-like neurons. The results suggest that spinal TRPA1 receptors and pronociceptive RVM ON-like neurons are involved in the maintenance of submodality-selective pronociceptive actions induced by netrin-1 in the spinal cord.
Collapse
|
3
|
Lie MU, Pedersen LM, Heuch I, Winsvold B, Gjerstad J, Hasvik E, Nygaard ØP, Grotle M, Matre D, Zwart JA, Nilsen KB. Low Back Pain With Persistent Radiculopathy; the Clinical Role of Genetic Variants in the Genes SOX5, CCDC26/GSDMC and DCC. Front Genet 2022; 12:757632. [PMID: 35140737 PMCID: PMC8819060 DOI: 10.3389/fgene.2021.757632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
In a recently published genome-wide association study (GWAS) chronic back pain was associated with three loci; SOX5, CCDC26/GSDMC and DCC. This GWAS was based on a heterogeneous sample of back pain disorders, and it is unknown whether these loci are of clinical relevance for low back pain (LBP) with persistent radiculopathy. Thus, we examine if LBP with radiculopathy 12 months after an acute episode of LBP with radiculopathy is associated with the selected single nucleotide polymorphisms (SNPs); SOX5 rs34616559, CCDC26/GSDMC rs7833174 and DCC rs4384683. In this prospective cohort study, subjects admitted to a secondary health care institution due to an acute episode of LBP with radiculopathy, reported back pain, leg pain, and Oswestry Disability Index (ODI), were genotyped and followed up at 12 months (n = 338). Kruskal-Wallis H test showed no association between the SNPs and back pain, leg pain or ODI. In conclusion, LBP with radiculopathy 12 months after an acute episode of LBP with radiculopathy, is not associated with the selected SNPs; SOX5 rs34616559, CCDC26/GSDMC rs7833174 and DCC rs4384683. This absent or weak association suggests that the SNPs previously associated with chronic back pain are not useful as prognostic biomarkers for LBP with persistent radiculopathy.
Collapse
Affiliation(s)
- Marie Udnesseter Lie
- Research and Communication Unit for Musculoskeletal Health (FORMI), Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Marie Udnesseter Lie,
| | - Linda Margareth Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Ingrid Heuch
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Bendik Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Johannes Gjerstad
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Eivind Hasvik
- Department of Physical Medicine and Rehabilitation, Østfold Hospital Trust, Grålum, Norway
| | - Øystein Petter Nygaard
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- National Advisory Unit on Spinal Surgery, St Olavs Hospital, Trondheim, Norway
| | - Margreth Grotle
- Research and Communication Unit for Musculoskeletal Health (FORMI), Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway
| | - Dagfinn Matre
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - John-Anker Zwart
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
4
|
Identification and Characterization of Serum microRNAs as Biomarkers for Human Disc Degeneration: An RNA Sequencing Analysis. Diagnostics (Basel) 2020; 10:diagnostics10121063. [PMID: 33302347 PMCID: PMC7762572 DOI: 10.3390/diagnostics10121063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/03/2022] Open
Abstract
Circulating microRNAs (miRNAs) have been associated with various degenerative diseases, including intervertebral disc (IVD) degeneration. Lumbar disc herniation (LDH) often occurs in young patients, although the underlying mechanisms are poorly understood. The aim of this work was to generate RNA deep sequencing data of peripheral blood samples from patients suffering from LDH, identify circulating miRNAs, and analyze them using bioinformatics applications. Serum was collected from 10 patients with LDH (Disc Degeneration Group); 10 patients without LDH served as the Control Group. RNA sequencing analysis identified 73 differential circulating miRNAs (p < 0.05) between the Disc Degeneration Group and Control Group. Gene ontology enrichment analysis (p < 0.05) showed that these differentially expressed miRNAs were associated with extracellular matrix, damage reactions, inflammatory reactions, and regulation of apoptosis. Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes were involved in diverse signaling pathways. The profile of miR-766-3p, miR-6749-3p, and miR-4632-5p serum miRNAs was significantly enriched (p < 0.05) in multiple pathways associated with IVD degeneration. miR-766-3p, miR-6749-3p, and miR-4632-5p signature from serum may serve as a noninvasive diagnostic biomarker for LHD manifestation of IVD degeneration. Furthermore, several dysregulated miRNAs may be involved in the pathogenesis of IVD degeneration. Further study is needed to confirm the functional role of the identified miRNAs.
Collapse
|
5
|
Suntsov V, Jovanovic F, Knezevic E, Candido KD, Knezevic NN. Can Implementation of Genetics and Pharmacogenomics Improve Treatment of Chronic Low Back Pain? Pharmaceutics 2020; 12:pharmaceutics12090894. [PMID: 32967120 PMCID: PMC7558486 DOI: 10.3390/pharmaceutics12090894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Etiology of back pain is multifactorial and not completely understood, and for the majority of people who suffer from chronic low back pain (cLBP), the precise cause cannot be determined. We know that back pain is somewhat heritable, chronic pain more so than acute. The aim of this review is to compile the genes identified by numerous genetic association studies of chronic pain conditions, focusing on cLBP specifically. Higher-order neurologic processes involved in pain maintenance and generation may explain genetic contributions and functional predisposition to formation of cLBP that does not involve spine pathology. Several genes have been identified in genetic association studies of cLBP and roughly, these genes could be grouped into several categories, coding for: receptors, enzymes, cytokines and related molecules, and transcription factors. Treatment of cLBP should be multimodal. In this review, we discuss how an individual's genotype could affect their response to therapy, as well as how genetic polymorphisms in CYP450 and other enzymes are crucial for affecting the metabolic profile of drugs used for the treatment of cLBP. Implementation of gene-focused pharmacotherapy has the potential to deliver select, more efficacious drugs and avoid unnecessary, polypharmacy-related adverse events in many painful conditions, including cLBP.
Collapse
Affiliation(s)
- Vladislav Suntsov
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Filip Jovanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Emilija Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Kenneth D. Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-773-296-5619; Fax: +1-773-296-5362
| |
Collapse
|
6
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
7
|
Suri P, Palmer MR, Tsepilov YA, Freidin MB, Boer CG, Yau MS, Evans DS, Gelemanovic A, Bartz TM, Nethander M, Arbeeva L, Karssen L, Neogi T, Campbell A, Mellstrom D, Ohlsson C, Marshall LM, Orwoll E, Uitterlinden A, Rotter JI, Lauc G, Psaty BM, Karlsson MK, Lane NE, Jarvik GP, Polasek O, Hochberg M, Jordan JM, Van Meurs JBJ, Jackson R, Nielson CM, Mitchell BD, Smith BH, Hayward C, Smith NL, Aulchenko YS, Williams FMK. Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. PLoS Genet 2018; 14:e1007601. [PMID: 30261039 PMCID: PMC6159857 DOI: 10.1371/journal.pgen.1007601] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of chronic back pain (CBP). Adults of European ancestry were included from 15 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and from the UK Biobank interim data release. CBP cases were defined as those reporting back pain present for ≥3-6 months; non-cases were included as comparisons ("controls"). Each cohort conducted genotyping using commercially available arrays followed by imputation. GWAS used logistic regression models with additive genetic effects, adjusting for age, sex, study-specific covariates, and population substructure. The threshold for genome-wide significance in the fixed-effect inverse-variance weighted meta-analysis was p<5×10(-8). Suggestive (p<5×10(-7)) and genome-wide significant (p<5×10(-8)) variants were carried forward for replication or further investigation in the remaining UK Biobank participants not included in the discovery sample. The discovery sample comprised 158,025 individuals, including 29,531 CBP cases. A genome-wide significant association was found for the intronic variant rs12310519 in SOX5 (OR 1.08, p = 7.2×10(-10)). This was subsequently replicated in 283,752 UK Biobank participants not included in the discovery sample, including 50,915 cases (OR 1.06, p = 5.3×10(-11)), and exceeded genome-wide significance in joint meta-analysis (OR 1.07, p = 4.5×10(-19)). We found suggestive associations at three other loci in the discovery sample, two of which exceeded genome-wide significance in joint meta-analysis: an intergenic variant, rs7833174, located between CCDC26 and GSDMC (OR 1.05, p = 4.4×10(-13)), and an intronic variant, rs4384683, in DCC (OR 0.97, p = 2.4×10(-10)). In this first reported meta-analysis of GWAS for CBP, we identified and replicated a genetic locus associated with CBP (SOX5). We also identified 2 other loci that reached genome-wide significance in a 2-stage joint meta-analysis (CCDC26/GSDMC and DCC).
Collapse
Affiliation(s)
- Pradeep Suri
- Seattle Epidemiologic Research and Information Center (ERIC), Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
- Division of Rehabilitation Care Services, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
| | - Melody R. Palmer
- Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yakov A. Tsepilov
- Polyomica, ‘s-Hertogenbosch, the Netherlands
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Cindy G. Boer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Michelle S. Yau
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, United States of America
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Andrea Gelemanovic
- Department of Public Health, University of Split Medical School, Split, Croatia
| | - Traci M. Bartz
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maria Nethander
- Department of Medicine, University of Göteborg, Göteborg, Sweden
| | - Liubov Arbeeva
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Tuhina Neogi
- Clinical Epidemiology Unit, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Dan Mellstrom
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Göteborg, Sweden
| | - Lynn M. Marshall
- Department of Orthopedics and Rehabilitation, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Eric Orwoll
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Andre Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Gordan Lauc
- Genos Ltd, Osijek, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Health Services, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, United States of America
| | - Magnus K. Karlsson
- Department of Orthopedics, Skane University Hospital, Lund University, Malmö, Sweden
| | - Nancy E. Lane
- Departments of Medicine and Rheumatology, University of California Davis, Sacramento, California, United States of America
| | - Gail P. Jarvik
- Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ozren Polasek
- Department of Public Health, University of Split Medical School, Split, Croatia
- Hospital “Sveti Ivan”, Zagreb, Croatia
| | - Marc Hochberg
- Departments of Medicine and Epidemiology, University of Maryland, Baltimore, Maryland, United States of America
| | - Joanne M. Jordan
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Rebecca Jackson
- Department of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Carrie M. Nielson
- School of Public Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Braxton D. Mitchell
- Departments of Medicine and Epidemiology, University of Maryland, Baltimore, Maryland, United States of America
- Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Blair H. Smith
- Division of Population Health Sciences, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, United Kingdom
| | - Nicholas L. Smith
- Seattle Epidemiologic Research and Information Center (ERIC), Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, United States of America
| | | | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Murphy B, Ibrahim JE, Bugeja L, Pilgrim J, Cicuttini F. The Use of Deceased Controls in Epidemiologic Research: A Systematic Review. Am J Epidemiol 2017; 186:367-384. [PMID: 28460057 DOI: 10.1093/aje/kwx052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
Scholarly debate on the use of deceased controls in epidemiologic research continues. This systematic review examined published epidemiologic research using deceased persons as a control group. A systematic search of 5 major biomedical literature databases (MEDLINE, CINAHL, PsycINFO, Scopus, and EMBASE) was conducted, using variations of the search terms "deceased" and "controls" to identify relevant peer-reviewed journal articles. Information was sought on study design, rationale for using deceased controls, application of theoretical principles of control selection, and discussion of the use of deceased controls. The review identified 134 studies using deceased controls published in English between 1978 and 2015. Common health outcomes under investigation included cancer (n = 31; 23.1%), nervous system diseases (n = 26; 19.4%), and injury and other external causes (n = 22; 16.4%). The majority of studies used deceased controls for comparison with deceased cases (n = 95; 70.9%). Investigators rarely presented their rationale for control selection (n = 25/134; 18.7%); however, common reasons included comparability of information on exposures, lack of appropriate controls from other sources, and counteracting bias associated with living controls. Comparable accuracy was the most frequently observed principle of control selection (n = 92; 68.7%). This review highlights the breadth of research using deceased controls and indicates their appropriateness in studies using deceased cases.
Collapse
|
9
|
Molinos M, Almeida CR, Gonçalves RM, Barbosa MA. Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Eng Part A 2015; 21:2216-27. [DOI: 10.1089/ten.tea.2014.0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Molinos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|